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DEVELOPMENT AND TESTING OF LEMP 1

oy

H. J. Longley
C. L. Longmire

ABSTRACT

LEMP 1 is a computer code for obtaining the solution, by finite difference
methods, of Maxwell's equations in two space dimensions and retarded time, for the
electromggnetic fields produced by a nuclear burst on the ground. The field com-
ponents considered are ﬂp, Eg, and E,. in the usual spherical coordinates. These
fields are calculated in the air, in the ground, and on the ground-air interface.
In the ground the electrical conductivity is constant in time and space, and the
source current is zero. The conductivity in the air is found bty sclving the Mair-
ion" equations, which take account of gamma-induced ionization, electron attachment
to 0p, and electron-ion and ion-ion recombination. The source current in the air
is the Compton recoil current produced by gamma rays, the source and transport of
which are given by a fairly general and flexible prescription. The back-action of
the fields on the air conductivity and the source current is treated. Two problems
with known solutions are presented - a wave test problem and a diffusion test
problem. The results of these problems show that the differencing scheme used,
with the proper selection of the finite mesh, gives better than one percent accu~
racy in the calculated fields. Without using huge numbers of mesh points, the
code gives flelds whose accuracy is limited only by the source accuracy. There
are two los Alamos reports which serve as companion report: to this one. These

reports are numbered LA-L347 and LA-4348.

I. THE DIFFERENTIAL EQUATIONS

1.1 Maxwell's Equations

LEMP 1 is a computer code for obtaining the so-
lution, by finite difference methods, of Maxwell's
equations in two space dimensions and retarded time,
for the electromagnetic fields produced by a nuclear
hurst on the ground. We start with the two Maxwell
equations that determine how the magnetic field B and
the electric field E change with time,

o
19B_ . =
cot- VX E

e OF = =
Ea—t+l|-ucE=VxB-1m?“
For simplicity, we use c¢gs Gaussian units in the -

code; thus charge and electric fields are. in esu and

currents and magnetic fields are in emu. The rela-

tion between these units and the engineers' MKS units

is given in the Appendix. TFor the convenience of en-

gincers, output of the code is expressed in MKS units.,

In Egs. 1.0, the medium has been assumed to be
nonmagnetic (p = 1), and the dielectric constant e
has been assumed constant in time., We shall take
€ = 1 in the air and € = constant in the ground. The
electrical conductivity o will be constant in the
ground, but depend on the fields, space, and time in
the gir. The Compton recoil current density 3 will
be zero in the ground, and will depend on the fields,
space, and time in the air. The velocity of light
c=3x 1010 cm/s;c.

The other two Maxwell equations, not written
here, are only initial conditions; if they are satis-
fied initlally, they will be satisfied at all times
if 3 and % are carried forward by Egs. 1.0. Since we
start the problem with all charge and current densi-
ties and fields equal to zero, they are satisfied
initially, and we need not consider them further,

We shall use the standard spherical coordiﬁates

r,8,¢ in the air, and cylindrical coordinates r,z,o



in the ground. The origin of coordinetes is placed Equation 1.2 for Er is retained.

at the burst point. The Compton current will be . It is also convenient to use the retarded time. .
primarily rAdial; such a current will generate, from Replace r and t by )
Eqs 1.0, field components Bcp' Er’ and Eg- The field
components Bq) and Ey will in turn cause T to acquire ' =r =
a 6-component, but this will not lead to additional = ot - r} ) 1-10
field components. (The geomagnetic field is neglect-
ed.) All quantities will be independent of . Then
In spherical coordinates, Eqs. 1.0 become
198 _ 1[6 aEr] §=i,’%
St = Fer (B) - 3w o 1.1 ' 3
1.11
o R

e r _ 1 3 X
3t + 1H(U.E:r = T End 5% (sin 6 Bq)) - '-H‘(Jr » 1.2

In the new varisbles, the field equations become

c dEg 193 (dropping the prime on r after the transformation
e hroEg = - T or (qu)) - bngg - 1.3 | phas been performed)
It is convenient, in the EMP problem, to replace Bq) aEr 1
= e 9 -
and Eg4 by "outgoing"” and "ingoing" fields F and G, €37 * lI"“’Er Ler M 2r2 sin a 50 [sin (F-0ch,
defined by -
1.12
F=r E, + 1.k
(Ve Eg B,) »
G=r1{/e Eg - B ) » . 1.5 OF  3F  2ng OB, ang
o % (e-1) Grtse* o F = brdp re gt 6
Je
or by the inverse of these
1.13
_F-G
BCP =5 1.6
JdE
3G 9G 21w r 2t
(Ve +1) SsosEt = -brrdg - .\/--39——-—“1"
F+0G Ve Je
Eg = —— - 1.7
2r,\/(.;-
1.1%

Equations for F and G are obtained by multiplying
Eq. 1.1 by r/e, Eg. 1.3 by r, and taking the sum

In the air, ¢ = 1, and these equations become

and the difference of the resulting equations. One 'BE
. r - _ 1 6
finds FHmoEr leri- e Sg[sm (F-@)] ,
1.15
JE dF oF 2no By ong
oF + == F = -bardg +f -—G, 1.8
T
$+2naF = -lmrJe+B-g—-2rruG 5 1.16
JdE v
*/E:a—G % %0_-4”.16-,/5-59’--%& 1.9 s ; 3E
€ € . G _ 19G_ _1 7
. . &_“"'NUG =3 g 21'[1'\]'9 > '39- noF . 1.17




Notice that Eq. 1.16 for the outgoing field F con-
tains no retarded time derivatives. The retarded
time is used because, while the sources and fields
are repidly varying functions of T, they are slowly
varying functions of r, permitting a coarse r-mesh.
This is not true for r,t variables. Once the choice
r,v is made, it is mathematically wise to go to F
and G to eliminate time derivatives from one equa-
tion. Over much of the problem, and particularly
over the rapidly varying part, G is very small com-
pared with F,

In the ground the equations do not have such
nice properties. But here o is large and ¢ is of
the order of 10 at least, so that signals propagate
slowly compared with the speed of light. The fields
are driven into the ground from the surface, and are
also rapid functions of t but slow functions of r.
The equations for cylindrical coordinates can be
obtained by putting sin & = 1 and replacing 1/r 3/38
by 3/3z and E, by E,. One finds, dropping the
source current,

N

e .
c gt (a + Bni-_.)ne =%, 1.21
c I +r(7n+)n_ = o , 1.22
¢ =+ (m_+pn)n =% 1.25
ar - e’ T+ : )

The effect of charge transport on the densities is
uniﬁportant and is neglected.

It is not necessary to solve all three of these
equations, because of the condition of charge neu-
trality which follows from them plus the assumption
of initial neutrality,

n.=n +n . ' 1.2%

In LEMP 1 we carry n, and n_. (If n,
carried there is an instability of the difference

e
and n, ar

)
JE kg .
<=+ eooEr=2;;)r%(F-G) , : 1.18
2n r - OE 2
( GROUND) ‘?TF*' % F ='- L §§+ J% T‘?r_____"“o_g, 1.19
T ey - 1) Weg - 1) 7 (feg - 1) VeoWeg - 1)
%, %% . ___ 1 3% i L - L.%0
LT gt 1) Wegt D T (g e D) O fagleg + D)

We use‘eo and uo to denote the values of ¢ and ¢ in
the ground.
1.2 The Air-Ion Equations

In order to compute the air conductivity one

has to keep accounts of the production and recombi-
nafion of electrons, positive ions, and negative '
ions. Electrons, density n.s and positive ilons,
density n,, are made as a result of the absorption
of gemme rays. The source of both will be called

¥, ion pairs per e per sec. Electrons attach with
rate coefficient @ to 0,, forming negative ions 05,
density n_.  Electrons recombine with positive ions,
with rate coefficient B. Positive and negativé ions
recombine with each other, with rate céefficient 7.
The differential equations for o, n_, and n; are

equations when Bn+ becomes comparable with or larger
then a.)

Having n, and n_, we calculate the conductif;ty'
from the equation

o=ZSlnp, + (20 +n)ud, 1.25
where e = 4.803 x 10”%° esu, p_ is the electron
mobility, and By is the ion mobility; We assume,
for leck of data, that positivé and negative ions
have the same mobility. In LEMP'1l we use the fol- -
lowing fits® and values:

* ; ' '
The fit for Ho Was done by John S. Malik.
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0.72 x 10 7 12.76 -1
@ = —————— + 6.45 x 10' exp (-]—[——L) (see™ ™)
qiw—:—aTag El + 0.01

| E| =./E§ + Ef (esu)

p = air density (

gns _ milligms )

> 1.26

liter cm3
B=2.5x 1070 (cmjlsec)
y=2.3% lO_6 (cmj/sec)
uy = 150 em/sec per esu
8
3.93 x 10" exp (-0.87p)
Be T y

P a%ﬂ+1.ux 10° + b x 10°P

P = percent water vapor in air

(0.61-0.07P) + 3 x 106[0.0h + 0.C1F]

It may be noted that o and Ke ¥will be functions of
ry 8, and T through their dependence on |E].

1.3 Ganma Transport and the Compton Current

In LEMP 1 the transport of gamme rays is not
treated by differential equations. Rather, the re-
sults of transport calculations have been fitted by
fairly general formulae, which are discussed in
Chapter k.

