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ABSTRACT

A model is developed to estimate the electromagnetic pulse produced
by a completely enclosed underground burst employing a metal cylindrical
casing extending from the burst point to very near the earth's surface.
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MODELS FOR ELECTROMAGNETIC PULSE PRODUCTION
FROM UNDERGROUND NUCLEAR EXPLOSIONS

I. INTRODUCTION AND OUTLINE

Underground testing of nuclear weapons has become commonplace

; since the atmospheric test ban treaty was signed. In such situations,
: the asymmetries attributable to air-earth interfaées, air density gra-
“dients, and geomagnetic field effects that are responsible for much of
the EMP from bursts. above ground, are not very effective in producing
an electromagnetic pulse. Underground bursts introduce their own set
of asymmetries in gamma: ray absorption and resultant Compton electron
current. These asymmetries create an EMP, The actual geometry associ-
ated with such a burst is extremely involved. Nevertheless, for certain
types, simplifying assumptions: enable models to be formulated. The
following sections discuss eséentially three generalized mechanisms for
radioflash ¢reation for the special burst types:

1. Burst with an evacuated line-of-sight pipe to the
air-earth interface.

o it e VT T e e s e T

2. Burst with a metal, cylindrical casing surrounding
the weapon, extending to ground zero, and filled
with a lossy dielectric material.

s

The mechanisms are gamma column interaction with the air, the trans-
mission line formed by the metallic casing and a bundle of wires at its
center, and the casing reaction as an underground antenna.

Type 1 bursts are sometimes used to study interactions of the
early radiation from the weapon with systems in a tower built over the
hole. After a short time, the line of sight is closed to prevent viola-
tion of the test ban tréaty. The type 2 bursts are usually for weapon
developmeht. The cased holes are typically filled with sand, gravel,




and grout, while surrounding materials may be concrete, iron, tuff,
alluvium, and water. Generalized solutions to Maxwell's equations are
developed in Section II for cylindrically symmetric geometries in the
frequency domain. Wires usually connect weapon instrumentafion up
through the cased hole and along the ground to recording equipment.

The configuration of a cased hole with a colliection of wiresrnear the
center acts as a transmission line. This model, treated in gsection III,

is found not to be very effective in producing an EMP.

In order to calculate the fields radiated along the earth's sur-

face, zeroth order assumptions are made; it is assumed that since tan-

gential fields are continuous across a nonconducting interface, the ﬁ
fields on the earth's surface are not seriously changed by introduction '
of the air-earth interface. Contrary to results for propagation along
thin horizontal wires or narrow slots in the interface, such an approxi-
mation appears reasonable for radiation from a vertical dipole.l With
fields known on the boundary of the upper. half space, Green's Theorem
is then used in Sectlon 1V to calculate the fields everywhere in the
upper half space. '

A current can also exist on the casing itself. This situation,
considered in Sections V and VI, can be produced by an antenna in a
lossy, homogeneous earth. The vertical antenna current produces an
azimuthal magnetic field and a radial electric field which act as
sources for radiation into the upper half space. Most of the mathemati-
cal details are relegated to the appendices. Modeling for the type 1
bursts is treated in Part II of the report which will be published at
a later date.




II. SOLUTION TO MAXWELL's EQUATIONS IN A CYLINDRICALLY SYMMETRIC
CASE FOR A WAVE TRAVELING IN THE Z DIRECTION

Within a homogéneous, isotropic domain, Maxwell's equations in
MKS units are given by

VXE=£+%_, V'R=p,
- (1)
vxg=-gT , v. B = 0.
The time Fourier transform of these equations gives
9xH=J - iud , v.D=%,
. _ (2)
; vx E = iwB , v+ B =0, '
j
where
: S _ %y = L [ iwt '
1 V=% = 5= [ v(e) et . | (3)
% -

Assuming that the permittivity ¢, permeability p, and conductivity o are
constants, one obtains

VX ?_3:_ = ugE - iwueg ' ‘ (4)
and
v X E = in . (5

Combinations of these equations allow the field equations to be given
in the form

[V2.+,imuo + w2 pe]li = 0, v (6)




[02 + iwuo + wz ue] E_= 0, (7

as occurs with Maxwell's equations in the time domain with an exp (- iwt)
time dependence. Since the analysis is done entirely in the frequency

domain, the ~ notation is now omitted.

Note that the Fourier transforms have assumed the conductivity,
permeability, and permittivity of the transmission medium and are in-
dependent of frequency. These assumptions, SO early in the treatment,
seriously. limit possibilities for extending the treatment to a more
general case. However, a range of values may be considered which
should put upper and lower 1imits on the transmitted field values. In
addition, measurements of materials such as sand or earth at a wide
range of frequencies are not generally available and are quite dependent
upon conditions such as water content and actual composition.

, For a traveling wave in the 2 direction and assumed Z dependence
of exp (ihZ) in cylindrical coordinates, we have

I

2

13 (a) 1 3 2 . 2

13 (p8 )4+ 22> -h"+Kk =0 (8

T dr or r2 ae2 8 ’
where

k? = w2 pe + ilwuo . 9)

let [ be any component of E or B. Then

La (. af). 1 2% 2 .2 '

T 3% r%)+—2—52-+k(k-h)f=0. (10)

r

Applying separétion of variaEies leads to
1=y ‘An 3 (/-0 r) +B_ N, ( 1% -h? r) } ihZ-iut+ind = (77)
- .

where Jn and Nn are the Bessel and Neumann functions of order n.




