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- PREFACE

The work reported in this memorandum is a contribution to RAND's
continuing study of electromagnetic propagation through various environ-
ments. In particular, this work on propagation along stratified media
provides results gefmane'to gloBél_VLF communiéétions,_electromagnetic
3detection of atmospheric nuclear bursts, and transmission line
analjsis and design. | _ ' '

Digital computer programs have been written to exploit the
analysis presented in the following pages. Copies of these brograms

are available from the authors.
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" SUMMARY

In this paper an iterative technique is developed for caléulating

‘the propagation coefficient for electromagnetic waves traveling along.

. a stratified medium. The strata are required only to be "parallel"

-~ and have scalar electrical parameters, €, 0, and u; no restrictions

are placed upon the distribution of these parameters. The boundary
conaitiqns_at,the top and bottoﬁ strata may be of a variety of forms;
for example, a surface impedance may be specified or outgoing waves
only may be requiréd. :

The technique is explicitly presented for rectangular, cylindriéal,
and spherical geometries. In cylindrical geometry, the '"parallel"
strata are concentric cylinders, and in spherical geometry, they are
concentric spheres.

The technique is designed to be used on a digital computer; it

has been programmed and used to solve several practical problems.

SR X
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1. INTRODUCTION

Stratified media are those media whose electrical properties are
independent of-One of the coordinates used to describe the configura-
tion. For ‘example, an infinite parallel plate transm1551on line con-
taining any material in layers parallel to the plates is an example of
a stratified medium,; and parallel plate transmission lines of finite
widths are often good approximations to stratified media fbr'the pur—‘
pose of understanding their electrical propagation characteristics.

In another geometry, a space made up of concentric spheres of mater1a1
each of uniform electrical properties, is a stratified medium.

Configurations which closely approximate stratified media occur
in a number of electromagnetic prepagation problems. In particular, the
propagation of radio waves in tﬁe¢region between the earth and the iono-
sphere is a problem of this type. In this earth-ionospheric waveguide,
one way to describe the prepagation is in terms of normal modes, and it
is this mode description that will be used in the following.*

For previous work which treats the earth-ionospheric waveguide
propagation problem analytically and numerically, see Walt( ) and Budden.(zy

At frequencies sufflciently high that the wavelength is small
compared with the waveguide height, a 1arge number of modes are required
to describe the distant signal from any reasonable source, and so the
normal mode desarlptlon is of limited value. However, when the wave-

length becomes comparable to the wavegulde height, then only one or at

.most a few normal modes. are required to describe distant propagatlon

phenomena, and the normal mode description becomes quite useful.

The subsrance of this paper begins in Section II, with a statement

of the problem to be soived, the form assumed by Maxwell's equations

in plane geometry and a derivation of the iterative techniﬁue for
finding the'pr0pagatien constant for arbitrary plane parallel strata.

Part III then extends the analysis to spherical geometry, and

* Part IV completes the discussion for two cylindrical geometries., In

. Part V, the mode orthogonality relation is derived so that given field

distribttibns may be resolved into their modal components.

- *The more general earth—lonospheric propagation problem considers

- €, 0, and-u to be tensors of the second rank, but these parameters will'_

be c0n51dered only as scalars in the present paper.



I1. ELECTROMAGNETIC'PROPAGATION ALONG STRATIFIED &
. MEDIA IN PLANE GEOMETRY '

In this section the electromagnetic Propagation along media of the

type shown in Fig. 1 will be discussed. y

Region B
Stratum N ﬁ zN, TN, €EN. BN
A
Stratum N-1 ZN-1+ UN-II €N-1: BN
L]
A
. ; Strafum 2 } . Za, o2, €9, Mo
J” Stratum 1 T 21,91, €, 1
' z
X
Region A

Fig.1 —The medium

Each> layer is assumed to be uniform and homogeneous with given height
255 and electrical parameters o ,u., and €9 which extend to-infinity :
~in the x and y direction.

