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Abstract

The gamma source induced by inelastic scatter and fast capture of
neutrons in air may be approximated by a stationary point source over
an appreciable time span, depending upon observer distance. This note
describes the required expressions for this approximation, and then pre-
sents calculations of dose and radial current for pulsed neutron sources
in narrow energy bands.
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I. Introduction

A very good approximation for neutron-induced electromagentic
pulse (EMP) sources over a particular domain of time-range is the so-
called "Rattle'" model.* The approximation makes use of the fact that
the highest energy neutrons from a nuclear burst (14.IMEV) are travel-
ling at a speed of approximately ome-sixth the velocity of the induced
gamma rays, so that a distant observer sees essentially a statilonary
point source of gammas over an appreciable time span. Thus, the model
requires no neutron transport, but only that the neutron spectrum as a
function of time be computed, with the resulting gamma source being
lumped at the origin. One may then use a set of empirical Green's
functions for point gamma sources, such as those obtained by Schaeferl,
and perform a convolution integral to obtain the dose and radial cur-
rent due to neutron-induced gammas.

II. Expressions for Dose Rate and Radial Current

For a homogeneous medium, the Boltzmann transport equation may be
integrated over velocity angle and wolume to obtain an integro-differ-
ential equation for the neutron spectrum as a function of time. Upon
application of the multi-group approximation to this expression, there
results a coupled system of first order linear differential equations
in time. The series of steps leading from the general Boltzmann equa-
tion to this coupled set is given in Appendix A. A solution is straight-
forward by matrix methods; however, the absence of up-scatter (neutron
gaining energy in a collision) makes possible a relatively simple solu-
tion that is given in Appendix B. The differential equations and solu-
tion taken from the Appendices are given below:
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* To my knowledge, both the idea and term "Rattle' model originated
with W.R. Graham,Rand Corporation
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Where ni(t) number of neutrons of average energy Ei as function of time,

g

ti = total reaction cross section in group i,
Vi = average neutron velocity in group i,
Gji = gaverage transfer cross section from group j to group i,
NN = number of neutron energy groups,
NG = numbe? of gamma energy groups,
7 G Ty p
bji = 31 vj, and
Ni ‘= initial number of neutrons in group 1i.

To obtain the gamma source, we assume the gamma energy interval to be
segmented in the same manner as the neutron energy interval, and that there
exists a matrix whose elements B,., are physically the cross-sections for
production of gammas of energy E!lby neutrons of energy E Then the rate

of production of photens of eneréy Ei is given by 3
NN
() = T . B, nl(t i=1, NG (4)
z, () . vs By j( ) s

If nj(t) is replaced by (2), the result is

NN i -akt
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NN
Let C , = §=k v, Bji gkj (6)
NN
Then z, (t) = ﬁ;l Coy e 3t (7)
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let q(r,E,t) be the Green's function for dose rate, where

r = distance from origin,
E = photon energy, and
t = time since direct beam arrival at r.

Then the total dose rate from the neutron induced gammas is given
by

NG
Q(r,t) = ¢ q(r,E,,T) 1z, (t-t)dT (8)
i=1 o * *

Where the convolution on energy has been replaced by a sum.
The infinite limits on T may be replaced by finite limits, since
q(r,E,t) = 0, t<0

zi(t) =0, t<0 (9

After replacing z,(t) by expression (7) and rearranging, the ex-
pression for total dosé rate becomes

t

NG NN -a, (t-1)
Q(r,t) = X )X Cki q(r’EisT)e ak dr (10)
i=1 k=1 o i

The expression for radizl electron current is ldentical to (10)
if q 1is a Green's function for radial current.

Schaefer has obtained an empirjical fit for q(r,E,t) as well as for
the radial current Green's function™, based upon the Monte Carlo gamma
transport calculation of LeLevier?. For ease of, application, the ex- .
pressions used in this note are related to those of Schaefer below.

Q(I,E,t) = Qd[a (t) + f(E’r9t)] (11)

where

Q

g = energy deposited by the direct or unscattered gamma beam

§(t) = Dirac delta function
f(E,r,t) = the empirical fits obtained by Schaefer

The expression for the radial current Green's function is similarly
defined.