The Hertz vector 7 for a medium with no fixed polarization also
obeys the above wave equation (10); hence, the field components are

given by:’
E= Vv .7+ (kz-hz) T,
: : (12)
E,—_(c‘u-iwpe)vxg
% For r < a;, for example, in a region characterized by index (1),
() _x> (i (1) _Hen (1) -
Er = Z "1 Jn ()\lr) a - ;—2; Jn()\lr) bn Fn, (13)
! n=-o o1
(D _N [ b ¢ (L, e (1)
Eq "Z [ 7= () a0, (0T by Fpo (18
AqCx 1
; n=-o 1
5,0 =3 g0 8P E, | (15)
e
‘:
W (DY lki— J(;Lr)a(l)+ﬁ I Gur) b D F, (16
i T - }E: i 2 D 1 n Ay n 1 n n’
s n=-w LF1701
x (D _i _lkl_z 3 o) a @ o B 5 b DF (17)
j ¢} T L TN n 1 n 2 n "1 n n’
| e ["1*M AT .
OB i FRCEAL) P a®)
Il= = - -

where'xiz = klz-hzzand F_ = exp (in® + ihZ - iwt). These expansions are
given in Stratton,;” where it is also pointed out that the symmetric mode
is the only one expected to propagate in a solid conductor with azimuthal
symmetry. Thus only n=0 is considered as we apply this treatment to a
situation with a solid conductor at the center.




III. THE COAXIAL CABLE MODEL

Let space be divided into three regions as indicated in Fig. 1.
Region 1 is a solid center conductor, region 2 is a dielectric, and
region 3 is an outer, imperfect conductor. The current density in the

center wire is

J, = oy Ez(l) s (19)
yielding a total current
2
=falf " J,rdedr , (20)
o] 0
= 2m cl.jfal I, (xlr) ao(l) Fordr ; (21)
I = Io eihZ-iwt , (22)

where

2n0,4
_ 171 (1)
L= % J1(nqap)

(23)
The n = O terms in the general equations in Section II can now be
used to calculate the electromagnetic fields in the three regions of
interest. Constants are evaluated from the boundary conditions. The
mathematics for this calculation is given in Appendix A, For reasonable
choices for physical parameters of the center conductor, dielectric, and
lossy outer conductor, the main fields exist in the dielectric region.
The z = .0 plane is now considered as excited by the fields calculated in
Appendix A for region 2, These fields act as a source for radiation
into the upper half space (z > 0), where no other sources are included.
The excitation is in the interval a; ST <a jn the z-= 0 plane. Note
that two "z" coordinates are utilized; lower case z has its origin at
the air-earth interface, while capital Z has its origin at the point
of origin for the propagating wave.

10
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Fig. 1 The coaxial cable model.

Application of the Coaxial Cable Model to a Special Case

Considef the situation a; = 0.10 m, ay ® 1m, 0 = 03 = 107/nm,
-4 .
g, = 1.5 10 /Qm, Hy =My = Hg = Uy, €y = 10 e . Then, from Appendix A,

ky? = 111 10°18 2 4 iy 18.8 10711 | (24)

with k2 in m']' and @ in Sec'l. Thus

Ay~ k= ETTIC .(25)

Apaq ™ 0.35 Jiw , < . - (26)
Ag8y ™ 35.5 JIw . (2?)

11




From Eq. (A-34),

. (28)

L4 m (D (35.5 /) o % (0.35 Viw)
2 9.2 Vriw Hl(l) (35.5 VIw) - Jp (0.35 Viw)

For w 2 104, 0.35 yw ~ 35 >> 1 and asymptotic values may be used for
the cylindrical functions. These asymptotic values are most easily found
by conversion to modified Bessel functions Iv(x) and Kv(x), which become

independent of v for large x:

(D) . . | '
i (35520 L% 035/ 29)
1, 5.5 /5D 3, (0.35 /% 1)
Thus
h~ ko [1___'11_]. | (30)
9.2 Jmiw

At frequencies larger than 104 Hz, the correction term to h is indeed
small. Also

2 2 2 2 22 :
_ - n? - 22 ), 31
o=l 2 (9.2\/1'ri-w) G

From (A-36), the magnetic field may now be written

iy 2 oy 2
, 21 B ik
(2y 2%k 2 ulrl [ _.]
Hy = 5 2y 5— + £ { exp ik, Z; int | . (32)

For the parameter. values chosen, with r varying between 0. 1 and ‘1m,
the 1/r term dominates unless frequency is greater than 10 10 Hz. There-
fore, Eq. (32) becomes

(2) _ 21k2 B exp [1k22 - 1wt] -
H = . 3
(] 2 T
TWH o lz
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With B approximated by (A-24), one obtains

u,(2) - (34)

L
2mr
as in the infinite conductivity situation. As Stratton2 points out,

such a result indicates that the displacement and conduction currents

in the dielectric are much smaller than the conduction current in the
inner conductor,

The attenuation comes from the propagation factor

h = k, [1-51—1\/5]. (35)

With the assumption that w > 104

neglected,

Hz, so that the correction term may be

n? - k22 - 111 1078 2 4 iy 18.8 1071 (36)
2 .
The real and imaginary parts are
> 1/2
92
k 1 4+ {———} + 1
ol ezw
- /g v ; (38)
k. } .
1
or
1/2 :
k . ,
T 62
- 7.4 1077 \/1 + }lli( £ 1 , (39)
k., w
1

where MKS units are used throughout.
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As in (A-9) and (A-10), the electric field components are

h
Er(Z)' _ “’”__%__ He(Z) , (40)
ko

E (2) Wio 12 AJO(er) + B No(Xér) (2)