The electromagngtic waves considered are sinusoidal in time,

independent of one of the coordinates parallél—to the strata (y), and

moving in the positive x direction: ) 7 : ‘ o @*
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'The.propagation ié'characterized by the wave number k(w), and
the ceﬁtral'problem is the determination of k{w).

Maxwell's equations are

(o + ime)ﬁ

Vx ﬁ,
V-x E = - iwp ﬁ

V. [(o + ine)E] = 0
V. (uﬁ) =0 ;

We ‘can eliminate E from the equations for H, and vice versa, to

obtain
2> . -
V'H = - [V log(o + iwe)] x (VxH) + iwy (o + diwe)H
2> ‘ >
V'E = - [V log(iwn)] x (VXE) + 1op (o + iwe)E .

- ‘ ‘ + ,
Within each stratum, the electrical parameters are constant, so that

in the nth stratum we have

-

2 ' -
V'H = iwun(cn + lwe )H
© V% = e (o + due)E .
= 1wun,?n iwe .

The solutions for H and E must have the same general form, since
they satisfy the same equation. The general solution for waves propa-

gating in the positive x direction is

*If the electrical parameters of a problem in fact vary.continuous-

f'1y,‘then'the constant strata may be chosen to approximate, as closely
- as. one wishes, the continuous- parameters. .
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where

T il e . yq1/2
, bn =[k +.lmun(0n + 1wen)]

Notice that bn depends upon the value of the umknown propagation con-
stant k(w).

Since the vector coefficiénts Hn+ and Hn— are'arbitrary, a con-
ceptual and calculational simplification is achieved if the fields

+
are divided into those which have only a y component of the magnetic

field (traqsverse magnetic, or TM, waves) andlthose which do not have
: a ; component of the magnetic field. The second group may also be
;:1 characterized as having only a ; component of the electric field (TE
1. waves). ‘ '
{1 In order to be specific, only the propagation of the TM waves '
;f N will be discussed in detail, but the calculation of the TE wévé
propagation follows in a completely analogous manner.

First, the boundary conditioﬁ equations that apply to the inter-

face between two strata will be found. These equations relate the

fieids in adjacent strata. The various boundary condition equations
for the fields at the top and bottom of the-stréta, at the region A
and region B interface (see Fig. 1) will be discussed. . ' '
’ Taken together,_ail the boundary condition equations may be

written as a set of n linear homogeneous equations in n unknowns.

Only. for particular values of k will this set of equations have a non-
i ) zero solution. The various values of k which permit solutions charac-

terize the modes of propagation along the strata.

R e Lo T it e T S g e

: N > - , ,
and the complex constant vector coefficients Hn and Hh are arbitrary, .
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THE BOUNDARY CONDITIONS AT THE INTERFACE BETWEEN TWO. STRATA

" The complete set of boundary conditions at the interface between
two media, neither of which is infinitely conducting, is for the z

(perpendicular to the boundafy) components of the field
HpHa T Mol

(ql + 1wel)Ezl = (02 + :uuez)Ez2

.and for the X and ; (tangent to the boundary) components .

B = B Hyy =8y
,Exl = Ex2 Exl - Ex2 *

For the TM modes, these boundary conditions reduce to

(01 + iwel)Ezl = (02 + imsz)Ezz

B = B

Hyl =_Hy2 )

_ These conditions are not independént. The z compdnenf of the

VxH equation is in strata 1 and 2

oH. .-

2
T - (0 FiweE
aH.z'

esi— =:‘02 + iwez)E

22



But if Hy is continuous across the boundary,_thén

a’Hl oH_,
—3L = £ .t the boundary,
X ox

qu:the bbundary conditions on Hy and Ez ére.dependént; one may be
dérived'from the other. The conditiop on Hy will be used in what
follows, since it results in somewhat less algebra.