The Compton recoil current has to be determined
by solving Newton's law for a Klein-Nishina distri-
bution of recoil electrons, tsking into account the
slowing-down and the electric and magnetic fields..
Again, this is not done in LEMP 1. Rather, such
calculations have been doné for a large number of
values of the fields and original gamma energy, and
the results fitted by formulae which are used in the
code (see Chapter 4 and LA-4348), In the caleula-
tions, the fields were essumed constant over the
range of the electrons. In the resulting fits, the
mean forward range in the absence of fields is called
R, the average radial displacement of the Compton
electron is called DX, and the average displacement -
. in the © direction is called DY. R was fitted as a
function of the injtial gamma energy, and dX/R -and

dY/R were fitted as functions of the fields for

each of the several gamme energies used in the code.

1.4 The Inner Boundary Condition

The Compton current has a l/re singularity at
the origin, which, of course, would disappear if one
took account of the actual size of the bomb. Since
the fields at distances of a few meters are not of
bractical concern, we use a simplified boundary con-
dition near the origin. We imagine that a supercon-
ducting hemisphere (center at the origin) lies on
the ground, attached to a superconducting cylinder
that extends downward into the ground. The electric
field componént (Ee or E;) parallel to the surface
of this hemisphere or cylinder is set equal to zero.
The radii of the hemisphere and cylinder are usually
taken to be 30 meters.

In the air, the high conductivity near the
burst means that the assumed hemisphere can have no
practical effect on the fields at larger distances
of interest. Fields in the ground directly under the
burst are modified by the assumption of the supercon-
ducting cylinder.

.
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1.5 The Quter Boundary Condition

From Eg. 1.15, it is clear that no outer bound-
ary condition is needed for Er in the air, since no
radial derivatives of Er occur in the equation.
Since Eq. 1.16 for F is integrated outwards in r,
no cuter boundary condition is needed for F. How-
ever in Eg. 1.17 for G, dG/dr occurs on the right
hand side and an outer boundary condition is needed
for G.

For the high frequency parts of the fields; G
is very neerly the ingoing waves. If the outer
radius is chosen large enough that the Compton cur-
rent and air conductivity are negligible beyond
this distance, G = O will be a suitable boundary
condition for these high frequency parts. However,
for the low freguency parts, G is not nearly egqual
to the ingoing waves, and a more detailed boundary
condition is needed.

In deriving such a boundary condition, we
assume that Compton current and air conductivity
vanish beyond the boundary, and that the ground
conductivity is infinite. Thus, in the ground, G =
0 = F at the outer boundary. 1In the air beyond the
boundary, the fields satisfy the vacuum equatlons;
we therefore take them to be a superposition of out-

going spherical multipole ™M waves. With the assump-

tion that the ground conductivity is infihite, we
need take only odd spherical harmonics.

We start with the usual multipole expensions
in the frequency domain, with solutions that go
like e T _ eiﬂ(r'Ct) at large r (outgoing waves),
{Actually w is the free space wave number.) Let the
expansion of rqv(m) be

qu>(w) = Tl z b (@) (wr)P(cos 8) . 1.27‘

odd !

Here b!(m) is the expansion coefficient, P(cos 8y -

is the associated Legendre polynomial (note minus
signl ),

P;(cos 8) = - g% Pl(cos ey, 1.28
and ¢!(uw)Ais a ﬁqunomial in wr. For £ = 1,3,5,

1
¢1(am) =1+, 1.29

6 ) 15
o (or)=1+—xm"+ + 1.30
3 0 (ser)® (-ier)’

15 105, _ 420 945 945

=1+ + + +

1.31
The expansions for rEg and rEr are then

rEg(w) = &7

odd /
1.32
rE_(w) = ¢ 7 z b I(m)[ig_%l}—) P t(a:r)]_Pt(cos oy .
odd £
1.33

For the functions F and G introduced above, the ex-

pansions are

R = 97 D" b (w) 20 (ar) - 5y o () cos ©)

odd !

1.34

Glw) = e;m" z b!(aa)[- 5(-:?7“-)- q;l(mr)]P’z( cos 6) .

odd £

1.35

We transform these expensions back to the re-
tarded time domain. ILet

rEr(-r) = 2 e,(r,7)P (cos 8), 1.36

odd £

F(r) = E £,(r,m)P(cos 0) ,  1.37
odd !

6(r) = z g,(x,7)P{{cos 0) . 1.38

odd £

Then, letting bl(T) be the inverse transform of b!(m),
one finds, for £ =1 -

Z bz(w)[cpz(un‘) —g(_aw)- qal(mr)]P}(cos ),



2 i i ime.
fl(r,-r)= Ebl(f) +-i_-fb1(-r)d-r +L2ffbl(1')d'rd'r . 1.39 carried forward one time step at a time .
r For I =5, to save writing integral signs, we

define
1
gl(r,-r) =—2—ffbl(1')d1'd:r , 1.40 ) ~2,
r

=2 1 n iy
el(r,T)-rfbl(T)dr+r2 fbl(T)deT . 1.41

With this notation, ome finds
Here all integrels are from -0 to . It is seen,
1 t
or example, tha thg electric dipole part of G must £ (rr) = 2(1) +_32 L0 )+?é (b )+1050 L(b)
extrapolate like 1/r”, and this would be a sufficient 5y 5 r "1'5 r2 2475 r} o M)
boundary condition for this part. Note that gl(n_l_,'r)

can be found at the outer boundary Ty by expanding

3150 5670 4725

G¢{r ,t,8) in spherical harmonics, and this determines + rE Ih(b5)+ ) 15(b5)+ rE 16(b5) ’ 1.48
ffll;l(f)d-rdr. The terms in fl and e, can then be
found by differentiation. The dipole part can then )
be found for any r > r,. This procedure is used in ,gj(r,7)=l% 12(b5) +2—]30 15(b5)+ 1_229 Iu(bj)
LEMP for extrapclating the fields to large distances. r r r
For £ = 3, one finds
_ 12 36 2, 60 3,45 It .
£,(r,7) = 2oy(7) + bede “2%3 fbde + ?fffbde + ;Efffﬁajd'r , 1.42
6 2 . 30 345 "
g5(rs7) = = fb3d1' + ?fffbjm + :EfffbedT , 1.43
12 72 .2 180 ((f. .3 . 180 4
e5(r,) = = [bgar + FffbidT * ?—fff%dT + _rl*_fff byar ' . 1.k

Again gi(rl,-r) can be found from the expansion of
2
[} i ics.
G(rl,'r, ) in spherical harmonics. Then fbe(T)dT + 3780 1 (b5)+1+72‘j 16(b5) , 1.9
can be found by solving Eq. 1.43, and all the other rE > rE
coefficients can be found by integration or differen-
tiation. Thus the electric octopole part of the

fields can be found for any r > r

-0 450 3150
In particular, e5(r,7) = T I(bg)+ 2 Ip(by)+ 3 13(b5)

1

the value of 33 at the next mesh point beyond T, can

be found, which amounts to providing the boundary . 12600 (b )+28350 e )+28350 () 150

condition for &s- . rE o5 2 5Y°5 rE 6 5 °
Equation 1.43 is easily solved. Let

Ie(bj) = ffb5d"'2 . 1.45 Again, 35(r1,1') can be determined by expanding
G(rl,-r,e) in spherical harmonics, and Ie(bj) can then
be found by solving Egq. 1.49 by an lterative method ~

Then write Eq. 1.43 as similer to Eq. 1.46. Then & can be extrapolated to

2 the pext mesh point beyond r., vwhich provides the
1 30 ;s 45 2 s 1 .«
12(b3)= z 35(1'1,1') -r—3f12d1'- ;E erd.T_ B 1 boundary condition for 85 Also, all the other co-
1 efficients in Egs. 1.48 to 1.50 can be found by differ- .
" entiation or integration, and the electric 2j 2 pole

By an iterative technique, this equation cen be part of the flelds can be found for any r > ry-
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In LEMP 1 we have chosen to fit G at the bound-
ary and calculate the coefficients In(b t) from the
spherical harmonic expansion of G. This seems ap-
propriate since only G needs & boundary condition.
However, for purposes of extrapolating the fields to
large distances, it might have been more appropriate
to use the spherical harmonic expansion of F at the

boundary, since F is larger than G at early times.

We notice that the first term in g ,(r,7) is
always proportional to l/r . For all £> 5 we
assume in LEMP 1 that g,(r,7) ~ l/ra, neglecting the
higher powers. This approximation is based on the
assumption that by the time the higher (negative)
powers of T in g, become important the electric 2‘
pole fields are negligible; the fields tend to be-
come smooth functions of € at late time.

In applying the outer boundary condition, only
&, and By have powers of r different from 1/r2.

Thus we need only to separate these two harmonics
from G, extrapolate them correctly, and extrapolate
the rest of G as l/re.

" In extrapolating the other fields F and E, to
large distances, harmonics 1, 3, and 5 are treated
correctly and the remaining parts are extrapolated
as constant for F and as 1/1-2 for E,.