= - H . (41
z ik22 A3, (hyr) + B Ny (hpr) 6 , )

These correspond to (A-25) and (A-26) with the correction term from finite

conductivity.
The magnitude of the radial field radiation source term can be
estimated from Eqs. (34) and (40):
-7 [ s ]
. 2) _ w 4m 10 I0 exp 1k2 A ipt ,kz (42)
T 2
2nr k2
Let
ky = w(Ay + iB1), (43) ]
where A and B, are defined by comparison with (39). Then §
2 10-7 I exp [iw(A Z-t)] exp [-mB Z]
z (2) _ 0 1 1. (44) ;
r (& + iB)T ?
— 1/2
2 | (2)|2 ' 9 1.7 10° 2
r~ |IE 365 exp )} - 14.8 10 7 wZ 1+ j=———( -1 (45)
T _ S .
L. {1.7 10 }
w
e (2)|2 2 .
The —r—z——-— is given as a function of w in the following graph,
IO
Fig. 2.
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Fig. 2 Indication of frequency variation in radial
electric field intensity in region 2 for
selected distances of propagation by the’
coaxial cable model.
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1V. THE DIFFRACTION MECHANISM FOR CONVERSION
TO A RADIATING SIGNAL

Kirchhoff's diffraction theory gives the solution of the homoge-
neous wave equation at an arbitrary point in terms of the values of the

solution and its first derivative at all points on an arbitrary closed

surface surrounding the point. This scalar wave approach is reasonable

if the spatial discontinuities are small compared to the wavelengths of
interest. I1f frequencies to 108 are considered, the minimum associlated
wavelength is 3 meters. Thus, scalar theory is stretched somewhat in
application to the present example with an opening radius of 1 meter.
Nevertheless, the Kirchhoff scalar theory is used, so some distortion
will be obtained at the high frequencies.

The boundary conditions in the frequency domain are specified by

. (34) and (44) for specific values of Z and 1 (Z) in the special
case chosen. This boundary, for a; =T < aj, is then assumed to excite
the free upper half space, producing radiation. Since the outer con-
ductor was earlier chosen to be a reasonably good conductor, the radial
and vertical components of electric field intensity are very small in

region 3 and cannot contribute to the radiation in the upper half space.

Application of diffraction theory (see Appendix B) gives a radi-
ating vertical electric field intensity

E, = Ge [3,(kay) - 3 (kap)] (46)

where, in MKS units,

-7 :
2 x 107 I exp |1 (A Z - t) - wB,Z
.. p [0 ] oo [- uByz] )
) (Al + 1Bl) :
and A; and B, are defined by (43).
Thus,
e 12 - lel® [a,0c a) - 3 (k ap)]? (48)
z 4r2 (e 2 [o] 1 .

ALY

A O

Y

e T e




w
k a, = Fayw~ 1/300 , (49)
. 0.1 '
ka, =350 o (50)

and asymptotic forms may be used to calculate the difference in Bessel
functions as ~ 1/36 x 10*. Thus.

2
I 2
2 0 [ 1 ]
lg_|? - . (51)
z 2r2 36x104
With r ~ 100 meters,
Io
|Ez| ~ 75 uv sec/m (52)

in the frequency domain.

For v = 108, Eq. (46) becomes
. I
|Ez| ~ §%6 V sec/m . (53)

1t appears that higher ffequenéies are preferentially transmitted in

this‘model. The higher frequencies are transmitted more readily because

of the greater difference in Bessel functions. However, the attenuation g
is much larger at such high frequencies. :

In order to calculate the field in the time domain, let the current
in the center wire be

I,(Z,t) = 17(2) f (£). (54) |

Its Fourier transform is then

I(w,2) = I,(2) £ (0). (55)

17



Then, from inversion of (46),

Ez(t) =f Ez(“’) e"'“’t dw. (56)
A given form for IO(Z,t) and values of the various constants can

then, in principle, be used to find the radiation fields predicted by
this model. '

Calculations have been performed with the assumed current
I (Z,£) = A [exp (-bt) - exp (-at) ], (57)

and the Fourier transform from Eq. (3),

A 1 1 i
I(w,2) = 77 [ a-iw _ b-iw J : (58)
Parameters chosen were r = 100m, Z = 300m, 2 = 2 x 10’ sec'l, b = 10’
sec-l, A determined by a peak current of 25 amperes, and other parameters

as in the special case. Thus,

Ipeak - A {exp [-b Lngb/az] - exp [-a 4n(b/a) ]L (59)

b-a b-a
The resulting vertical electric field had a peak value of the order of

10'9 volt/meter because of attenuation in the lossy dielectric filling
the transmission line. Such a mechanism is poor for EMP production.

18



V. AN UNDERGROUND ANTENNA MODEL FOR EMP PRODUCTION

Let space be divided into two regions, as suggested in Fig. 3:
Region I has 0 < r s ay while region II has r >-a;. Here, r is the
distance from the z axis in the cylindrical coordinate system. Region I
is assumed to be a good conductor, while region II is the earth (which
probably should not be referred to as ground). Azimuthal symmetry is
assumed, so much of the earlier treatment applies.