The magnetic field continuity boundary condition at the inter-

face between layers n and n + 1 is then

+ nn - nn -+ ebn+lzn o ebn+lzn _
n n+l ntl

- which separates into homogeneous 2 equations, one real and one

imaginary, each in ten unknowns: the real and imaginary parts of
+ - _+ - :

Hn,_Hn, Hn+1’ Hn+1 and k. _

A similar equation results from the continuity of the tangential

component of the electric field, Ex'

THE INDUCTIVE-ITERATIVE METHOD OF SOLUTION

Since the details of the inductive-iterative method of solution

.are sufficiently intricate that they may obscure the physics involved,

‘we first present a summary of the method, with the calculational
details removed. The summary will élso-be used to define ﬁany of the
:vériables used later in the more detailed analysié. _

- Starting as before with a source-free stratified medium and a
wave propagating in the positive x-direction;Maxwell's equations may

be written in the form

& (n;z) &
—az - Z qu(n)k‘l’v(n'.z)

v=1

oo
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or, in the 1mp11c1t sum tensor contraction notatlon that will be used’

in the follow1ng,

dw (n,z).
'-fjf—-—“ Q (n) ¢ (n,z)

where wu(n,z) is treated as a vector with the four components

r'Re[Ex]

Im{E ]
¥ (II,Z) = x
¥ Re[H]

| Tm[H] |

and Q is a matrix which does not depend upon the fields, but depends

only on the properties of the n 1ayer‘of the strata. The solution

“for ¢y in the n th layer is

wﬁ(n,Z) = (eQz) c. .

HV v

Since both H and E are continuous across each stratum interface; the

constant C must be chosen to connect the fields in the nt 1ayer with

those in the n-lth layer:

Q(n) (z-z )
w (n z) = [e ] v % (n-l z )

Given the fields at the region A interface, we.can then find the

- fields anywhere in the guide by sueeeSSively calculating the fields

from, one region toithe‘next, finally obtaining
@ (zz ) Q- (z__~z__)
RCEER OO 1 O
- ez
Seme “[e 7 ]std(l’O)

af
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- The actual calculations. of the éxponents raised to matrix powers
1 1 o

(which is defined as the series MM ST MM + 37 MMM+ L.ly)
is considerably expedited by noting that Q has the property that it can
-always be expressed as eight coefficients times eight linearly inde-
pendent 4 x_4<matriceé, and that these eight 4 x 4 matrices form a
ng:oup.*' The grouﬁ property is pérticulquj important, since it means
' ;hatrthe product of any‘two of the matrices is a third matrix of the
group. Therefore, to calculate the 1engthy matrix. products in the
solution, we just use the group multiplication table and keep track of
the coefficient of each of the .eight matrices.

The boundary conditions which are imposed at the top of the guide
tthe region B interface) put additional constraints upon the fields
at that boundary which will be satisfied only when certain values of
the propagation constant k are used in the Q matrices. An iterative
- numerical scheme which adjusts the fields to satisfy the boundary:
conditions at the upper boundary is then used to converge upon the

correct value of k.

DETAILS OF THE INDUCTIVE METHOD CALCULATION

As before, we shall treat only the TM case. Using the notation .

of the previous sections, let the 4 component vector'ﬁ be defined as
/5

. Re Ex(zn
Im Ex(z)

¥, (@) =
. Re Hy(z)

Im H (=z
NS

Then, in the nth stratum,

dwu
az ,Qw(n)lbv s

. *For thogeAintereSted‘in esoterica, the algebra of this group
is that of a subgroup of the Clifford, or hypercomplex, algebra.
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where the matrix,qu(n) takes the form

(0 0 A B )
n n
0 0 --].’:n Aﬁ
Q (n) =
.ow a -C WwEe 0 0
n I
—we —cn 0 OJ
“
with
k20n
A = -
n 2 2
(0 )% + (ue)
, €a fn
Bn = mun(l + 5o Y .
n n
*

Define the eighﬁ base matrices as follows:

7 3
0o 0 1 0
_ 0O 0 0 1
S,(h) = 1 0 0 0
0 1 0 ¢
\ /
e hY
’ 0 1 o
0o 0 0 1
8= o 0 o
0 -1 0 0
L J
4 N
1 0 0
- A 0o 1
Sz(+) - 0 0 -1

*The notation is clearly related to that of spinors in quantum

~ mechanics. This just reflects the authors' background.
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5,8 5, = 5.(p) 5,()

The algebra of matrix.mulvt'iplication is

= I4if pq=1

== iN if pq = - 1.
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_Nz = -1
=1 ‘
‘ s, (p) Sy(q) = - Sy(q) s, (p) = iéz(pq)
Sy('p) 5,() = -8 .(q) 8 (p) = is.x(pq)-
S0 50 = - 5 (@) 5, - i, (pa)

5, (PN = NSx(p) = 18_(-p)

b4 ? Z

In terms of the base matrices, Q can be written as

N

Q=

(Ah—dn) Sx(+) + (An+ch) iSy(+)
+ (men+Bn) in(—) + (men—Bn) Sy(—) .

Using the multiplication rules, we can now calculate

. 22 33
e =14 0q +92++Q3—f+...

We find that
Q2'= (k2 - m?eu) I - wpo-N,

.where we have suppressed the subscript.”n" denoting the nth stratum.
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We note .that, in the notation of the first section,
0% = Re [b?] - I - Im [b2].

For convenience, define

e el 2y 2 2
£f = Rg [bn] =k we M

g, = Im tbi] = wu o,
.80 thag
A% = £.1 - gon.
“Then
™ = (51 - W)™
= 2.7 - mf® L gN + E%:—l-l £ 222
= (£° - “’(‘;_'1) 2 2 7...) I
- (mfmelg - El-gl]:l'l—(-@:gl-fm-3 g3 + ...)N,

3!

' since'N2 =~ 1,

After a good deal of algébré and rearrangement, this can be

recognized as:

) . -1 -1 .
QZm - -(f2+g2 m/? Re[ei'm°Tan (g/f)].I _ Im[ei-m~'1‘an (g/f)]-N



and 
| Qqm+1 - sz-Q )
- -defining
M= NfQ = Q-N,
2m+1 2,2 ﬁ/Z i.m-Tan_l(g/f) 1o Tan_l(é/f) |
Q = (f"+g%) Re[e 1-Q - Im[e ]-M
finally,

Qz ®. zzqum ZZIIH'IQ2EH"1
€ =’Z [(_Zm)! ey

3

| -1
Cosh [z(f2+g2)1/" ol 1/2 Tan g/f] \

9

Re {
| » . -1 |
Im {Cosh [z(,fz_,_gz)l/li ei 1/2 Tan g/f} 3

4,Re <

| B
Sinh [z(f2+g?')1/4 el 1/2 Tan g/f] l ,Q'
(f2+g2)1/4 ei 1/2 Tan—lg/f

r ' ’ ) -1
Sinh'[2(f2+g?)1/4 o1 1/2 Tan g/f]

. -1
(f2+82)1/4 ol 1/2 Tan = g/f

.@ ~ where the matrices I, N, Q have already been defined and
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- =14

8
M() = N-Q =3 ¢ - (0n4B) S, (H) + (ue_-B ) 15 (+)
L
+ (An4on) in(~) - (An+on) Sy(-) .

a1 s z . ' ‘
We have thus exhibited the matrix eQ in terms of its components
on the eight basis vectors: the multiplication of a seriés of these

exponentials for succeeding strata can then be accomplished using the

"multiplication laws. (We note that the basis set is independent of

the properties of the stratum, although, of course, the coefficients

are not.) This scheme has been programmed and provides a very

. efficient way of 1ntegrat1ng Maxwell's equations to find the fields.

DETERMINING THE INCOMING WAVE PORTION OF THE FIELDS

Finally, 1t remains for us to exhibit explicitly how we pick out
the incoming wave portion of the fields (which we may then make zero
as.our extremum boundary conditions which are needed to completely
define the problem) and we shall also give the iterative correction
Procedure which we have used.