II. THE MESH AND THE DIFFERENCE EQUATIONS
2.1 The Mesh ’

1EMP 1 uses nonuniform meshes in r, €, 2, and
T, for the following reasons. The source and fields
change rapidly with t at early T, but slowly at lete
T. Bince we wish to cover times from 10'9 seconds
to lo-k seconds, a variable 7 mesh is necessary. At
small r, the source end fields have 1/r° and 1/r
dependence, but at large r, the source is exponen-
tia) (with absorption length ~200 meters)} while

F — constant, G~ l/r2, E ~ 1/r2. Thus a smaller .

r mesh 1s needed near the origin than at large r.

Smaller © end Z meshes are needed near the ground-
alr interface because the fields have large © and

Z gradients there.

The radial mesh, both in the air and in the
ground, is obtained from four input numbers: ro
(typically 3 x 100 cm) is the smallest value of r
in the mesh, T (typically 3 x 105 em) is the
lergest valuerof r in the mesh, Br (typically
2x 100 cm) is the first radial interval, and n_ is

the number of redial mesh points. The radius of the

k*® nmesh point (k = 1, 2, =+-, nr) is

fax™ To” Sro(nr- 1),

(nr- 1)(11r -2)

=r + Bro(k- 1}+

’- -
r, =T, (k=1Xk-2).

2.1

For a mesh in which the interval increases with r,
L aro(nr -1).

The ©-mesh is calculated from two input num-
bers ng. and ng_. Approximately (but not exactly),
the interval 0 < @ < n/2 is first divided into nge
(f for finel) equal intervals, and then the result-
ing interval mext to the ground (6 = «/2) is split
Ry (s for split) times. Indicating mesh values by
9!, we see from Egs. 1.15, 1.16, and 1.17 that if
F and G are carried at @, E_ should be carried at
9!+%. Boundary conditions require F = G = O at

6 = 0 (but not Er)’ and E, must be allowed to be
discontinuous at the ground. The &-mesh defined

below accommodates these features. We define L by
L= Ng + Nge 2.2

P =
We first set up the 9!+% mesh. let &0 = (n/2)/

- = 80 0
(nge = %), Set 91% 86 /2. Calculate

g

[} = = - -
1-14%. + 59 for £ =2 to ¢ Nge - 1. Then calcu

late 9 + 895/2q for q = 1 to

-1+q+§ -2+q+%
_ 85
Q= ng. 690 = aea/a is the smallest ©-mesh
i [} =8 6 =
increment. Then set L+ L4 + 86, /2.
8. = g = =
Now set 6, = 0 and 9, %(9!-l+§ + 9£+§) for £ =2

to L. This last operation ensures that the 6,
values are (exactly) centered between the correct
6 8

[+% values. 1+ is not centered between values

of 8,. Thus the 6-derivatives will automatically

be centered when differencing the F and G equations
but the Er equation will require special attention
due to the f-derivatives. Conversely, if one forms

9! first and lets 9!+% be centered between these

values of 91, then one must give special attention
to centering two equations instead of only one

equation as above.
The Z-mesh (gnd) requires -three input con-

stants; n, . 1s the pumber of split cells in the



Z-mesh, Ny e is the number of final cells in the 2-

mesh, and Z

o is the depth in the ground where the

first Er mesh point is located. The Z-mesh is

formed in the ground by reasoning similar to that

used in the air. We let 2__; = O {on the ground),
. L+

ZL+1+% = Zo, and ZL+2+% = 2Z0. Then set ZL+q+1+% =

q = = 5 =
ZL+q+% + 2 Zo for g = 2 to q = n,. . Finally, Z£+% =

n75+1
z!-1+% + ZO2 for £=1 + n,. + 2to £=1L+
h,. 0, e + 1. The Z! mesh is then centered; i.e.,
= 4 = -

Z2+1 = ?(Z1+1+% + z£+§) for I=1Lto =1L+ fzs *
n, e

Figure 1 shows the mesh for a particular set

of input parameters. The locations of Er y

¥, i+

Fk,f’ Gk,!’ and Uk,z are shown. Of course, is

U, b

and n_ are located at

only in the air, and n
. e
k, 2

X, ?

the same point as ¢, Mesh values are located,

K, 2
for each angular value, at all r (k= 1, nr).

Note that qm is positive “into the paper" in . Fig. 1

for the LEMP 1 coordinate system.
The time (T) mesh is obtained by advancing for-

ward in time by successive cycles, At the beginning

of any time cycle, say ™(n = cycle number), it is

assumed that the mesh values (Er, F, G, etc.) are

n-1

known et times T and T T and the cycle calculation

+1

is performed to advance time to T . The time in-

crement (b7} is varisble from cycle to cycle. Since
the mesh values are only saved at two times, back

storage is utilized each cycle. We define o =

n+l n
T - T

2.2 Order of Solving Egquations

To avoid confusion, we will give an ordered

outline at this time of the calculations performed

during each cycle. The eight steps of a cycle are:

n+l

1. Advance n, n_, and ¢ to T (k= 1,n_;

r
1,L) {also, calculate J. end Jg).

2. Calculate &t for the next cycle.

3. Advance F, G, and E_ to v (k=1 121,
L+ nzs + nzf).

k. Advance G to Tt (x = 2 -1;2=1LL+ n,
nge)-

5. Set outside boundary conditions (c;:"’l}Z s =1,

r

L#my ¥y

6. Advance F and E,. to A (k=2n ; =1,
L+n, + nzf).

7. Mesh check (change).
8. Output (dump and time storage).

We will not follow this outline in the order given
due to the complications in presenting calculations
4 and 6. After & and 6 have been presented, then 2,
5, and 5 will be expleined.

2.3 General Form of Difference Equations

Before p;Esenting the difference equations, it
may be noted that Maxwell's eguations and the air-
ion equations as written in the lasi chapter are all
written in a similar form. We note that if one has

*
an equation of the form

of

Sett= ¥, 2.3

then the exact solution is

;
w(e) = XN )+ [ e ], 2

%o

E
where X(&) = jf 7{&") d&”. To first order in BE

%

£ - go, the solution of 2.3 is

*
. The 7y or other symbols used in Eq. 2.3 have nothing

to do with the same symbol used in the air-ion
equations or elsewhere.

+
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£(8) = #5)e™ + (1 - e-%[g] .25
at §

where X = 8 - 7 and 7 is y evaluated at E = &(§ +
50)- For second order accuracy in the integral
term of Eq. 2.4, one uses the following procedure.

Let (&) = We')/7(¢’) so that & = &(E;) and &, =

& t); then for &) assumed to be a linear function 7

of X(&’), we have

£(8) = 1(z)e™ + 1[§( 1= e¥)e ']

(1-9")]. 2.6

+
&p

fr—

XlIH

The forms presented by Eqs. 2.5 and 2.6 will be evi-
dent in the difference equations as they are pre-
sented. Various features of Eq. 2.2 were brought tc
the authors' attention by Suydam.*
2.4 The Air-Ion Equations

The air-ion equations (Eqs. 1.21 and 1.23) are

differenced as

n

-5 -D .
n+l n-1 e e 7
n =n e +(l-e ) ] 2.7
®k, 7 Sk, [ @+ [ 4

and
_ n
nli1+l . 13-1& T+ (l-e ')[;n—f] , 2.8
k, ¢ , 2 + iy, 1
where
n n-1
_ n (BT + &1 )
So=lo+bnly , g >
n n-1
_ n (& + 87 )
o = (may (BTET 2, e

ng=n, + n_. The fields used in celculation of the

various parameters (see Egs. 1.26) are obteined from

the mesh for the appropriate values of n, k, and (f.

The values of n, and n_ are then used to calculate o;

i.e.,

® —
B. R. Suydam, private communications. .

 where § = ﬂOi_I(BTn + Srn'l) and £ =
¢l

n+l
n+l e
%, 7 E[ Dehe + (20 + ne)ui] Kot 2.9
’

In Eq. 2.9 the electric field magnitude (|E|) is
for the calculation of T (see
Eq. 1.26) at this part of the cycle so that one
n
uses |E! .
It should be noted that Eqs. 2.7 and 2.8 are

not centered in time unless &r° = 57" L. Other

not known at Tn+1

difference equations to be presented will have this
same difficulty.
this difficulty which involve more calculational
time, in LEMP 1 we essentially avoid this trouble

»
Though there are ways to avoid

by allowing &7 to change by no more than £2% in
any one time cycle;
2.5 The Field Egquations

Parts 4 and 6 of a cycle need a differencing

scheme for Egs. 1.15 to 1.20 {Maxwell's eguations).
The basic work on the stability of the differencing
scheme for Maxwell's equations as used in LEMP 1
Since LEMP 1 uses
nonuniform meshes in r, ©, and Z, we modify the
Mostly the

was done by Richtmyer.**

equations as written by Richtmyer.
equations are modified to improve the centering in
The G equations (1.17 and
1.20) are differenced as, for k = 2 to n, -1,

our nonuniform mesh,

. .0+l _ n-1 -S
(air) Gk,! = kaze

' -8 3G aE _or ?
+(1-e )_EITUS' UJQ'JRIJE-]-O
4

2 to L, and

-5
ntl _ n-1_ 0
(gnd) Gk,! = Gk,le

+(L-e [ J%O

n

g—gl-p] , 2.1
k,f

where

2nog,

s. = ——
O fegWey + 1)

&P + BTn-l)

3

®
R. D. Richtmyer, private communications.
* . . .
R. D. Richtmyer, "Stability of the New Radio Flash