The analysis given in Appendix C for this model includes calcu-
lation of the fields in region II and use 'of these fields on the z = 0
plane as sources for the diffraction problem analogous to that of
Sections III and IV. As indicated in the following section, this model
appears reasoﬁably efficient in EMP production.

z
e
AIR | I : E(z)
EARTH \\n____—’/ ; r
<,

"
O — B
—

Z

 J

Fig. 3 The underground antenna model.
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VI. RESULTS OF THE UNDERGROUND ANTENNA MECHANISM
FOR A SPECIAL CASE

A computer program Antn was written to calculate signals for the
underground antenna model described in Section V and Appendix C. For
the illustration presented here, the current on the pipe casing was
assumed to be given by Eq. (57) with a peak value of 25 amperes,
a=2x10 sec'l, and b = 1 x 10 sec'l, as in the special case con-
sidered earlier. The frequency domain representation was obtained from
the Fast Fourier Transform Subroutine, FOURT. The current and its
transform are illustrated in Figs. 4 and 5. With the FOURT routine,
the time interval considered (0 to 10 microseconds) and the number of
sampled time points (4096) determine the frequency interval needed for
calculations. The amplitude of I (w) is artificially calculated for
w > 10° sec™! since, left to its own devices, the amplitude climbs
sharply up to the low frequency value. Since this is above the Nyquist
. frequency, no real information is available in this frequency region.

The parameter i, is found from solution of Eq. (C-20) with
a; = Im, o} = 107/(ohm m), o, = 1.5 % 1074 ohm™t mL, uy = uy = ug,
€] = 8y = €4 . The variation of 3, is graphed in Figs. 6 and 7 to check
consistency and the approximation |a1x2|<<1. The propagation constant
is evaluated from Eq. (C-17) and graphed in Figs. 8 and 9. With the
determination of these parameters, the vertical component of electric
field intensity in the frequency domain 1s calculated from (C-41), with
r =100 m, Z = 300 m (see Fig. 10). The required Bessel and Hankel func-
tions are obtained from the subroutine BESCOM. The Fast Fourier Trans-
form yields the time domain result in Fig. 11. Equation (C-34) gives
the radial component of electric field intensity at this distance. These

results are indicated in Figs. 12, 13, and l4.

Note that the 25-ampere peak current on the underground antenna in
this example results in a 0.009 V/m peak vertical electric field inten-
sity and 0.017 V/m peak radial component at 100 meters from ground zero.
The relative magnitudes -and amplitudes are expected to be particularly
sensitive to the choices of earth conductivity and permittivity. This

is considered in Appendix D.

20
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ViI. GENERAL DISCUSSION OF A POSSIBLE CURRENT-
GENERATING MECHANISM

For an underground burst one might conclude that spherical sym-
metry in the absorption of gamma rays prevents fadiating electromagnetic
fields. The symmetry, coupled with the Gauss law, demands that the
electric field intensity be zero outside the gamma ionization region.
This suggests that no field is present to inducé currents on the under-

ground pipe encasing the weapon.

The charge displaced by a 1-kt weapon can be estimated by assuming
0.1 percent conversion to prompt gamma energy and 1001percent convex-
sion of gamma rays to Compton electrons. The total electron charge
generated is then near 4 x 103 coulombs. Since the ratio of electron
mean free path to gamma Yay mean free path is 0.0l, only about 40
coulombs of charge are effectively separated. With the gamma mean free
. path near 10 cm, the effective charge separation distance must be at
least 10 cm, while 1 meter appears as a reasonable lower limit. At 1
meter, for example, the integrated gamma flux should be of the order of
1013 Y/cmz, sufficient to produce considerable ionization. The capaci-
tance between two concentric conductors with dielectric constant ¢
separating them and radii 0.1 and 1 meter is about 10upuf. With 40
coulombs of charge on each sphere, the internal field strength 1s of
the order of &4 x 1012 V/m, clearly too high for consistency. Lf Maxwell's
equations were solved in the material, with Compton current as the source
term, and breakdown of the material included, fields no larger than about
107 V/m are expected. It is likely that the effective capacitor radii

o}

are underestimated, while the charge is overestimated.

1f it is assumed that the surrounding material is more dense
directly above the burst than beneath it, an asymmetry is introduced,
- and nonzero fields can exist outside the source region. Instrumenta-
tion and support structure above the weapon could introduce such an
asymmetry. If only & coulombs are assumed to be effectively separated
by 1 meter, the field along the dipole axis is

B~ 34

21‘[8]‘.‘3 i
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With r = 100 m and ¢ = 10 €5s

Ew~ 7200 V/m .

0f course, the physical situation is not static; sharpness of the current
pulse indicates that high frequencies are involved. The field value will
be reduced by skin depth effects as well as by the time required to pro-
duce the 4 coulombs of charge.