Using our previous notation, we note that we can write, in the

th
n stratum,

Ex(zﬁ = E+ebn(z_zn'l) + E_e-bn(z-zn_l)
.80 -that

dE_(2) -~ -

—dz - b lE (2) - ,F-(Z)]’
or

E, (2) - -2]1-[E @ + L dEji‘z(z)1 ,
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But from-Maxwell!s equations

dEx(g) k2

dz  ~ ~ [0 +iwe + lwun] Hy(z)
n n

kz— wzenun+iwuncn
== — ] H_(z)
g -+ iwe y
n n

2
)
=-c + lwe Hy(z) ,

thus

b
n

g +iwe
n t

B @ -1 - ()] -

That is, the incoming wave portion of Ex(z) can be expressed in terms

- of the fields at z.

To find,the modes of propagation, we adjust k to make £+ =0,

This can be done very simply, since we have two quantities to
make zero (Re[£+] and Im[£+]) and two parameters to adjust (Re[k] ‘and
Im[k]). Setting R = Re[E+] and I = Im[E+], kl = Re[k], and kz_E Im[k],
we begin a Taylor expansion of R and I about the present values of
kl an& kz.' Since we want to find new values of k.1 and k2 which make

R=0and I=0, we write

dR aR

0=R<+ Akl EE—-+ Ak2 T
: 1 2
and
" 91 ¥ &
0= T+ Ak EEI'+ AkZVEE;
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‘Wwe now have two equatlons in two unknowns, Akl and Ak2’ which are

the corrections in k, and k used to approach R = 0 and I = O. We

1 2

- make these corrections iteratively until R and I are sufficiently

S *
'small to provide the desired accuracy.

*#This is simply Newton's method in two dimensions.
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III. ELECTROMAGNETIC PROPAGATION ALONG STRATIFIED .
MEDIA IN SPHERICAL GEOMETRY '

Now consider the geometry shown in Fig. 2, which might, for

example, represent a spherically symmetric ionosphere surroundlng the

- earth.

In each uniform stratum, Maxwell's equations still have the form
-
Vzﬁ = dwp(o + iwe)H .

Putting the origin of the spherical coordinate system at the
center of the spheres, we will look for modes having only a ¢ com-
ponent of the magnetic field. '

Using the conventional separatlon of variables technlque, we

finally obtain the equationms

2 .2
%%_EH% - iwp(o + imE)r2 = n(nt+l)
dr .
1 d 1
@ 36 Lsin o 5 @sin )] = n(@i)

where rH¢ = R(r)- @ (6) and n is the separatlon constant, and is to
be determlned

-.Although,the-solutions to the r equatidn are known exactly,

the correspondence between the solutions in plane and spherical

geometries is clearer if we use the following approximation to the

r equation in each stratum

2 2
ir(-—, d—%— - iup(o + ime)rz.g,f_n(n+1) 5-2-
dr _ . ro_

or



. _-18f-

Region B 7 //

medium in spherical geometry
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2 .
.(_I_R_ :'uuu(c+ in)R —MR=‘O.
2 2
. dr 'ro

This approximation should be valid in computing the pfopagation con-

stant when %

iwu(a +ime)r2

<< n (@) + 1

&? -1
o

for anj r in the stratum, with r, the mean radius of the stratum.

This equation may be identified with the equation for the vertical
(z) dependence . of H in place geometry by associating
12 with “—(-’—‘;i) .