Code," 1os Alamos Scientific Laboratory report LA-
386k-MS, 1968. P




and £=L+1, L+2 ....,1,+nZs+an. (Note: g) —1+af +a3k+1’
In the difference equatlions we delete the subseript k
r from Er') . 5t 6? aaf
The F equations (1.16 and 1.19) are differenced =a £ -8 5)k k- AR SR
as, for k = 2, n, T iy
: +1 _ _ptl  -X 1 -X «X |+l Sl X +1
(air) F’]:,I_Fﬁ-l,le + x(l-e ) - e ]ank-l,!+[l X(l e )]C!nk,‘ » 2.12
where 32 2
- . of 293 f .
. . -i-a.5 fk+52$)k+—2-a?)+ »
X= 21'(0n+1 (1‘ ) k
B -é 2 -1
- of
and = f(a) +a,+ aj) + (a552 - alﬁl) 5)1(
By vy = Bt
AL _ ky 1-14% ) ark‘Tﬁk,l 5 Gn+l
LYY A n+l R ) AL Ky £ ? N
k’ 1+% k, £ +5 (n 5 + 8y 3 ) +ocee
k
for £ = 2 to L, and
[EE+1 l En+l n—l ]'
- - - 2= -
(@) . @i o, o oy 2o aF)" con i * Bt~ B b~ b -6
= - z
kyf  Tk,! 20, ar . lmco (ZH% - zz_%) K, !
2,15
where . where 51 =ro-r o and 52 =TT Ty For second
2xao order, we want
= i n n-1
X, = (37" + 87 )
'\/e_o(\/e—o - 1) (al + 3-2 + 53) =0 ’
for £=L+1, L+2, ---,L'+nZs+an. a8y - 28y =1,
In Eqs. 2,10, 2.11, and 2.13 we have written and
2 2
only alal + a352 =03
as)“ aF)“ i.e.,
and : 5.
3/ g )y, -2
a, = 1
L 1 51 + 62 ’
for the differenced expressions of
) 5
2 1
oG oF L.t
E and 5 M 32 _ 61 52
51 + 52 ’
To make these expressions accurate to second order end
in &r in a nonuniform r-mesh, we use three mesh Ei
values and expand about r, . Let f represent either _ 52
k % =5 +8,’
For G. Then ’ . 1 2

so that
/

1



L =
5 [
of 2 1
= (f -f) - (£ -1) .
‘a‘?k k¥l 7 Tk’ B 48, 78, +5, k-l Tk
2.1k
Wote that for a uniform mesh we have 51 = 82 and.
ar) Trr = fy1
- - 2
Iy T T T
as usual. Since the €-mesh and Z-mesh are centered

in Egs. 2.10 and 2.11, the 6 and 2 derivatives are
differenced in the usual menner; i.e.,

n - "
ok )n T T S Y RN
T
3y, " 71
and
T n
5E )n B, 0 B0
s ,—————— 2,15
Z -
32y, 4 1y T %

It should be noted that had one differenced
Eq. 1.16 by the "form" shown by Eqs. 2.5, instead
of using the "form" shown by Eq. 2.6 to obtain
Eq. 2.12, the fields calculated in air would have
been very inaccurate in the diffusion phase.

The E_ equations {1.15 and 1.18) contain ©
(and 2} derivatives which cennot be centered at

9“‘}E (and Zf+ﬁ) in the nonuniform portions of the

mesh. In the air the derivatives are centered at

6c = L(al+l + Qt)and in the ground they are centered
= A{¢
at Zc 2(41+1

gerated portion of the nonuniform mesh.

+ Zz). In Figure 2 we show an exag-

By linear

interpolation (not extrapolation) we define EE ¢ in
]

the air as

—- 2,

210 2 = Zlol" Zl
Z:=

2

—Z

—F 2142

Fig. 2. The mesh for centering the E

the air and in the ground.

. n 3 .
E;:,c = Enk, pyf * B a2 - ), 226

equation in

where
6 = 4
c £-1+
=9 -6
% 2t} P-14%

Bimilarly, in the ground,

n _.n _ R
Fx,e = B, -’-*%_(1 &) * By 237
where
e - Z£+%
AZ - Z£+1+% - Z£+%

Note that Ag = 1 and AZ = 0 in a uniform mesh. We
then write the Er difference equations as, for k = 2

to n_:
r

-Y
(air) BN gnvleY (1 - e g+

in 6 +1 -1 _ n
San E, FI1:, P Fi G

C sin 6 +1 -1 _ ,an ]
K, 41 _k.z+ll s flpﬁ,f *E 26

k,c k,¢ g

k2~ "k, ¢
-6,

2
in 6 (6
bry sin 6. (9, )

2,18

_where Y = 4rno{sr" + BTn-l), g = o; , and J_= J°
,C r Ty, c




= - .22
for £=1toL -1 and E:, 1 E‘}‘n‘,L-l-\\i&p * Aa(Enk,Iﬂ% F‘Tc,L-h},) >
Y [+l ¥ #1  qp-1, ,n
- - - + 2
(gnd) g+l _ -1, %o Ji1- 0) Fnk, 41 Ei,ul F"Gk,t+:L F:,t F;:,t Gk,t 2.19
k,c k,¢ h““o L 4rk(zl+l ZI)
where Y. = bng_ /e (67" + 57“’1) for t=L+1, L+
0 0'~0 ’ where
D, ees + - 8 -8
» ", LAn, +n,. -1 n+1 Lt~ L-14
To calculate E, on the ground (E ) we & = g
Tk, Lty RS 7 NS AR
difference the E equation twice, once in the air
and once in the ground, and eliminate Bg(::B‘p on the and
ground} from the two resulting centered equations.
Both E_ and B, are continuous at the ground, though Eﬁ 2 " E: 14 +a (E: 1 - E: L+l+§) 2.23
their @ (or Z) derivatives are not continuous. See i 4 B\ % ’
Figure 3 for the mesh near the ground. The two equa-
tions are, for k= 2 to n.. where
sin 8
L +1 -1 n
gl el Yaa - e b g2 Bg ~ by (FE: * R QGK:L)
= e + by ’ 2.20
k, Lt Kk, Lt E“Ua rk,lﬁ& Ty sin BL&%(eLﬁﬁ - GL)
_ n n-1 . .n
where Y _ = hnaa(ﬁr + &1 ) and g, = ok,Idé’ and
1 +1 -1
-Y Yol ( k, I+ * Fnk,L+1 k,L+1) - By
1 _ -l 0, ,1l-¢ k 2,2
Bowe = Bomal |t i Z Z ’ -2l
» s i o T+l © ‘I
where YO is as above. Since mesh values of'Er are
not carried at L + ¥ and L + 2, the values are elim- ZL&1+% -2
N A E —m————an
inated by linear 19terpolat1on in the mesh, i.e. (4 ZL&1+§ - ZIH%

1,

L-1+lp

L
L+l

L+lo
L+34

L+l

x L+l +ln

Fig. 3. The mesh for calculation of E on the

ground.

Solving each of the equations (2.20 and 2.21) for
BB’ using Eqs. 2.22 and 2.23 and omitting the sub-
script k, we have,

2]
sin I

+1 -1 n -
Bg=_l+_rk(L + A7 -2l )+ x, sin 1Py

n+l

hnaa
-8 b'"‘]?m-}"L——' |Ll%(1-a)+AE"%
l-e

Y
-e "'E“ -1 a) - e “AaE“I;;I 2.24

14t -

and
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Lkno (2 -2 ..)
0 “I41 " “Lag -x,
1 (Fn+1 + @10 ]) Em—l ( 1 Yo n- 0, .n-1 ,
- 1A)+AEn Bl (1-4)-e %%AF . 2.2
Be EE; L+l Mo+ .. e-yo L1+ Tg L+1+3 4 g L+
Equating Egs. 2.24 and 2,25 we obtein an equation
for each k, .
+1 + +1 2l g
HL-%EIIIJ-I-!% + BT L&E;& HaFral * Fre 2P : 2.26
where we have defined -
- ] -
(1 Aﬂ)hnoark sin L%(GL*.& GL)
My = Y,
l-e
sin ©
H. = L
L Erk
. in 8 ] -6 -
Aahnuark sin Iﬁ%( 14 1.) Ag’*’"’o(zl.u ZL'%)
H. = +
I+ =g ¥
1-e @ 1 -e 0
_ 1
i =" B
. 2.27
(1 - & )i (ZL+1 zL_%)
H 3 =
42 =
: 1l-e 0
sin 6 1 n 1 1 n 7
H= - el - - = [} [}
H BT (Fnk,z. 2Gk,L) * lﬁ(‘—'ﬂk,m1 2Gk,L+l) stn Opar (Bry - 8)| bn T, 14
-Y
g e 2
a -1 -1
- 7 |E::,L-1+§(1 - 8,) * AaEI:,m%I
l-e¢e a
-y . >
o .
brnog(2;,, - Zm&)e . 1
+ - 1-4)+a I
% IEk L1 o) g‘i,m-b -




The sixth step in a cycle is that of solving
for P and E, implicitly for all £ at each k. To
this end, we first write the F and Er equations in
the forms (deleting n + 1 and k from E. and F),