The skin depth is

For w = 10° sec'l, b=H,, and o~ 1074 ohm™! m"l, typical of dry sands
used to £ill the pipe casings, 6 = 110 meters. For w = 10" and o = 10'3,
typical of some Nevada soils, 8 = 40 meters. These skin depths indi-
cate that a longitudinal electric field may exist at approximately

100 meters from the weapon because of an asymmetry in the weapon sur-
roundings. Such a field would induce current in the pipe casing. This
current is the source for the underground antenna model discussed in
Section V. More detailed modeling of this current production mechanism
is required for specific calculations of the propagating radioflash pro-
duced by a specific underground burst. However, such an underground
antenna model must be retained as a reasonable radiating EMP production
mechanism. Comparison of data with predictions from this model is
planned for a future, classified report.
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| APPENDIX A
MATHEMATICAL DETALLS OF THE COAXTAL CABLE MODEL

The generalized equations in Section 1II allow one to calculate
the azimuthal component of the magnetic field intensity in region 1:

. 2 )
ik.” - :
1 1 ! 1
H ( ) Ty JO (xlr) ao( ) , (A-1)

or, with the help of Eqs. (22) and (23),

L 2
a (1) _ _ lkl 1 Jl(llr) (4-2)
9 2maqwpq0q J1(Aqaq)
From the expan51ons in Stratton2
wu h
Ky 2 e
-(1) -_ hwulkl'Jo(Xir) ) (1) .
Eg = s Hy . (A-4)
1k1 Jl(xlr)
The Ee is given by
(1) _ Iuge (1) _
Eg - Jl(xlr) b, F, . (A-5)

Beééuse of the symmetry, Ee(l) = 0; thus bO(l) = 0. This also nullifies
the H. and Hz components.

N In order to construct a solution appropriate to region 2, the
Neumann function portion of the general solution must alsc be retained.
Since '

% 5 l(p) 2 rlJrl(p) L @®)
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and

2n 7

n-1 " Z%ns1 %9 “n (A-7)

Z
for Z equal to a Bessel or Neumann function, more general equations
equivalent to Eqs. (13) through (18) may be written, including the
Hankel functions. The azimuthal component for magnetic field intensity

then becomes
J
Z H,(2) -ik22 ihZ - iwt :
! o) = o {A 3,00p) + B N (p7) ] e , (A-8)

as given by Stratton.2 From the more general equations equivalent to
(13) through (18), one finds :

h
Er(Z) - ﬁ%_ HQ(Z) , (A-9)
ky

(A-10)

B (2) _ . wuzlz A Jo(‘,\zr) + B No(lzr) - (2) ]
Z ik22 A Jl()‘?.r) + B Nl(xzr) 8

In a similar manner, in region 3 the functions are combined so
i that only the Hankel function is retained for proper behavior at

infinity:
f ' (3) ik32 (1) ihz - iwt
: HB = = -u—]u—'i— C Hl (131‘) e , (A-11)
! 33
a OO | a-12)
i 3
) :
i
L ’ (3)
| 3y _ _aly B TOeE) L (3
i E, = - —= &) Hy . (A-13)
The constants A, B, and C are determined by the boundary conditions,

continuity of E, and Hy at T = a3 and a,. As given in Stratton, these
boundary conditions determine the ratio of A and B as
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o,
Mirky~ To(03p)

N,Gpay) - —=——=5 Ny (hpap)
B 2
1A k J ()\ a )
Togay) - = Ll 51 Gyay)
Mprgky” J1(2q37)
2 . (D
N (roal) - Hahsky Ho " (gap) Oas)
B Hah2®3 Ho 392 (A-15)
- 2 4 (1) '
3 Gay - i3 B Ot o
o 292 k.2 g (D 17292
Hphgks™ Hy" T (h3ay)
The values of h = ki2 - xiz , which are the roots of this

determinantal equation, fix the allowed modes of propagation.

Consider the case where the inner and outer regions are of infinite
conductivity. Since

- h°, (A-l6)
where

K2 = wlue + dwno, (A-17)
the conductivity term dominates in regions i and 3, For 4 =1, 3,

—'iwpzcz R (A-18)

2N
I

>
|

- iwuzoz-hz. (A-19)

Since the imaginary part of h must remain finite for propagation of the
wave as conductivity becomes large,

Ay ™ kz ~ /iwuzcz : ~(A-20)
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Because of the kz2 term, Eqs. (A-14) and (A-15) become

No(')\za 1) _ No(?\zaz)
JO()"Zal) JO()‘ZaZ)

The 1, values which satisfy (A-21) dete
via (A-16). One obvious solution is %y

a wave the propagation constant of which is that of t

the two conducting cylinders.

From (A-16), when xzz becomes large, h2 be
such waves are rapidly attenuated.
propagation further. For

x << 1 , Jl(x) N'TT%T-(§) R Nl(x) o -

and (A-8) becomes

ik 2
(2) . 2 -Ar 2B
He TP 2 + 2
2 T”Lz r

)

For reasonably small T and small iy the B term must dominate.

may be evaluated in terms of the curren

using Ampere's law. Thus

B=
) 2
4k2
Now ,
(2) . L
HG 2nr O’
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p= (;)

(A-21)

rmine the propagation constant
=0, corresponding to h = kz,
he medium between

comes imaginary, and

let us consider the Ay = 0 mode of

(A-22)

The B

t in the center conductor by

(A-23)

(A-24)

(A-25)
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and from Eqs. (A-~9) and (A-10),

(2) _¥H2 1 (2) _ -
E.\Y) - i T E,") =0 . (A-26)

With a finite conductivity in regions 1 and 3, the propagation
factors must be modified to account for added attenuation. With the
assumption that Ao is still small,

N (ay) m+ 2an 221 4 o.5772 (A-27)
olrody = 7 ‘ ;
N,(h, 84) m - —2 (A-28)
2 71 T Ao ay )
k2 niwuy,o g =1, 3 (A-29)
P @ UG, = 1, . A