T
o]

" However, it is now n(n+l), not k2, which is constant throughout
the strata. Thus, if we set

k2 _ n(ntl)
1 2
N
then
2 _ a(ntl) 2 r1 2
k kil x (57
2 r2 1 r,
2
r
2 _.2 1.2
k3 . k1 (r )
3 .
or, if we set‘kl = k, then
'

’k is now the constant, but ki must be used in each spherical stratum

'invpléce of the constant k that was used inlthe-ﬁlane geometry case.-

B )

: *Wait, /p. 157, has- expressed this ineqﬁélity énalytically.in '

. closed form in terms of the physical parameters of.the medium for

certain;tractable_cases. o
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The - determlnatlon of k will provide the propagatlon constant in
the strata 1n the following way:

n{n+l) = rs k

or

The solution to the equation for (@ are P (cos B8) and Qn (cos 6),

the Legendre functlon. Since k1 is on the order of the inverse of

the free space wave length, then for strata of radius much greater

. than the" _Wavelength, n will be much greater than 1. For large n,

Pi(cos 0) = P(an% 5 % 6)1/2
F(n+-§) T sin

1 L] 1
cos [{(nt+ 59 e+ Zﬁ + OCE),

and

1 _ I'(n+2) | w 1/2
Qn(cos'g) - T(nt 2) 27 sin © )
’ 2

1 T 1
sini[(n+ E) 0+ Z];+ 0 (H) .

- Thus, for large n , we can find a linear form which represents waves

propagating in the 0 direction from the pole
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or

® (e)oc=__Le-ikr9 .

sin 6
In terms of the path length S along the surface of the sphere
from the pole,

® (S)C( ___C_ e—ikS.

sin O

This form parallels the x dependence obtained in the plane wave case.
Since the solution for H¢ is being ekpressed in terms of rH = R(ﬁ)
the expressions for the boundary condltlons must be recon31dered
For the equation of continuity of H, it is clear that if rH is

continuous for a fixed value of r, then H is also continuous, so

.that the continuity condition may be applied to either H or rH.

In the equation for the continuity of Ee (which corresponds. to

Ex in the plane geometry), we use the relation

VxH= (0 + iwe)E

or
’ 3(rH,)
1 "Ygl
- T T = (G + itue)Ee
. _ 1- B(rHG) _ (rE )
"ot iwe or et

'Thus, it is noe H but rH = RJE) which we must dlfferentiate to
obtain the value of . E “(or rEe) to use in the continu1ty equatlon.

In summary, for large radlus compared with the wavelengths in- .
volved, by changing k to k(——) in the it th 1ayer and using rHﬁ and
rEe in place of Hy and E s all of the formulas derlved for the plane

- geometry case may be used for the Spherical geometry case as well.

The connection of results 1n the two geometries as r + » is manifest,
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v. ELECTROMAGNETIC PROPAGATION ALONG STRATIFIED
MEDIA IN CYLINDRICAL GEOMETRY

Propagation of TM waves in the r direction and in the § direction
will be discussed. Since propagation in the r direction is simpler, -
it will be discussed first. A

Consider the geometry shown in Fig. 3.

Wg shall lobk_for modes which have only an H¢ independent of @,
and propagate in the r direction.

In each stratum Maxwell's equations reduce to

> e
VZ ﬁ = iwp(c + iwe)H

or
2
9H d"H
1 8 . @ ,_¢_ 1 . _. ;
T 3¢ (r oE ) + dzz rz H¢ iwu(o + 1me)H¢ .

Using separation of variables, this is written as two equations

with H¢ = Rz

S 9R, " 1.1 _ 2
. Rr or (r_s;D ~ iwp(o + iwe) + r2) R = b
and
l_dzz = b2
z dz *

The separation ponstant b is to be determined. Multiplying the first _
of these equations by R, and we obtain Bessel's equations, which has

. outgoing wave solutions

R = H{z) (kr)

ﬁ%%
i

‘where
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Stratum M

" Stratum 2

Stratum 1 |} 2

— =

Region A

Fig.3—The medium in cyli_hdricql geometry : R, & symmetry

I
>
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[b2 ~ iwp(o + ime:)]l/2 .

w
I

Since

o
]

[k? + iop(o + iws)]llz,

and the solution for the z variation is

just as in the plane geometry case, k should correspond to the propa-
gation constant k used in plane geometry. That the correspondence is

