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ABSTRACT

A perfectly conducting sphere is immersed in & uniform megnetic
field, If now the sphere is suddenly expanded or collapsed, it will
induce motion of the field lines and hence give rise to a radiated

signal., In this note, the resulting electromagnetic field is camputed.
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Imegine a body, which is a good electrical conductor, immersed in
and permeated by a uniform magnetic field, If now this body is suddenly
caused to collapse (or to expand) it will tend to drag field lines elong
with its own motion, compressing (or rarefying) the field inside itself.
This leads to an altered magnetic field outside, which in turn induces
an electric field.

A rigorous solutio_n to the electromagnetic problem can be obtained
if we sufficiently simplify the properties and motion of the body.
Accordingly, we take the body to be a perfectly conducting sphere of
radius R. R will be a function of time and its initial value we denote
by Ro.‘ The collepse or expansion of this sphere is assumed to be uni-
form. That is to say, if p(t) be the radius of any interior. point of

the sphere at time t and Py be its initial position, then

'Ol'o

=-R5- . : . (l)
(o] (o] )

Under this supposition, the interior field will alweys be uniform and -
parallel to the initial field, differing only by the compression or

expansion ratio. Taking coordinates so that the initial field Bo is



along the z-axis, the interior field Bi will be in the same direction

and moreover we will have

B, = B (R /R)Z. (2)

The external field will be the uniform impressed field plus the
field of a magnetic dipole, and is most conveniently expressed in polar

coordinates, The field camponents are

Ecp = (l/r){cp”(t - rfe) + (¢/r)p'(t - r/c)} sin 6 ,

-Br - -(Ec/re){q)'(t - rfe) + (c¢/r)o(t - r/c)} cos @ - Bo cos @ ,
(3)
Bqa - -(1/r){cp"(t - rfe) + (c/r)op'(t - r/e) + (c¢/r)2p(t - r/c)} sin 6

-!-Bosine.

In the above expressions @ represents the polar angle, measured from
the direction of the B, field, and r is the radius vector. The function
P is arbitrary and primes denote derivatives with respect to its argu-
ment. The units are Gaussian. That Eq. (%) is indeed a rigorous solu-
tion to Maxwell's equations can readily be seen by Fourier superposi-

 tion of elementary spherical wavelets. Alternatively, one can verify
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the solution by substituting into Maxwell's equations.
Having exact solutions of Maxwell's equations inside and outside
the spherical bubble given respectively by Eqs. (2) and (3), one need

merely to satisfy the boundary conditions which are

B = -Bi cos @ at r=R (,-l-)

and

E@ = -(v/c)B9 at r =R . (5)

The first states that the normal component of the magnetic field is

© continuous and yields

o'(t - R/e) + (¢/R)p(t - R/c) = (BO/QC)(R02 - R3?). (6)

The condition of Eq. (5) states that an observer moving with the sphere
boundary would see no tangential electric field., This yields an equation
vwhich is merely the time derivative of Eq. (6).

The problem is now essentially solved. For knowing R as a function
of t, one can solve Eq. (6) and put the result into Eq. (3) to cbtain the
fields. In meny practical cases the velocity of the surface of the
bubble‘will be nonrelativistic and the sqlﬁtion'can'be written out

explicitly., Thus assume that

RKc.

(1)



Then

o(t - R/c) = (Bo/2c2)R(Ro - R) (8)

is, to a good epproximetion, the solution of Eq. (6). Setting this into

Eq. (3) yields

B .

__ o 2 - e . CR/n 2 .
E(p = (R7Z - 3R®)R - 6R(R)® + —(R ? - ZR®}¢ sin 6 ,
B,=-B {1+ 2 (302 - ZR2)R + %(Roa - Ra)]’ cos @ , (9)

, er® L

|

_ l B .o . 2 gé- P P c2R B} )

By = B,q1 - e _(Roz - 3R2)R - 6R(R)Z + r(R0 - 3R?) + ?(Ro2 - Rz)] sin 9 .

Here, of course, R, R, ﬁ are respectively the radius, the veloéity, and
the acceleration of the boundary all evaluated at the retarded time
t - r/e; r is the radius of the point of observation.

The hopes of being able to detect the radiation field fram such a
bubble are quite remote. TFor let us suppose that T is the duration of

the motion and Ry the maximum radius of the bubble. Then

é~RM/T and §~2RM/1-2
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whence

Ry 2 1
|Erad| = |Brad| ~k Bo(? (%) ) (10)

where v = RM/T, and is the mean velocity of the expension, and k is &

nunber between 1 and 10 depending on precisely how the terms combine.
It is unlikely that v/c could exceed 10™* nor could BM/r exceed this
figure if we are in the radiation zone, Thus, if B, represents the
field of the earth, the radiation field could hardly exceed a tenth of
a microvolt per meter.

On the other hand, the nearby signal is easily detected, For
example, imagine a coil of radius r wound in the equatorial plane with
the bubble at its center. As we are close, the 1/r® portion of the

electric field dominates., Thus, from Eq. (9), we get
nnB °
= —2(rR2 R ’
V=——(R? - 532)(c) , (11)

for the voltage induced in a loop of n-turns, Suppose again that Bo is
the field of the earth, say 1/3 Gauss. In MKS units, 1/3 Gauss is
equivalent to 10% volts per meter. If we use B, = 10% and measure R,
R,, T in meters, V will be in volts. Because B, is large, the signal

is apprecisble unless ﬁ/ c 1s extremely small.