III. Numerical Results

Numerical results are presented for the dose rate and radial
current obtained from the application of equation (10), using the
emperical formulas of Schaeferl for the Green's function. The neu-
tron cross—sections are basically from the ENDF-B file/, and gamma
production cross-sections were obtained from many sources. The
cross-sections consisted in a matched set of 22 meutron groups and
18 gamma groups, with the neutron groups distributed over the energy
range thermal to 15 MEV, and the gamma energies distributed over
the range .02 to 10 MEV. A more complete description is given in
reference 4. All results are for STP air of density 1.2929 mg/cc.

The direct beam dose and current for equation (11) were computed
as follows:

Q, (r,E) = ETig)_e-r/ M) (12)

3y B = 0 e T/ E) (13)

U(E) = E g, (E) | (14)

W(E) = eR (E)/a_ (E) (15)
Where

E = gamma energy
A(E) = gamma mean free path (all reactioms)

od(E) = -gamma croés;section for ionizing energy f%bs

e = electronic charge

R(E) = average electron range in direction of incident gamma’

_ AC(E) = mean free path for Compton collisions

The cross-section g,(E) includes gamma losses due to photoelectric

effect, Compton scattering, and pair production. It was assumed that
electron currents were produced only from Compton scattering, and that

the production of current and deposition of energy were local processes.

The first two sets of data display r2 times dose rate and r? times

radial current as a function of retarded time for various ranges. Figs.

i=-3 show the detailed structure of the wavefront for the first ndcro-



second, and Figs. 4-17 give the "rattle model" prediction for dose
rate and radial current out to arrival time of the neutron wave.
Figs. 18-23 are plots of dose rate and radial current divided by
average neutron energy for three ranges. The purpose of these is to
show the effectiveness of various portions of the neutron spectrum
normalized to one MEV of source energy.

The scales are labeled in such a way that the results may be
used for air of any density. A full discussion of denmsity scaling
is given in reference 6, and an example is given below to illustrate
the use of density scaling.

PROBLEM: Obtain the gamma dose rate from one 14 MEV neutron at
a range of 500 m in air of demsity .9 mg/cc.

Figs. 1 and 4 apply in this case, but for illustration purposes
we will use only Fig. 1 and compute the dose rate at retarded times O,
.5, and 1 microseconds. Let p = alr density relative to STP.

Compute air density relative to STP: p =_.9 = .696
1.2929

Compute scaled distance: p *r = 348m

Compute scaled times: p *O. 0 us

p *.5 = .348 us
p ¥1. = .696 us
The scaled distance is between the 200m and 400m curves, so values
must be extrapolated at each of the scaled times. These are listed in

the following table:
rZ * Dose Rate

Time (ups) Scale Time (ﬁs) pé Dose rate (MEV/M2.sec)
0.0 0. 50. 9.7 % 107>
0.5 © 348 75, - C1.45 % 10°%
1.0 .696 80. 1.55 * 10°%

To obtain the final or desired value of dose rate, the extrapolated
values must be multiplied by (0/r)2, and this value is also listed in
the above table. The radial current is similarly computed.

A preliminary investigation indicates that the dose rate and radial
current may be accurately given by a function of the form:

Q(E,r,T) Fl (E,t) exp (“er(E,T)), : (16)

re

where T t -r/e



= -C2T =C4T
F1 c,e + cqe (17)
2
F2 - ¢5T + ceT + cy (18)
T + c8

The coefficients c, are functions of neutron energy only. If
early time behavior (T-}Zus) is unimportant, a very good fit is ob-
tained with the F, equal to a single exponential in 1, and F, a linear
function of t. Tﬁe equation for radial current has the same form with
a different set of c's. This representation of the "rattle model"
prediction will be investigated further in a later report.

IV. Conclusions

The "Rattle" model is probably the only practical method for ob-
taining an accurate time history for the neutron-induced dose rate and
radial current within the first microsecond of observer time. In addi-
tion, the relative simplicity and speed of the methcd make it very use-
ful for quickly determining the effect on dose rate and current as neu-
tron and gamma-production cross-sections are updated, without doing a
complete transport calculation.