Bécause of the large Oys the denominators in (A-14) and (A-15) are

unity, and the numerators may be simplified to

2
Ao 4 k [V J (x; a;) .
AT 2 1 2 1 1 “o*1 “1
- =&~ 4n + 0.5772 + , — . (A-30)
B 2 2 Ty Xzz / lwoy ay J1(k; aq)
and also
2 (1)
Ao @ k 1 H (rAq 85)
~ 4n 22 2 4 0.5772 + —2 5 o = s 3.2° (4-31)
uz Kz 3 "2 Hl (13 32)

This requires that

2 — (D)
L2 k. [ M3 B Oga) w3, (g ay)
2 Ho Zn(azféi) V/iwc3 322 Hl(l) (13 32)_ imol al2 J1 (11 al)

(A-32)
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In terms of the propagation constant h, since }p << h,

2
h™ = kzz - xzz, heky +1 x22/2k2 ) (A-33)
. (L, /3
h = kz + lkz |J~3 H0 ( 1(.0{130'3 32)
20, zn(azlal) 100 a22 I_11(1)( [—___iquGS ay)
(A-34)
M 3, (Jfiwngoq ay)
\iwoy ;7 Iy C/engoy ap)
h - kz ( 1 + 0.) . ) (A-35)

The o term is small because of the high conductivities in regions 1 and
3.

With the determination of h, (A-8) gives the azimuthal magnetic
field in region 2. After the approximation hy T << 1 is applied together
with substitution for A from (A-30),

oy 2 2
2ik," B An @ k v
(2) 2 2 ( 2 “1 ) 2 1
H = + a i n + 0.5772 )+ — [T 5

] e A Z 142 2 Mo / 1wo

2 "2
J (n, aq) . L3
o "1l “1 r . % elhz iwt . (A-36)

" TGy ap [ A

The 122 term in the numerator is neglected, since iy is small.
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APPENDIX B .
MATHEMATICAL DETAILS OF THE DIFFRACTION PROBLEM
FOR THE COAXLAL CABLE MODEL

The Fourier transform of each component of the electromagnetic
field in a vacuum satisfies the Helmholtz equation

@? + %) U=o, (3-1)
where k = w/c. The solution at (x,y,z) is

au |
=] Bn‘j

ikl== ikle=z]
& )- € ds', (B-2)

= 1 PY ot | a
v® = gy .Sff { LGN a5 ( EER

where n' is the unit normal directed inward with respect to the surface
of integration. In the special case considered here, the fields on S'
are negligible everywhere except a; <r < a, onthe z' = 0 plane. The
radius vector notation used here is r = (r,¢,z). Recall that the z = 0
plane is the interface between the earth and air.

Then
lgfg'lz N 2rr cos (p-¢') + 2% 4+ 22 2zz', (B-3)
d I ' z'-2
3T I | = .
oz [r2+r'2 - 2rx' cos (¢-9') + 22 4 z'2 . 2;2']1/2(5_4)

Substitution into (B-2) gives

2TT az
L '
U(r,0,0) = z]iFf dgo'f I" dr' U(r',0,0) elkIE-EI
o
a1

(B-5)
ik &r e’ &r ez | etklzzl 5y
T - - T T
[r-x’| lper'] 2 ] |IL-X7| 3z o

41



2 ‘g_—r'l are zero for the observer on the z = 0

The terms involving SoT T
plane; thus

2 ag .
k|lr-x'}
-1 1 [ 1 e]’ _—— [:1¢) -
(r 0 0) o f de f r'dr £_£,| 3z7 2120 . (B 6)
o aq '
for z = 2' =0,

With the assumption that r >> r',

o1k |_1_:_—£'l eikr
oAl —— exp [~ ikr' cos ] . (B-7)

. 21-. a
ikr h 2 -
f dqo'f ' dr' exp[-ikr' cos ¢'] az' (B-8)
z'=0.

o] al

Let U = H,. When one assumes that the upper half space has

@
_=0andHr=H = 0,

Z
dH
VXIi:_iweoE’:-B—Zggr-‘-%%f(qu’) 'éz (B-g)

The wave may be approximated as a radiating wave in the upper hglf space.

Hence
S (x'Hp) ~ 0 (B-10)

and

qu,,(r')

—— " iwe Er.(r') (B-11)
Thus from Eq. (B-8),

21T 32
1kr
H (r 0,0) = f f
X exp [-ikr' cos rp'] iweoEr'. (r') cos ¢ \ :
, ' z'=0 - (B-12)
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The factor cos ¢' (¢ = 0 for chosen observer) is introduced, since only

A A .
- the €, component of Er. e contributes to H¢.

In the radiation zone, then, for observers on the z = 0 plane,

21

ikr 22
%o © ' Hr'd 'J/. exp [ -ikr'cos¢']
Hw(r,0,0) = - — E..(x Yr'dr p[
4a 1 ' (o]

x cos ¢ de'

The identity7

T
1IN «
Jm(Z) = L;%l_‘}f el? €08 L o5 mt dt
0

gives
. ‘ 2 |
- % [Jl(-kr') - Jl(kr')] = J/. e"lkr ?OS L cos t dt
)
217 .
=73 Jl(kr ).9
since Jl(—z) = - Jl(z).
Thus
a
2
meoelkr 0 ' 1 1
Hﬁ(r,0,0) = - = Eru(r )r Jl(kr )y de'.
a .
1

(B-13)

(B-14)

(B-15)

(B-16)

The source term from the coaxial cable model is given in Eq. (44) for

the special case in Section III:
G
E(xr') =357 >

where

2 1077 IO exp[:iw(AIZ-t)] exp [~wB,Z]

(A1 + iBl)

(B-17)