- complete can be seen by noting that for large kf,

(2) ! i-1 2 -ik
7H1 (v) » €7;:3,/;E;'e LRI

kr > =

and S0, aside from constants and the geometrical factor —l—-, k
gives the wave ﬁhase shift apd attenuation with distance. r

The equations for the continuity of H across the strata inter-
faces are the same as in piane geometry. The_&ontinuity of Er

becomes an equétion'involving only H through the relation
VxH= (c+ iwe)E

or
. 5 |
— = (0 + iwe)E
2 r

which is the same equation that was found in plane geometry.. It

follows that the E_ continuity equations are the same in this cylindri-

cal geometry and in plane geometry. Therefore, the propagation
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constant k calculated in plane geometry applies, with no change in the
célculations,'equally to this cylindrical geometry. Only the geometri-
c¢al factor 3%? and the large distange from the origin compared with

the wavelength must be kept in mind when going from one geometry to

" the other.

CYLINDRICAL GEOMETRY~PROPAGATION IN THE § DIRECTION

Now consider the geometry shown in Fig. 4. We shall discuss
propagation in the @ direction. In this orientation, the TM mode has
only a z component of H, and that component is independent of z.

In -a particular stratum, Maxwell's equations reduce to
22 > . >
V" B = iwp(o + jwe)H

or

BHZ 1 32 z
ar (r 5;—) ey s - iwp(o + ims)Hz =0 .

a¢2

Using standard separation of variables, with the substitution

H, = R(r)?(f#), the equation can be reduced to

2 | -
r2 Q—B-+ T 4R + [~ iwp(oc + ime)rz - lz] R=20
2 dr e
dr” . 5
- and -
2
i%=_12¢.
dag™:
7 The r equation may be-put in more familiar form with the sub-
‘stitution ' |

p = JrR
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Fig.4-—The medium in cylindrical geometry : &, Z symmetry
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in terms of which the r equation is

& V-4
——% - [iwp(o + iwe) + 5 ]Jo = O.
- dr , T
When 2
| &7 - 1] « lelntler 4y,
A P
‘ 4
~ then the equation may be approximated by
2 .
d—% - [iwn(o + iwe) + K°] p-= 0
dr
where
2 1
2 273
kK =73
Y

r = the mean value of r in the stratum. 7

With this approximation, the radial equation takes on the same
form as the plane geometry z equationm.

However, when moving to the next stratum, one must keep in mind
that it is the quaﬁtity lz, not K?, that is constant throughout the

. .th .
strata. Therefore, in the i layer, the equation is

.d2 : ' 2;2’
S5 - liou(o + dwe) +K =5 1 p =0
dr Ty

just as in the spherical geometry case, and has solutions

-2

, . | 7 -2‘\
p=A r /iwu(0+iw8) + K2 L l+a - r,'/iwu(0+ime) + 1(;2 . 1.
- +e ;2 —-e - ;2 /
. i ) i

The ¢ equation has the solution
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Cf2 =2 1 /22 1
L/K‘—r—z(ﬂ _ VK™ o ¢

- -2 |

If r is much greater than the wavelengths of concern, Kzrv >> 1 and
the 1/4 may be ignored. Then in terms of the path length S at the
reference radius r in the ¢ direction,

eiKS e—iKS
+ N .

For waves moving in the + $ direction, C+ = 0.

The continuity equations also must be reviewed. If p¢ is contin-
uous across one r = constant boundary; then er =p¢ is also continuous,
and so the Hz continuity equation may equally well be expressed as
a p® continuity equation. For the E0 continuity, Ed is expressed in-

terms of H by the relation

-3H
-Brz = (o + iwe)EG
or, in terms of .09,
Sekde i1 o
¢(¢f'dr 2r3/2 P) (c # ims)E¢'

which may be written
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——— ey

. =920-
1wp (o+iwe)+K -_’—i-z— (1wu(otivwe)+K™ 2_2 ,
. . . o T : . r.
. i . i . . 1 N )

- A - . =

U'l';i.wé A+ J;\ - A/? 21’.‘3/2

. 0or

[ 1wy (o+iwe)+1{2 %
-2l 1 B T
o tiwe | "+ . f;‘ | 2r3/2
, —
. 2T
'/qu (o+ iwe)+K )
r
- A I T )

- - /? 21_3/2 e

and so the A+ or A_ coefficlents are somewhat different from those

found in the plane and spherical cases.