F +B£E“_b C,E -1 = D, , 2.28
for £=2,3 **, Land t = L+1, L+2, ***,
L+nZs+an’ and

Ol
xy
=l

L - o
Etﬁ"'(_—/_\e )zlﬂ, Foog ¥ CFy =D, 2.29

for £ =1%o L -1, and

BFpy *CF, =D, 230

%
By Y TT g Fan

for =L+ 1 to L+ n,. + Do - 1, where we define
(from Egs. 2.12, 2.13, and 2,16 to 2-19)

[l - % (1 - e_x)]

B, = -
£ n+l
(91.'% = 9!_&)
€y = -5
}ﬁ2-31
_ =X n+l =X =X +1
D, = exri_l,t+ [—e +—(1-e )]cz"n
-X ar Jn+l n+1
[l'_(l' )] n+1 +Gk,l
k 1
J
for £ =2 to L, and
-X \
(1-e 9. r
B ) O’k
1 hnoo(Zl_% - ZI-%)
Cy=-B
X x /s . >, 2.32
-1 "% 0y J ~ V€0 aF\"
D, = FPe +(1-¢e ") ———- )
1 k, ! Euuoﬁk’z
-1 =1
e.ork[ B, 7 B, 1) g
-G
‘H‘[(IO(ZH_% - Z[_*') k, ! J

for 1=L+1toL+nZs+ana.nd(u-a ), and
-
-Y
s . (l-e)s:l.neh_:L
1= " 2 .
16naA9rk sin Bc(91+1 - 9‘)
_ (1 -eY) sin 0,
T e e 6 (7. -0
. errksn e 14, ¢
) r; 2,33
I I -2
Dp=e [E:,g & Eﬂzl&]
(l- e -1 n
[F;,Hl Gy, :+1]
- -1
- ct[F:,z - EGk,! J
for £ =1, L -1, and
R
-Y
B = - (1 ~e 0) i
! Teroyr,(Z, . = Z,)(1 - 4,)
¢, = -5,
P, 203

=1
!

. 'Yo[ n-1 % el ]
1= ¢ Ek '(T-_AZ)' k,1+1+}—

- -1 o™
+ Gy [fi, 141 " %, g Fnk, 26y, z] J

- - - 2.
for { L+1’c.c:L+nZs+nZf 1. Thus Eq. 2.28

is Eq. 2,12 when Eqs. 2.31 are inserted, and is Eg.
2.13 when Egs. 2.32 are inserted. Equations 2,29
and 2.33 give Eq. 2.18, and Egs. 2.30 and 2.34 give
Eq. 2.19. We now use Eq. 2.28 to eliminate F:-:]l'
and Fn+:+1 from Eqs. 2.26, 2.29, end 2.30 and find
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2 (5 B - T

EH%[ 1-B,C,,, - C[Bll + E“l%[ -BzB“l] + E‘_l&[-clc! *

for £=1to L - 1, and

E['l-k_[ By Mg 7 HpaCon ] * Er [ B * g l * Ez-u%[ By - Hch]

= ’ H-HD, - HL+1D!+l]
. 2%
for £ = L, and
EH—,L[ L-BChn - Ciby ] * Ez+1+25['3131+1 Bl Az] * Ez-lg[ €y ] = [ Dy = Blyyy - ctnz]
for !=L+ltoL+nZs+an—l
J
We write
Qur boundary condition at £ = 1 gives Fl =@ i.e.,
- for an equation like Eq. 2.28 we have B, = C, = D. =
Erght * Branfe, T Braghy =y o 236 Lo Lod

0. Substituting this condition, and remembering
) that Ay = 1 where the mesh is uniform, into the
for £ =1t L + n,o + Ngo - 1 where these A's are first of Egs. 2.35 we have

defined by Egs. 2.35. Next define e, and f, by '

w
=]
=1}
(=}

2 1”12
E,, =€,k + £, 2.37 E,,, =—+>—E, 6 +———©, 2.40
b T T 1 _Bc, % 1-3B¢
172 172
for £ =1 to L + n, + nye = 1. Then, or
-
B.B
172
E =e, _E +f s e, = ———
2-1+% £-1 l-bk -1 1 1-8c¢
172
> . .
substituted into Eq. 2.36 gives o 2.41
o - Dl - BlD2
1 - —
P ( ~Agy )E N SVl T 1- 8¢
2+ A! + Ajiet-l PRk 0T A! + A}!el—l ) J -
With Egqs. 2.%1, ome can iterate Egs. 2.39 for e, end
2,38 £, from £ =2 to L + B, * Nye - 1. Our boundary
.- condition in the ground is that EL+nZS +n, = 0 for
Comparing Eqs. 2.37 and 2.38 gives the recursion
relation for e, snd £, i.e., all k and n; i.e., to run a problem we select ng o
) end Z0 so that the mesh goes to such a depth
-A that the fields will not diffuse to this depth by .
e, = —2r the latest time desired for this problem. With this a
£ A, + Az.zcz-l
2.39 boundary condition and the values of e I and 2 We .
‘ ' . +1
e - A‘” - A3lf1-1 iterate (backward) by Eq. 2.37 to find Ei, e for 1
T
Ap T Asgen f=L+n, +n.,-1t 1. Then, using these

velues of Er and Bz, Cl, and Dz as calculated before,




one solves Eq. 2.28 for values of F'l:i from ¢ = 2
to L + n, + n, . to complete the implicit solution
of E, and F for all ! at each r
2,6 Choice of Time Step

Step 2, the calculation of &7 for the next
cycle, is done by selecting the smallest of three
different time increments. The first of the time

K

increments, 61-1, is determined during the air-ion
equations calculation. Here, for each mesh point a

number, §;:]£', is formed as

2

&r.

n+l n+l )2 k
b = 03 - 2o.o(ak’ ory) * e.es(m) , 2.42

where &r, = Tip1 ~ Ty rk"‘k = &( L rk), and

+1 . . V
591 =6 1" 91. If g;)l < 0, nothing is done. If

M+
n+l . .
gk ;> 0, then a time increment equal to
y

Brk

s
Jen¥i
gk, ]

f

is formed. 571 is the smallest such time increment
formed when k and { vary over the entire (air) mesh.
Here fs < 1 is called the fraction of stability and
is an input number. This method of determining a
b7 18 the result of an empiricel study as given in
the Richtmyer paper referenced above. For the
grou.nd we set

(Courant) 2.43

r, = £.82 ; e, o

and
2 . . y
BTy = r3arooﬁo 82, (diffusion) , 2.hY
where 87 . = Zo/2. If a:azminuo < 1, then &1, =

61'c. QOtherwise, 872 = B-rd for our second time- incre-
ment. Last, if a source function is e-folding in a
time 1/B, we form

acc .
61’5 = T » 2.45

where facc € 1 is called the fraction of accuracy
and is an input number. The &t for the next cycle

is the smallest of 61'1, 812, and 675. This smellest

velue is elso restricted to vary by no more than
+2% of 51" each cycle.
2.7 The Inner Boundary Condition

Step 4, the calculations of the mesh velues at

k = 1, is done in several steps. First, the G
n+l

equations (2.10 and 2.11) are solved for Gy  for
>
I =2t L+ nZs + an' In this operation we
approximate (off-center)
bG)n
/1,
by
n
aG)“ 2,0~ %4 216
Jr = : )
1,? r,-r

Because of our boundary condition that F = -G
(E5 = 0) at r = ry =1,
£E=2% L+ nZs + nzf. There is thus no need to
solve the F and Er equations implicitly as was the

we now know Fn+l for
1,4

case in step 6. The new values of E, are determined
in three steps. First E’l‘j}& for £=1toL-1
may be solved (since Ag=1lat £=1in a uniform
mesh) by Egs. 2.16 and 2.18. Second, E?:L% for £ =
L+n, +n,.-1 toL+l(AZ=O in uniform mesh)
may be solved by Egs. 2.17 and 2.19 in the backward
direction indicated. Third, E is found by solving
Eq. 2.36.. One should note that since r{j is needed
in the calculation of Er' F should not be "back
stored" until after the new values of E  have been
calculated.

2,8 The Quter Boundary Condition

The theory of the outer boundary condition has

been discussed in Chapter 1.5. We now formulste
this theory in difference equations for use by the
code in providing an outer boundary condition for
G, and in calculating output values of the fields .
at radii beyond the boundary.

The standard difference equations for F and G,
Egs. 2,10 to 2.13, are used for k = 2 to n. - 1. 1In
the ground, to advance in time F and G at k = n,_ -
1, we need values of F and G at k = n_; these are
set equal to zero, in accordence with the assump-
tion that the ground conductivity is infinite be-
yond the boundary. In the air, we do not need a
value for F at k = n., but we do need a value for
G at k = nr.
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We first pick out the £ =1, 3, and 5 parts of

Y1(9)= sin 8
G. For brevity let

1 .. 2
G(em) = G(rn -]_’B ;Tn) » 2-)-#7 Yj(e) = 2 sin 9[12- 15 sin e] r ° 2"4'9
r

where 9m are the angles at which G is carried. Then
the t = 1, 3, 5 parts of G are found from

¥5(8)= g sin 6[120- 420 sin® O+ 315 sin* 61

L b The adjoint functions are calculated during the
31 = z al !,m)G(Gm) setup part of the code, and are changed during a

o mesh change. They are calculated on the assumption

that G(©) is linearly interpolated between 6 and

L Gm+l' On this assumption, each point 9m is allowed
&5 = Z q(5"':11)(;(6111) & 2.48 to contribute a triangular part to G(€), as indica-

m=2 ted in Fig. 4. The g(£,m) are then found by inte-

L grating these triangular functions against the ap-
& = Z a{5,m)G( Bm) J priately normalized spherical harmonics. The results

m=2 are as follows: define

Here the g{ f,m) are the adjoint functions, over our

O-mesh, of the appropriate spherical harmonics. We L= gy * Ngg - e.50

Then for m = 2y 3, by 000, L -2

q( I)m) = !(ai : i){ em _19m_1{q)!(9m) = CPI(em_l) - em-l(‘,l(em) = ‘l’,(am_l))]

1 :
+ mlemﬂ("z(emﬁ - ‘*z(em)) -0 Cp) + q’z(em)\ -

For m= 1L - 1 only

> 2.51

21 1

a(4,m) = 33 3 i) 7 Bm_l{q’i(em) - 0001 - 9 (v,(8y) - ¥(0, ) l
+ H_l-a‘laml(‘*t(g) - *t(em)) ' ‘Pz(nﬁ) * 9, (8) ]
m+l m .