(B-18)
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Thus
: a
H (r,0,0) = - ¥o i G ’ J. (kx") dr’ (B-19)
o272 - 2T 1
a1
since’
1
JO (Z) = = Jl(z)a
ikr
Weo © 20
H(P(I',O,O) = __-Z_RTI-_ [Jo(kaz) - Jo(kal)] . : (B- )
For the radiation zoné,
E, = - Mo C H, . (B-21)

Thus the radiating vertical component of electric field intensity is

elkrG

E, = - 5% [3o(kag) - J(kap)] - (B-22)
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APPENDIX C

MATHEMATICAL DETAILS OF THE UNDERGROUND ANTENNA MODEL

Let space be divided into two regions: Region I has 0 < r = ag,
whereas region II has r > a. The ¥ is the distance from the z axis in
a cylindrical coordinate system. Region I is assumed to be a good con-
ductor, while region II is the earth (which probably should not be
referred to as ground). Azimuthal symmetry is assumed, so much of the
earlier treatment applies. In region II, however, only the Hankel
function can be retained for proper behavior at large distances. In
analogy with Eqs. (A-11) through (A-13),

)
-ik
KMoh
Er(Z) _ i”_éi He(-’-), (c-2)
(L)
~Witohy H_ VT (A, T)
5, - :kzzz H°<1><x2r> O >
2 1 2
From (A-2) - (A-4),
2
L (D) ik,"I  J (1) (C-4)
9 Zﬂalwulol Jl(llal) ’
h
e (D . “’“_12 gD, (c-5)
ky -
1) WMy J(xq1) (1) _
e (1 - o 0, T (€-6)
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where 1 = Ioeth is the Fourier transform of the current. He is con-

tinuous at r = a4. Thus:
H = —————t— -7
or :
-k 2 I ush
= 1 —ot2t2 (c-8)
= —-r———— .
k,2 2maq0qupHy (D (gap) :
Substitution into (C-1) yields
o, 2 (1) ihZ
1y 8]
EI y 217 malclulﬂl(l)()\.zal)
I
%. ‘Recall that
2 2 2 2 2
! h = kz - )\2 = kl - Xl N (C"‘].O)
3 k.2 = olu.e, + lopsos -
" 5 w uJeJ + 1qucJ, (c-11)
k.2 ~ iwuq0q 3 (c-12)
; 1 w1y o
é. therefore,
R 2 2
; )\1 = iwplcl-h . (0*13)'
it' Since 0, =, the imaginary part of h must remain finite for propagation
o of the wave. Thus
i S
ﬁ?{ A = ky = [iwpq07 - (C-14)
The second boundary condition is continuilty of E,. This leads to
1-12)\2 Ho(l) (1231) I-'-l)»l J-O(llal)
T Dy w2 3,00 (c-13)
k2. H1 (1231) kl 1v4171
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The propagation factor h is determined from solution of (C-15). 1If

region I has infinite conductivity, h = k,. For large conductivity
hwk, . (C-16)
The term
Ay =/ky? - B (c-17)

is a small quantity. Thus

1P (yap) 1.781 rya,
__—._—.——(1) a2 -)Lzal An —'—'—'-'-Zi * (C-18)
Since
2 . .
A~ dwpgop ~ bmie , ‘ (c-19)

7

with oq = 10° MKS units and a; ~ 1 m,

[rag] » [Vanie |>> 1.

This indicates the asymptotic limit in (29) can be used for the ratio of
Bessel functions. Equation (C-15), determining h, is then

' 2 2
1.781x,a 21k2 a
2 291) _ 1
(2221) zn( . ) - : (c-20)

21

From (C-12), kl2 = iwplol, the real and imaginary parts are

5 1/2
(o}
1) + 1
k1r 1 +(;lw) -

/u- . w
. . 191
1 (1 + 1) 5

for the good conductor.

or

e
I
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Equation (C-20), determining h (12), is now

(c-22)

1.781x2a1)2 ial(mzpzez + iwuzoz)

il

i

L L 2

i . (L+i) / 5

1.7817\2a1
f Let x = —i Then, with the choice of Moy €95 Ogs Hp» o4
W in the special case, the equation determining h becomes

2

as

i 2 - -
; X 4N X = — 1.781 (1+1) [111 x 10 18 wZ + ip18.8 x 10 1 ]. (Cc-23)

v 161w

As an example, assume w = 107 sec”l. Then

< oo x = - 15.72 x 107% (1) . (G-24)

lowly varying function of x, the equation may be

Since the #n x is a s
may arbitrarily choose

. solved by an iterative process. One

n X, = - 5,

Il

i x = - 15.72 x 107% (1+i)

*1 o]
This yields an estimate for x of

x, = 3.144 1074 (1+1) . -

The #n of a complex number is given by in (xtiy) = 1/2 4n (x2+y2) +

i tan™' y/x. Thus

in Xy = - 7.718 + i n/4 .