I would like to thank Rodney Lowen and Richard Summey for plotting
the graphs contained in this report.



FIG. 1 Early Time behavior of dose rate
and radial current at neutron source energy 12.2-15 Mev.
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FIG. 2 Early time hehavior of dose rate
and radial current at neutron source energy 8.18-10.0 Mev.
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DOSE RATE-R%/p2 (Mev/M-sec-SOURCE NEUTRON)

FIG. 3 Early Time behavior of dose rate
and radial current at neutron source energy 4.96-6.36 Mev.
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times. dose rate.
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Neutron source energy 12.2-15 Mev.
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FIG., 5 R2 times radial current.
Neutron source energy 12,2-15 Mev.
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DOSE RATE R%/p? (Mev/M*sec-SOURCE NEUTRON)
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FIG. 7 R2 times radial current.

Neutron source energy 10.0-12.2 Mev.
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FIG. 8 R2 times dose rate.
Neutron source energy 8.18-10.0 Mev.
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DOSE RATE'RZ/p2 (Mev/M-5ec.Source Neutron)

Neutron source energy 6.36-8.18 Mev.

FIG. 10

Rz times dose fate.
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RADTAL CURRENT'RZ/p (AMP /SOURCE NEUTRON)

FIG. 11 R2

times radial current.
Neutron source energy 6.36-8.18 Mev.
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" DOSE RATE-Rz/p2 (Mev/M- sec. Source Neutron)
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FIG. 12 R2

times dose rate.
Neutron source energy 4.96-6.36 Mev.
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RADIAL CURRENT* R2/p (AMP/SOURCE NEUTRON)
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DOSE RATE'Rz/p ( Mev/M-sec. Source Neutron)
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FIG. 14 R2 times dose rate.
Neutron source energy 4.06-4.96 Mev.
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RADIAL CURRENT-RZ/p (AMP /SOURCE NEUTRON)
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FIG. 15 R2 times radial current.
Neutron source energy 4.06-4.96 Mev.
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DOSE RATE-R /p2 (Mev/M- sec.Source Neutron)
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FIG. 16 R2 times dose rate.
Neutron source energy 3.01-4.06 Mev.
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RADIAL CURRENT-RZ/p (AMP/SOURCE NEUTRON)

FIG. 17 R2 times radial current,
Neutron source energy 3.01-4.06 Mev.
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FIG.19 Radial current per Mev source energy.
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FIG. 20 Dose rate per Mev source energy.
Radlal distance 1200 meters.

L ; i :
™ 58.18 - 10.0 Mev
T NINEN
1 10.0 - 12.2 Mev
R Moy o
» t
™~ - 12.2 - 15.0 Me
4 [ S S [ |
"""'-.~~;96 ~ 6 NHL‘\\\*E._
S ey TR
™ ] » e
So ) =
4'311.‘98 NEU e
/—-... 006 .."" .tr0n ."'"'h.,‘
4 &n
1 26 Me Trey B
5.0f TR T
= 4.06 o g
Vv,
: P e
i Ty Tt
Tf ! h-"""- T -
! Pt
n L.*__
p = RELATIVE AIR DENSITY (RELATIVE TO 1 2929138/cc)

10

8

12 16

p-LOCAL TIME (u sec)

26

20

24



(AMP/Mz-Mev)

RADIAL CURRENT/(p2-E)

FIG. 21 Radial current per Mev source energy

Radial distance 1200 meters

' t
!
I H
- 8.18 - 10.0 Mev :
10 25 f i
N,g.};"‘_raE ] 510.0 - 12.2 Mev
T8 Me;h:%
\\“--.__' \\\~~h~ 12 2 - 15.0 Mev
- | . -
10—26 < '-\: o 1111 !
-— oy
hf-:,_96 —~ B N-.:‘\""\..
i 5.6'36 =
: 1 T MeV -.\"'-n.
] L
| t "-.._“
10"27 | I T ."'-4..
Source Neutron Energy
B [T 1
Loy o I T =
| [ e 4.06 T —
i T~ 4. 9g
Sag [ Mey
..‘E"--;.‘?-Ol i — -
L G T T T |
10—28 B T
P~ =
T
= RELATIVE AIR DENSITY (RELATIVE TO 1.,2929 Mev T
=29
10 i
|
-31
10
4 8 12 16 20 24

p *LOCAL TIME (u sec)