For m = L only

22 +1 1
a(&m) = 575 T D) e ["’1(%) - 9,00, ) - em-l("‘t(%) - *z(em-l)) :

- J

take these spherical harmonics to be -9/d6 .Pt(cos 8),
and have ’

Here the functions ¥, and 9! are defined by




INTERPOLATED G{g)

G(8m-1)
ERALLE T Nl TRIANGULAR
- Te el T b FUNCTION FROM
v‘.
T ~~e il . G {Bn)
- - J, \\
Om-t Om . 8nn

Fig. 4. Analysis of interpolated G(8) as a sum of
triangular functions.

¥,(8) = § (29 - sin (20)]

9,(8) = 5 [29° - 28 sin (29) - cos (26)]

¥5(8) = 355 (48 + 8 sin (29) - 5 sin (46)]

Hlos

9,(0) = 2 (86% + 326 sin (26) + 16 cos (20) - 20 8 sin (46) - 5 cos (40)]

,,5(9) = 5]% (48 + 5 sin (26) + 7 sin (48) - 7 sin (66)]

Ir

q>5(9)

o
~
i}
]

" Lo
[

W
-
o

~
N
i

=& (10 ()ar |
r

1 1
BI2= 5 Iu(b!) = FfBIl(‘l’)dT ., 2.53%

ete. J

%8 [2&92 + 606 sin (20) + 30 cos (26) +8k sin (46) + 21 cos (49) - 846 sin (68) - 14 cos (69))

\ . 2.52

J

This completes the formulae needed to determine the
adjoint functions q( £,m).

Return now to the g, found from Eq. 2.48, The
next step is to calculate the.b!(r) of Section 1.5,
For convenience in the code, we modify the notation
of that section, starting from Eq. 1.%7 First de-
fine

r =

1% a1
r

‘the maximum radius at which the difference equations
for G are solved. Then define

_ 1
B! = - I2(b£)

1

and the integrals

and also the derivatives

_ 1 _ )
BIA = —r—l Il(bl) =71 3 Ia(bz) R
and

_ d
BlB= b, =r > (Bfa) .

We have to determine the B! quantities from the g,-
For £ = 1 the problem is simple; from Eq. 1.%0,

BIN = g s 2,54

where we use an additional letter N to indicate the
new value of the quantity whose o0ld value is Bl.
Next

BIAN = r, (BIN - B1)&r"

BIB = 2r,(BLAN - BIA)/(&7" + 5" 1)
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At this point the new quentities are stored in place
" of the old.

For £ = 3 we have to solve Eq. 1.46, or 1.43.
First we calculate preliminary values (indicated by

final letter P) of the first and second integrals of

BS:

B31P = B3l + B}sT“/rl

. 2.56
B32P

B2 + 3 (B5L + B31p)67"/r

The preliminary value of B3 is calculated, from
Eq. 1.46,

BSP = g &5 - SB3IP - 2 E32P . 2.57

Using the preliminary values, we calculete final new

values,
B31N = B3l + % (B> + B3P)or"/r
B32N = B32 + 3 (B31 + B3IN)or"/r, ¥ . 2.58
B3N = % g5 - SN - 22 32N

This two-step iteration gives second-order accuracy.
Next, one calculates the derivatives

B3AN = r (B3N - B3) /o™

B3B = 2rl( B3AN - B3A) /(57" + aT“’l) ’

and, finally, stores the new quantities in place of
the old.

For f = 5 the procedure is similar %o that for
L = 3, except there are more terms. The preliminary
values are:

BlP = B51 + Bﬁsf"/rl

B52P = B2 + 5 (Bl + B51P)eT" /1)

- 1 n
B33P = B33 + 5 (B52 + B32P)oT /rl L 2.60
4P = B4 + % (5% + B55P)5-rn_/rl

L - :
BSP = s @_;5 14B51P - B4BS2P - 252B53P

- 315B54P

-

The new values are:

BIN = B1 + 5 (B + BP)sr/r) .

BS2N = B52 + 5 (B51 + B5IN)®T /r

B3N = B53 + 5 (B52 + B52N)or'/r,
BOUN = ESk + 3 (B53 + BS3N)OT/r,

1 > 2.61
BN =g - 14BSIN - 84BS2N - 252B33N
- 315BS4N
BSAN = T,(BSN - BS)/or"
BB = 2r (BAN- B5A) /(67" + sy J

Finally, the new values are stored in place of the
old.

It will be noticed that the derivatives BZA
and BB are not centered in time at the same time
as the other quantities. These derivatives are not
used in the boundary condition for G, but only in
the extrapolation of the fields to large distances,
which does not affect the main part of the calcula-
tion.

For the boundary condition on G, define

IEES /v . 2,62
nr-l nr
Then calculate
DL = 30(1 - n)B3L + 45(1 - n°)B32
D2 = 210(1 - n)ESL + 1260(1 - n2)E52 . 2.63

+ 3780(1 - q5)1353 + b725(1 - nu)lbh

Then the extrapolated value of G at r, is
r

& rnr,am) = TG r,6,) - ¥5(8 )DL- Y (6 )2} . 2.6k

The extrapolation of the fields to large dis-
tances is not done every cycle in LEMP, but only at
those times when output is stored on the output

tape. For this extrapolation we define some eddi-

tional D's. If the extrapolated radius is r, let




rnr_l/r . 2,65

n
Then the extrapolated G(r,em) is given by Egs. 2.6h4

and 2.63 where the present 1 is to be used. For F
and Er’ define

conductivity is still negligible., The second is
called the diffusion test problem, and tests the
accuracy in the diffusion phase when the conduction
current dominates the displacement current, and the
magnetic field is diffusing into the air from the

D3 = 2(1-n)BlA + (1 - qe)m
Db = 12(1- n)B3A+ 36(1- 1°)B5+ 60(1- 1°)B31 + 45(1 - n'*)332
D5 = 30(1- n)B5A+ 225(1~ n0)E5 + 1050(1 - 10 )B51 + 3150(1 - 1*)B52+ S6T0(1- 1P)B55+ h725(1 - nf) 5l
> . 2.66
D6 = 2(1-1)Bl
DT = 72(1- n)B3+ 180( 1 - !]2)351 +180(1 - q5)352
D8 = 450(1~ n)B5+ 3150(1 - n2)155l+ 12600(1 - r.5)352+ 28750(1 - r.h)si';' +28350(1 - rP)B’)# ]
Then the extrapolated F and E,_ are
K(r,6,) = Hr,8 ) - Y, (6,005 - ¥,(6 )0k - 5(8,)05 T 2.67
B(r,8,) = n°(8,(x),8,) - B ()06 - B(8,)07 - £y(6,)08] . ' 2.63

For easy reference, the P,(0) are

-] 2]
Pl( } = cos

pj(e) = % cos 8(5 cos® 6 - 3) . 2.69

P5(9) é cos 6(63 cos* 6 - 70 cos” 6 + 15)

Note that the BIB quantities (second deriva-
tives of B!) are not used in these extrapolations.
In LEMP they are used in certain print-outs which
are used to examine the aceuracy of the extrapola-
tion.

III. TEST PROBLEMS
3.1 Introduction

To test the accuracy of the code, it is desira-
ble to find problems which are similar to the resl
problems, but for which the solutions can be found
enalytically or by independent means. In this Chap-
ter we present two such problems. The first is
called the'wave test problem, and tests the gecuracy
at early times (in the real problem) when the air

ground-air interface. In both ceses the ground
conductivity is assumed infinite.
3.2 The Wave Test Problem

Our procedure will be to look for a simple

solution, and see what kind of Compton source cur-
rent is needed to yield this solution. We assume
that the air conductivity is zero.