Substitution into Eq. (C-22) again gives a better approximation:

1.811 x 1074 + 1 2.221 x 107 ;

%2
gnx, = - 8.19 + 1 0.888.
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The next iteration gives

xy = 1.690 1074 + 2,102 1 1074,
tmxg = - 8.21 + 1 0.8% ,
and
x, = (1.686 + 1 2.098) 107,

The x, 1s reasonably close to Xq, and the iteration is terminated:

(1.78112a1>2 _ -
—7 ) = (1.686 + i 2.098) 10 (Cc-25)
The speed of convergence of this method is greatly increased in
certain situations if w is added to the phase of 4n x for cases where
Im(4n x) is less than zero. (Effectively, the arc tan function is
allowed to vary from O to m rather than the - n/2 to w/2 limits utilized

by standard computer libraries.) Thus

2

- * dgay = (0.797 - i 1.66) 10~ (C-26)

From Eqs. (C-10), (C-11), and (C-26) with a; = 1 meter and w = 109,

\

2

n? = 111+ 2.126 x 107 + i [0.188 + 2,646 x 10'4] ,  (c-27)

hZ ~ k22. (c-28)

The change due to Ao is negligible. Thus

hZ = 111 + 0.1884i. - (c-29)

' The real and imhginary parts (for w = 109) are then

h = 10.5 + 0.0090i . , (C-30)
The phase velocity of the wave propagation is’

e 108 m/sec. (C-31)
r
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The e folding distance is

d, = 1/Im(h) = 111 meters. (c-32)

With the determination of h, the fields are known in region II from
(c-2), (c-3), and (c-9).

A check of the approximation k231<<1 for an w at the frequency
104 Hz to determine if it is valid at the low frequencies of interest
gives

(£)apay = (2:42 - 1 1.068) 107 , (C-33)

an even smaller quantity.

The Radial Component of Electric Field Intensity

From Eqs. (C-2) and (C-9),

. 2
. @) _ 1u2hk1
r

Ioﬂl(l)(kzr)elhz

) (C-34)
T
anzzalclplﬁl( ) (hpa7)

The r dependence resides in the Hl(l)(xzr) function. If ‘x2| & 10'2,
as estimated for the w = 109 case, then for r >> 10° meters, the large
argument approximation may be used for Hl(l) (xzr):

H1<1)(12r) ~ nxir i,r - 3n/4) (c-35)

In (i)xz ~ (0,797 - i 1.66) 10-2, only the negativels%%n may Be retained

so that the radial component of E will reduce as e x 10-4r/VT

rather than having a term growing exponentially with distance. One might
e-ort

look for an ¥ dependencerof the E.. varying as for this frequency

and choice of parameters.
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The Radiated Field

Judging from the radial part, one must go reasonably far from the
antenna to be out of the source region on the "z" = o plane for calcu-
lation of the radiated fields. With the assumption of r >> r', Eq. (B-16)
applies, and

-we _ exp(ikr) -
H¢(r1010) = 0 5 J/'Er.(r')r'Jl(kr')dr'. (C-36)

4

The value Er(r') is available from (C-34), and in the radiation zone

E, = - ucH (Cc-37)

z ¢ "
Combining yields
. .y 2 . ©
cop e . exp(ikr) u,hik,“I_ exp(ihZ)
E = 00 Z_1 o r'J,(kr')H (1)(x r')dr' .
z 2r 221-ra o.u.H (1)(x a;) 1 L 2
ky 2ma;oquqHy 281

a1 (c-38)

The integral mayAbe evaluated from the identity8

Z B -arZ B
frz (ar)B._(r)dr = Bx p(ﬂ.r) p-l(Br) axr p_l(O'-r) D(Br) ) (G-39)
o (ax)B, T2

where Z and B represent arbitrary Bessel functions.

Hence
- 1) (1)
ka1, D (,a)3 (ka;)-r,aH (P (n,a1) 3, (kay)
'3 ke YH, D G yde! = —L L 2917702177210 27177187717
1 1 2 22 - K2 (C-40)
a 12 - -
Now ,
ice p, I w exp (ikr + ihZ) hk,"C <
E = 020 171 , (C-41)
z 47 @ 2
1 ky"r
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where

_ kI (kay ) i *2“0(1) ()‘Zal)Jl(kal)
1T Ny (k2 - xzz)Hl(l) (12a1) ' (c-42)

The small argument approximation for the Hankel functions from

(C-18) gives

2
kI (ka.) \nZaJ,(kay) 1.781x4a
C, & (0 1 + 2 171 1 in ____?'_-L . (C...L|,3)
1 2 2 2 2 2i :
k- - Ao k™ - X
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APPENDIX D

GRAPHS OF RADIAL AND VERTICAL COMPONENTS
: OF ELECTRIC FIELD INTENSITY

(These are at 100 meters from ground zero for several
choices of earth parameters in the special case of
Section VI.)

The results of assuming earth conductivities of 1.5 x 10'4,
2 x 10-3, and 2 x 10'2 mho/m are presented in this appendix. The graphs
suggest that the waveforms are indepeﬁdent of the dielectric constant (K)
of the earth when 0y 2 2 x 10~ mho/m.

I T B B A P
“0.00’.“'-‘\— :’_{."
~0.02 |- i _
T ——e K =1
-0.04 |- S I R K =10 —
E . _
£ -0.06-
w . ; -
. =008 H ]
-0.10 |— _
-0.12 }— _
I BN N R A B R A N B R A A B
0 2 4 6 8

TIME (us)

Fig. D-1 Variation of vertical field intensity with earth
dielectric constant for a ground conductivity of
1.5 x 10-4 mho/m. The small positive excursions
before the ‘negative signals are believed to result
from the Fourier transform parameters used rather
than reality.
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Fig. D-2 Variation of radial electric field intensity
with earth dielectric con tant for a ground
conductivity of 1.5 x 107 mho/m.
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Fig. D-5

versus time (us)
constant for a
mho/m.
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Variation of vertical field intensityA(V/m)

with earth dielectric
ground conductivity of
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