Eg
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V. MODE ORTHOGONALITY

Wifﬁ the propagational aspects of individual hodes well in hand,
the question arises of toe propagation of a given electromagnetic field
having a specified spatial and temporal distribution. To understand
how a given field would propagate, it must first be decomposed into
its fourier components at each point over a suitable bouhdary. Then
the spatial distribution of each fourier com@onent must be resolved
into the modes discussed earlier. The modes are then. propagated indi-
vidually to the observation point, where the fields are summed over
all modes and frequencies to produce the final propagated waveform.*
To effect the mode decomposition, one must know the orthogonaiity
relation for the modes. | '

The relation will be derived for the TM modes in rectangular
ooordinates; the relation for the TE modes and for cylindrical and

spherical coordinates follows in exactly the same manner.

THE ORTHOGONALITY CONDITION-IN RECTANGULAR GEOMETRY

i(wt—k X)
‘When the field variation in the d1rect10n of propagation, e

is factored from the fields, Maxwell's equations may be written

dH

L2 _
- {o + imE)Exl '

*This assumes a completeness theorem for the modal decompositicn.

‘For the complex variables' considered here, we have not been able to
.- prove, or to find, such a theorem. In fact, there is reason to

believe that there may be other terms (related to branch cuts, as
- distinguished from poles) required for the decomposition of an
arbitrary spatial distribution. These added terms probably do not
influence long distance propagatlon 'in any case, we are not alone
in ignorlng them. :




B ey

R

- e

,_31_

- lk2H1,= (o + in)Ez
A
dE
e

) ———£-+ ik E - - iweH
Lz

dz s £

~ where the superscript & denotes the fields corresponding to mode £,

- having propagation constant kl' With the elimination of Ez, the

second and third equations become

dExz k2

dz =T (o+ims

+ 1mu)Hl.

If this equation is multiplied by Hm and the resultant equation
1s subtracted from the similar equation with £ and m interchanged,

one obtains

dEy B -1l
Bhoaz " Ha T ot+iwe Holty -

Performing similar operations with the equation for dHi/dz leads to

The addition of these two bilinear equations produces

i—(ﬁ H - E H‘);ﬁ——ki_ki"ﬂﬂ
dz X, m X 2 o +iwe 2 m ‘-
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Noting that thé fields must go to zero for z = + @, the integration

of this equation provides the desired_orthogonality condition:

(k -k )Lf U+1me 2 n o 0.

In practice, this form of the orthogonality condition is not the

most convenient. - The fields are usually calculated explicitly over a.

finite region such as that between planes A and B in Fig. 5 and some

boundary condition is imposed at A and B, such as that corresponding

to a perfectly conducting sheet, or corresponding to outgoing waves

propagating into a uniform medium. Therefore, it is convenient to

break the orthogonality integral into three parts: - « to A, A to B,
and B to . '

Plane A

O.G.T

F|g 5-—Boundary regions
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Since from the bilinear differential equation, over any interval

. L, U,
} | .
(k uk ) . 0+1ms m - (E H - Ex HE) 3
X % -
¥ L
it follows that
A B
) (EH—E H) +(k2k2) HH =0
c+1m€ R m 0+1ws l.m
- B A

and since the fields are usually calculated explicitly in the interval
A to B, the most useful form of the orthogonality integral is
‘l' !'B dz | ’
(i) ) otiwe Befn T By o ™ Emez) =0.
A A
The normalization constants may be obtained by direct integration.
The orthogonality relation for the fields in cylindrical and
spherical coordinate systems follows from Maxwell's equations in a

way completely analogpus to the above.
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