Since Maxwell's equations have solutions which
are separable into radial and angular perts with
the angular parts being spherical harmonics, we shall
look for such solutions. In the real problem, the
magnetic field is small except near the ground sur-
face. We can matech this property by teking spheri-
cal hermonics of an imaginary argument, as will be
seen below. In addition, we look for solutions
growing exponentially with v, another desirable
feature, :

We start with the Eqs. 1.15 to 1.17 for ¢ =Jg =

0; i.e.,

JE
3;5 = -hﬂJ} + 1

in @ -
dfsin agF o)} , 3.1

2r° sin €
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We let Jo Eo B and G be proportional to T (only
T dependence) so that,

GE = -bxJ + 1 dfsin 8(F - )} 3.y
r ' 2r° sin @ 9% ’
JE
L g 3.5
JE
2@=%-3'5:’ 5'6

where we have used the same symbols for Jr' Er’ F,
and G to represent only their space parts. We
eliminate Jr by defining El as

hnJ
E = - ar+E . 3.7

The boundary condition on Er is that it be zero on
the ground (6 = n/2), and, therefore,

El(r:e) e=£= ar . 3.8

Jr is chosen as a function of r only and will be
determined by Eq. 3.8. Next, we let

E, = El(r)\y(e) » 3.9
F = Fr)X(®) , 3,10
G = G(r)x(®) ; 3.11

and, as can be seen from Egs. 3.4 to 3.6,

x(8) = Qg—éﬂ =¥ . 3.12

We now assume that y is a spherical harmonic of

imaginary argument by assuming

ot
L, olsln ') | g2y, ©3.13

sin ©

where B is a real constant, to be chosen later.

‘Then Eqs. 3.k to 3.6 give

g2 '
chl(r) == {F(zr) - 6(1)} , 3.14
ar
F(r) = El(r) ’ 3.15
G'(r) = El(r) + 206(r) , 3,16

where F/{r} = JF/dr, etc. These equations are most
easily solved by expressing all quantities in terms
of

H(r) = F(r) - G(r) 3.17

and its derivatives. Subtracting Eq., 3.15 from Eq.
3.16, one finds

_ 1 od_ 1.,

G(r)__ﬁa_r_-_éﬂ(x)’ 3.18

where we have defined a new independent variable
Xxear . 3.19

Then from Eq. 3.15,

Ey(x) = F'(r) = oF(x) = ofH'(x) + ¢'(x)]

= ofH' (x) - 3 H'(x)].

Using this result to eliminate El from Eq. 3.1k, we
find the final equation for H,

g2
H(x) - 2H'(x) + ZSH=0. 3.20
X

Once H has been found, G is found from Eq. 3.18, F
is found from

F=H+G6= H(x) -%H'(x) , 3.21

and E, is found from Eq. 3.14, which can be written

as
aﬁ2
El= _EH(X) . (3.14%)
2x

Returning now to Eq. 3.13 for the angular func-
tion, we notice that near 6 = n/2, sin 8 , 1, there




is one solution of the type

¥(6) ~ exp [—B(% - 6)] .

This has the behavior that we want, decreasing
roughly exponentielly with distence (angle) away
from the ground surface. In the test problem we

have arbitrarily chosen
B=12 , 3.22

so that the e-folding angle is approximately 5°.
Wnile the imaginary spherical harmonics are
known, we chose to integrate Eq. 3.13 numerically,
using a fine mesh to guarantee accuracy much better
than LEMP 1 (which uses & fairly coarse mesh away
from the ground), We used the difference equetion

proportional to qu).

The procedure therefore is to start at large x
and integrate Eq. 3.20 inward. The actual integra-
tion was done numerically, using a fine mesh and the

difference equation

2. 2,2
'Hi+1(l - Bx) + Hi(E - pBx /xi)

By = T+ ox . 3.26

The first (outer) two values are found from the
asym_.ptotic form,

In LFMP 1l we use the inner boundary condition
that Eg=0 at r = ro. Thus we want

0= F(ro) + G(ro) = H(xo) - H’(xo) . 3.27

We therefore integrate Egq. 3.26 inward until Eg.

1 . . 2.2 . .
N . 6., + e + 86 6. | - . e . .2
Viv1 “ sin 0 vy l 'lf:L[ sin 8,4 + sin 13 p” sin 6, ] ¥;_, sin i l 3.23

86 is a € increment which is a small fraction of the

smallest increment to be expected in the LEMP 1
mesh. The anguler integration starts at 8 = 0 and
sets y(9) = Wri-l =1lendy =1+ 32/14- 86°. The

integration proceeds to € = x/2, with the velues
of ¢(@) and X(€) being stored at each 91 and 9“%

of the LEMP 1 mesh. [X(0)} = 0]. ¥(f) and X(8) are

then divided by ¥(x/2), so that the final ¥(x/2) = 1.

We now consider the radiel equation, 3.20,
bearing in mind that P has been fixed. For large x
there are two possible asymptotic forms. One is

H~ e2x »

but this is clearly not a desirable form. The

other asymptotic form is

al -
H(x) = 1 + =+ 3,24

kl\)l NN
+

k\.ul\.v-lg
+

where, by substitution in Eq. 3.20, one finds

3.27 is satisfied. This happens {for B = 12} at

oy = X5 = 10.%06 . 3.28

Therefore we must choose

o= 10.506/1‘0 . 3.29

The Compton current needed to produce this solution
is then determined by Egs. 3.8 and 3.1%; or

05262 v
thr = = H(x)e™ . 3.30
2x
(It is seen that T~ l/r2 for large r.) This
Compton current is then used as the source in LEMP 1
and the resulting fields are compared with those
determined above.
In the wave test problem we used B = 12, bx =
=5 - > -
10 -, X o = 2 x 107, TFor the LEMP 1 problem, Ty =
3

3 x 107 em. This, with Eq. 3.29, gives an exponen-

5 .
9:1="g';' 3-2=é32(52+2): B?=‘]§.Eﬂa(52+2)(32+6); Ty ﬂn+1='mg(;—}_):l_*1ﬁ'an-5-25

This is a desirable asymptotic form, since H is

tial growth rate in real time (rather than T = ct) of.
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ac = 1,03062 x 108 sec”

1

’

3.31

which is a reasonable value. In addition, we chose r = = 555 x 10‘) cm, 5r0 =1x 103 cm, 0. = 65, ng, =

_ _ . - -10
9, Nge = 6, n, . = 1, Dye = 4, and ZO = 0.0l cm., The air conductivity was set equal to 10 ¢

nt (a negligible

value) and tne ground conductivity was set equal to ].O5 cm-l (a large value).” The problem was started with

theoretically obtained values for the fields and run for about 7 e-folding periods.

In Table I, theoretical and LEMP 1 values of B(p and of Ey are compared, at r =

at various times.

shakes and r = 300 meters, for various angles n/2 - € above the ground.

The error in B is about 0.7% and the error in Eg is about 0.%%.

TABLE I
r = 300 METERS , ON GROUND

time, shakes Bq)’ LEMP 1 Bcp, theory Eg, LEMP 1 Eg, theory
0.1116 1.005 (-4) 1.007 (-4) 0.995 (-4) 1.000 (-4)
1.009 2.833 (-4} 2,818 (-b4) 2.805 (-i) 2.799 (-4)
1.997 7.845 (-4) T.795 (-4}~ 7.766 (-4) 7,743 (k)
2.998 2,202 (-3) 2.188 (-3) 2.180 (-3) 2.173 (-3)
b.005 6.215 {-3) 6.175 (-3) 6.153 (-3) 6.134 (-3)

200 meters on the ground,

In Table II, theoretical and LEMP 1 values of Bq) and of E_ are compared, at retarded time = 6.844

The error in B is about O.T7% of

the maximum value {surface value) of Bcp' The error in E_is about 0.6% of the maximum velue {large n/2 - 6)
of E_.
r

TABLE II

RETARDED t = 6.844 SHAKES, r = 300 METERS

% - 8, radians. B,y LEMP 1 By theory E_, LEMP 1 E,, theory
0 -2.453 (-5) 0

2.789 (-4) 1.156 (-1) 1.148 (-1) .
5,578 (-4) -1.145 (-4)  -0.895 (-4)
8.367 (-4) 1.148 (-1) 1.1k1 (-1)
1.116 (-3) -2.038 (-4) -1.78% (-4)
1.673 (-3) 1.137 (-1) 1.129 (-1)
2.231 (-3) -3.808 (-4) -3.54k (-4)
3.347 (-3) 1.114 (-1) 1.107 (-1)
k.k62.(-3) -7.278 (-4) -6.994 (-h)
6.69% (-3) 1.071 (-1) 1.063 (-1)
8.925 (-3) -1.394 (-3) -1.362 (-3)
1.339 (-2) 9.888 (-2) 9.809 (-2)
1.785 (-2) -2.626 (-3) -2.586 (-~3)
2.677 (-2) 8.435 (-2) 8.352 (-2) .
3.570 (-2) -b.729 (-3)  -L.673 (-3)
5.355 (-2) 6.145 (-2) 6.057 (-2)
7.140 (-2) ~7.795 (-3) -7.718 (-3)
1.071 (-2) 3.275 (-2) 3.189 (-2)
1.428 (-1) . -1.107 (-2) -1.100 (-2)
2,142 (-1) 9.571 (-3) 8.876 (-3)
2,856 (-1} -1.298 (-2) -1.299 (-2)
4,284 (-1) 1.0k (-3) 6.999 (-4)
5.712 (-1) : ' ' 21,340 (-2)  -1.342 (-2)
7.140 (-1) 8.255 (-5)  2.468 (-5)




In Teble III, theoretical and LEMP 1 values of
B, and of E, are compared, at retarded time = 6.844
shakes and on the ground, for various radii. For
radii greater than 130 meters, the error in both Bq;

We shell use & Cartesian coordinate system (in-
stead of spherical) and restrict our attentién to
times at which the skin depth in the air is small
compared with r, so this introduces negligible

and Eg is less than 0.74, error. We use the radius r from the burst, the
TABLE ITI
RETARDED t = 6.844 SHAKES, ON GROUND

r, meters By IBP 1 B, theory  Eg, LEMP 1  Eg, theory

30 1.188 (-3) 1.117 (-5) ) 0
ko 8.081 (-3) 7.81% (~3) 4,757 (-3) 4.389 (-3)
51.43 2,222 (-2) 2.19% (-2) 1.678 (-2) 1.655 (-2)
130 1.078 (-1) 1.073 (-1) 1.039 (-1) 1.034 (-1)
300 1.160 (-1) 1.152 (-1) 1.152 (-1) 1Ak (-1)
580 8.386 (-2) 8.335 (-2) 8.370 (-2) 8.320 (-2)
900 6.138 (-2) 6.105 (-2) 6.133 (-2) 6.200 (-2)
1750 3.528 (-2) 3.515 (-2) 3.527 (-2) 3.514 (-2)
3550 1.843 (-2) 1.8h1 (-2) 1.843 (-2) 1.841 (-2}

These accuracies are entirely adequate, les-
pec;i.all:,' for the small numbers of mesh cells used in
LEMP 1.