27



FIG. 22 Dose rate per Mev source energy.
Radial distance 3000 meters.
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FIG. 23 Radial current per Mev source energy.
Radial distance 3000 meters.
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APPENDIX A

Reduction of the Tramsport Equation to the Spatially
Independent Case

The general form of the Boltzmann equation for neutral particle
transport may be written:

3N ~ -

— v

5t + V. (QvN) +ot(r,v) vN

- dv'fasz' v N EvR0,6) o (F.v') £ (v'R)

+ S (T,w,t) 1)

Where N(Tr,vQ,t) = distribution of particles in space & velocity
as a function of time,

time,

unit vector in direction of motion,

<4 Dt
n

particle velocity,

ct(f,v) = total reaction cross section,
o S(f,v) = total scatter cross section,

F = position vector,

f(v'a'»v@)d 'dv' = probability that a particle originated in the
interval d@'dv' at v'Q' when scattered to v, and

5(r,vQ,t) = independent source.

Now we assume that N and v are continuous and have continuous
partial derivations over the domain of interest and integrate (1) term
by term over all solid angle. Appeal is made to Leibnitz's rule to
reverse the order of integration and differentiatiorfa

JBa-z fro-2gun @
ot at ot

fV' voNdQ = v .fvéNdQ =v " J (F,v,t) ' (3
J,P o, (T,v) vNdQ = ct(f,v) vP (T,v,t) (4)

fdﬂ. fdv' fdﬂ'v'N(r,v'Q’,t) Us(f,v')f(v'ﬂ'-*vﬂj
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=fdv‘ ]‘dsz'N(:‘:,vfﬁ'-,t) cs(?,v') fdnf(v'ﬁ‘wﬁ), (5)

Where by definition,

P(r,v,t) st(?,vfz,t)dﬂ (6)
FGE.v.t) = fvs"m(;,v{z,tm @)
Q(%,v,t) = fs(?,vfz,t)dn (8)

In general the scatter kernel may be written as an infinite
Legendre expansion in the cosine of the scatter angle.

22+1
2

f(vIQt-+v)

Il ~8

z gz(v',v) P, (coseo) )

Now let the coordinates of 9 and Q' be respectively (8,¢) and
(6',¢"), and apply the addition theorem3:

Pg(cos 00) = Pg(cose) PR (cose") (10)
L b
mfl %%;E%%P (cosH) P (cosb') cos m ($-¢')
% . -

’

Now 1f (10) is substituted in (9) and the integration in(5) per-
formed, we have:

fdfzf (v'Q'svR) = ano(v',v) (11)

The second integration in (5) over solid angle may now be per-
formed.

fdv fdQ N(T,v!' Q',t) g (E,v'") 21Tg (v',v)

(12)
= "rdv vt g, (v',v) P(T,v',t) g T,v")
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The transport equation, integrated over solid angle may now be
written:

oP . =
T + vV J + atvP
(13)

= 2% fdv'v'go(v',v) P(;,v',t)os(?,v') + Q

Now if spatially independent cross-sections are assumed we may
integrate (13) over all volume to obtain:

%% + o, (v)vn = 27 fdv'v'go(.V',v)n(v',t)cs(v') + s(v,t)  (14)

Where by definition:
n(v,t) Efd3r P(r,v,t) (15)
S(V,t) §/d3r Q(?svst) (16)

The vector current term vanishes by application of the divergence
theorem to convert the volume integral to a surface integral, and the
assumption of vanishing particle density at infinity.

Lastly, we make the multi-group approximation to equation (14) to
obtain a discrete velocity (or energy) dependence. To reduce the amount
of writing, we define the linear operator:

vi .
\A <F(v)> = f F(v) dv = F, = ' (17)

Vi-1

The "group" variables may now be defined in terms of the linear

operator Vi < P
ni(t) = v, <n(v,t)> (18)
si(t) = Vi <s(v,t)> (19)
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Vi <:0t(v) va(v,t) >

%1 T v, <vnlv,t) > (20)
_ Vi < V‘n(_V,t)> (21)
Vi ni
g, (v =V, <g (v',v)> (22)
Thus, we may write
Vi < ‘equation (14) > (23)
ani
= —gr Oy vy (t) = 2m fdv'v'cs(v')giCV')n(V',t)
+ si(t).
. ) 2m v:I <v os‘(V) giCV)n(v,t):> (24)
et O =
ji vy nj(t)

Then the final result may be written:

ani(t)

+0 .,v.n (t) = g,,v.n '
5t 3 (25)

ti'i i Jji3 3¢ + si-(t)

In most practical cases the integrations in equations (17) to
(25) are performed on energy rather than velocity§s and if that were -
done the form of (25) would be the same. Also, due to the assumed
continuity of the distribution functiom N (T¥,vf,t), a different order
of the three integrations would not alter the final result.
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APPENDIX B

Solution of Coupled Linear Differential Equations

In Appendix A the transport equation was reduced to a system of
coupled linear differential equations (LDE) with time as the only
independent variable. In the absence of up-scatter (particle gaining
energy in a collision), the system may be arranged in order of de-
creasing energy and solved successively starting with the LDE represent-
ing neutrons of highest energy. In what follows we will begin with the
system of LDE's found in Appendix A and obtain an iterative solution by
means of Laplace transforms.

From Appendix A we have:

dni(t) +g._, v (t) = gN v,n,(t) + s, (t)

— "% Yy . %3179% i (25~A)
dt 3=1

i=1, NN

To simplify the mathematics we define the following:

b = g..Vv i = 1,NN (1)
ERRNR FAS & |

a, = ¢ _,v, = d,,Vv =1,NN . (2)
3 e¥1 ” %93%

n  indicates Laplace transformed variable

Further, we make the following assumptions:

s;(t) =0 .41.= 1,NN : G _ (3)

n, (0) = Ny i=1,NN (4)

Ogq = 0, j>1i (no up-scatter) (5)

Equation (25-A) may now be written:

dn -l (6)
i+ a,n, = I b,.,n i=1,NN

a1t g
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Solutions to (6) will be of the form:*
1 -a,t

ni(t) = i:l A-11 e ] i=1,NN (7
j:

The object then is to obtain the coefficients Ajl as explicit
functions of the initial values Ni, the decay constants ai, and the
transfer constants bji defined in equations (1) and (2).

Now perform a Laplace transfrom on (6):

i-1

3 - N, +a,n $  b..n, 4i=I,NN (8
s, - N, +an, - jinj =1, )
i-1
"y v N
n, = 1 p b,.n, + i
s+ai 31y s+ai )
=1

Next, transform (7) and substitute the result into (9):

\ 3

~ 1

n,= L A, —— (10)

3 q=1 1] s+ai
i-1 3 '

v 1 N :

By 7 SHa, Thyy T Ay SIL— + B—_'_:— (11)
3=1 k=1 % i

Equation (11) may be rearranged after separation of the produce-
terms in s by partial fractions to obtain:

: 1-1 j
nT Nt by o Ay
i =1 k=l 2K %%
1-1 -1
b: Ay
+z 1 z 4N 1 =1,NN (12)

kel ST ogek 7%

* This may be shown by sucessively solving the first few of equations
(6) and then applying induction.
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Now apply the inverse Laplace transform to (12) to obtain the
time domain solution.

1-1 1A 3

n(t)= [N, + = b2 -a.t
i i 4=1 Jji =1 3"y e i
i-1 i-1 .
~=a, t b :
*r &t o Puhy aw (13)
k=1 =k T

The solution must be unique, and the exponentials are linearly
independent, so the coefficients on the left hand sides of (7) and
(13) must be equal. Therefore,

1-1 i
N+ Z b, 3 i‘_ , k=i
j=l £=1 ag-ai
Bt i-1
1 Z b
a;=a, I=k 1, k< (14)

Now, starting with A

1 - N,, all other may be determined
from (14). 1 1 Aki :
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