3.3 The Diffusion Test Problem

In this test problem, we imagine a conductivity

which is constant in time,

6
o= l%r cm-l » ' 3.32
r

and a Compton current which is turned on at v = 0,

Jr=0, T< 0
6 .

=-%, 0. 3.53
T

We shall examine the fields at

r=5x101‘cm=500m, 3.34

_where the coﬁductivity is

I S
=555 @ - ) 3.35

With this high conductivity there is very little
propagation of waves, and we can obtein analytically

an almost exact solution of Maxwell's' equations. We
assume the ground conductivity is infinite. '

height z above the ground, and y in such a direc-
tion that r,z,y form a right-handed orthogonal
system. Note that z and y are in the - and -
directions. We shall have electric fields Er and
Ez, and a magnetic field B in the y direction.

Mexwell's equations are

3

1JdB

S3t= "3 B t3z B 3.36
OE

%B—§+)+ncEz= 'B'B'EB’ 3.37
JdE

1y d

E-E+lmcEr+thr=§ZB . 3.38

We now transform to lndependent variables v = ct -
-r, ¥ = r, and drop the prime on r as usual so
that

13 .9 )
EE-’;, 3.39
=) =) =)

- — - . 3.40
or 3L 9T

In the resulting Maxwell equations, we neglect
9/9r’ compared with 3/dr and 3/dz and obtain

z r
ST T 5-41
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JE

_gz + bnoE, = ?TE ’ 3.42
OB, 3
F + J-HTGEr + IH'(Jr = 5 B . 3-'4»5
Comparing the first two of these we see that
1 aEr
B = e 3z 3l
Therefore, from Eq. 3.41,
OB _ ¢
3 =3z 5.4
where we have defined
1 aEr
e = Er + m a3 - 5.'4-6
Then Eq. 3.43% may be written in the form
g.__' = nJ + bnop . 3.h7

Equations 3.45 and 3.47 are the usual diffusion

equations for the skin effect. Note that on the

where

a

n
24 =2 .
T

3.20

From Eq. 3.%6,

.
’
E, = e HmoT flmae (1) gq

o]

While some of these results are a little com-
plicated, the value of B at z

0 is quite simple:

J
B{z = 0) = L -U—",/u-r . 3.52
Also, when bmor >> 1,
E ~E . 5.93
We shall use these results to test ILEMP 1. At 300

meters, we find

B=xJ7 .

8-

The LEMP 1 problem used

ground we must have & = 0. For 1< 0, £ = B=0 n9r=6, ngo=9,
everywhere. For t > 0, & = J/a {=1 in our case),
and B » 0 for large z. The solutions of the equa- gnd = 10° e} = 3.35 x 10° mho/m s
tions are well known, with the results
Zy = 0.0l cm ,
a 5 :
e,:-J—;i—;f e * ax 3.48 nZs=7’ nzf=h.
0
and
Other parameters were as usual, and the code was
J x 2 allowed to choose its own Br.
B=-h —:-JF € -2 ‘/’_l oz f e ’ 3:49 Table IV compares B on the ground at 300 meters
a
TABLE IV
B ON THE GROUND
T, cm Cycle No. B‘P’ LEMP 1 B Theory % Error
0.581 1 -0.121 -0.102 20
9.87 17 -0.4%20 -0.419 0.2
20.32 35 -0.60k -0.601 0.5
.70 17 -0.897 -0.891 0.7 .
109.14 188 -1.koo -1.393 0.5 N
202.03 348 -1.906 -1.895 0.6 )
Lok, 97 32 -2.763 -2.749 0.5 &
996,24 1716 - -4.231 -i.208 0.5
2190.4 3773 -6.272 -6.2%0 0.5
Loek .8 7346 -8. 74T -8.707 0.5




l from LEMP 1 and from theory. The agreement is ex- This result is used in LA-4347 in the source calcu-

cellent. Even on the first cycle the error is only lations.

LA-43L47 4s titled "Sources, Parameter Study,
and the Output Library for LEMP 1." This report is

204, and after the 17th cycle the error is never
larger than O.7%.

™~ For the last cycle computed, T = 4264.8 cm, classified Secret-Restricted Data. The first portion
- and bror = 59.6. By this time the approximation of this report, "Sources,” gives the formulae for y-
. Eq. 3.53 should be very accurate. In Table V, Er tra.n?port and the prescription for obtaining J., Jg,
and 7. The second portion gives the effect on peak
TABLE V
COMPARISON OF E,
AT T = 426%.8 em; r = 300 m; \/nlt= 1.10541. x 10° cm; bror = 59.6
Z cm AV E_, LEMP 1 E_, Theory Error
T T T
0 0 0.0018 0 0.0018
16.7 0.0151 0.0192 0.0170 0.0018
33.h 0.0303 0.0365 0.0342 0.0023
66.9 0.0606 0.0711 0.0683 0.0028
133.9 0.1211 0.1398 0.1359 0.0039
267.7 0.2422 0.2738 0.2680 0.0058
535.5 0.h8kk4 0.5165 0.5067 0.0098
1071 0.9689 0.8468 0.8204 0.017h
21k2 1.9377 0.9892 0.9938 -0.0046
Logh 3.8755 0.9999 1.0000 -0.0001
. 8568 T1.7509 1.0000 1.0000 0.0000
as a function of z as calculated by IEMP 1 is com- electromagnetic fields caused by changing one (or
pared with the theoretical result. Again the agree- more) of the parameters used for input to LEMP 1.
ment is excellent, the largest error being 1.T% of The last portion of this report is an ettempt te sum-
the saturated field, 1 esu. marize the results of the Confidential-Restricted
It can be seen from these results that radial Data LEMP 1 "Library.”" This Library consists of &
derivatives dropped in the théory are no more than rolls of 35-mm film with approximately 20000 exposed
about 1% of the z-derivatives. frames. Each roll of film is for a specific problem
IV. RELATED TOPICS and contains output time plots and tables for the
The}‘e are two los Alamos reports which serve fields and sources at a large number of points in
&5 companion reports to this one. These reports the gir and in the ground. Each problem was run for
are numbered LA-4347 and LA-L348. a "typical" yield. Problems 1 to 6 are for yields
LA-‘1t5l|»8 is titled "Compton Current in Presence of 0.1, 1, 10, 100, 1000, and 10000 kiloton devices,
of Fields for LEMP 1." 1If a Compton electron is respectively., Problems { and § are for 10 and 1000
produced by a gamma ray of energy Ey in eir eand kiloton devices, respectively. Problems 1 to 6 were
with an electromagnetic field (Er’EG’Bq)) present, run with "typical' ground parameters of 9y = 0.02
it will slow to a stop at an average position mho/m and e/eo = 16. Problems 7 and 8 had "ground"
? {DX,DY). DX is the average distance the electron parameters of g = k.3 mho/m and e/eo = &1, as might
. travels in the direction of the gamma ray and DY is be appropriate to sea water, This Library was dis-
— the average distance the electron travels perpendic- tributed nationally in Auwgust 1969, and is available

ular to the direction of the gamma ray. LA-4348
gives, as a Tinal result, the fitted values of the
functions DX{ E_r,Er,Ea,Bcp) and DY(E_’,EI_,EG,ECP).

to anyone in need.
The present Library should be regarded only as

an initial attempt to satisfy the needs that exist.

2¢



We expect that the Library will continue to grow in
response to requests for additional or special prob-

lems.

APPENDIX. UNITS

Gaussian units were used in the code because of
the resulting simplicity of Maxwell's equations.
The transformetions to ¥ = ¢t - r and to F and G are
not cluttered with unnecessary constants, and it is
convenient to have E = B for free waves,

To connect Gaussian units with MKS units, the

following relations apply.

E( volts/meter) = 3 x lOI‘L E(Gaussian = esu)
B(webers/mg) = 1074 B(Gaussian = emu)
J{amps/m2) = 10° J(Geussian = abamps/cme)
o mho/m) = %0- o(Gaussian = cm~1)
€(MKS) = € €(Gaussian)

Here EO is the dielectric constant of free space,

which is well known by users of MKS units.




