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Abstract

In Part VI of this series a method was presented for calculating

the early part of the electromagnetic field produced by & burst on or

near to a perfectly conducting earth. The resulting fields show a sharp

spike at around gamma ray meximum. In the present report a method is

presented for calculating the modification of this spike produced by

losses in a finitely conducting earth.
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1. Introduction

In a recent report(l) an approximation scheme has been developed
which enables one to calculate the early portion of the electromagnetic
field produced by a burst on or near the ground. In reference (1) the
theory was developed for a perfectly conducting flat earth and was seen
to agree well with the results of stepwise numerical integration of
Maxwell's equations. The present report extends the work of reference
(1) by spplying the method to the problem of a burst near a ground of
finite conductivity.

In reference (1) we saw that the problem reduced essentially to

the solution of a diffusion equation

av,
(1.1) hio a:'= N £'+ s, z =20,
Z

where o denotes air conductivity, c light velocity, T the retarded time
t - r/c and S is a source function involving the Compton current distri-
bution. The exact nature of the diffusing quantity ¥ (the + index

indicates that the quantity is evaluated in the air, =z 2z 0) and the

source S depends on the regime, whether the wave phase when displacement
current dominates conduction current, or diffusion phase when conduction
current dominates. Finite ground conductivity does not affect the form

of Eq. (1.1) but only its boundary conditions.
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Ve solve the problem of finite ground conductivity in three steps.

First we reduce Maxwell's equations in the ground to a diffusion eguation

(1.2)

where s represents ground conductivity. Using the method of image
sources we construct formal solutions to Egs. (1.1) and {(1.2). The
second step is to express the conditions that Er and Qw be continuous
across the ground surface as a pair of conditions on ¥ and ¥ . These
reduce to an integral equation for the image source. The third step
is to solve (approximately) the integral equation. The only complication
in this scheme is that the boundary conditions expressed in terms of T+
change form as & region goes into or out of saturation.

This report is intended to be a continuation of reference (1)-
Thus when pulse shapes are assumed they are as in reference (1); we have
also kept the seme notation here so that undefined symbols are as in

reference (1).

o, The Fields in the Ground

In the ground we shall denote conductivity and dielectric constant
respectively by s and €. Introducing the following notation for the

field components



(2.1) E =" E_, F = rEy , G = qu),
Maxwell's equations in polar coordinates are
X 13
€ R
ESE+l;.1($}§:=—--—-—---2 . ¥(31n 8G) ,
r sin ©

€ OF _ oG
(2.2) {Et+lmsF—-$,

139G _ OE _ OF

cdt 38 “or

We now make the high frequency approximation. First Egs. (2.2) are re-

. written in terms of the retarded time T given by
(2.3) T =t - Je(r/e),

and then we consistently ignore 0/dr of a gquantity as compared with
Jed/edT of the same quantity. The last two of Egs. (2.2) yield

~

o0
G=‘\/EF+¥,

oF . 2ns
2.4 < F"'_F'"
( ) T Ve

T
p def fE(T')ch' .
L -0

@ ;

o=
11
-




At this point we limit our attention to a ground sufficiently conducting

that
(2:5) P 3

is a good approximation to the solution of the second of Egs. (2.4%). As

3/dr may be expected to be of order 1/, this means that

(2.6) s >> Je/ann .

Typicel values might be € about 9 and A about 3 X lohcm and the right
hand side of Eg. (2.6) becomes 1.6 X 10-5(cm)nl which is equivalent to

5.5 X 10-5mho meters. Thus condition (2.6) is not unduly restringent.

If we set Eq. (2.5) into the first of Egs. (2.4) we obtain

+ hﬂS@] .

olm
S

(2.7) G=E%§§§[

Setting this into the first of Egs. (2.2) gives an equation for the
radial E-field which can be written in a variety of different ways. For
example Eq. (2.7) and the first of Egs. (2.2) are equivalent to the

*
following pair:

* . 9 I . s - . .
Note that 32" 7Ss? sin 0 = 1 within the limits of our approximation.
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€ o
U=ng+1ms¢>,
(2.8) <
h U an
< 3T

An equivalent form can be obtained by solving the first of Egs. (2.8),

obtaining
T
- € €
(2.9) = e ]-I-T[SCT/ f U(T')euﬂSCT / C ‘S:(U) ,
~00
. where & represents the integral operator written out in the center.

Operating on the second of Egs. (2.8) by £ yields the result that

Q/
N
e

bas 00

(2.10) S

% ol
i
QU
g
*

Finally note that, as r enters only as a parameter, 3/dT equals d/dT,

where

(2.11) T=1t-r1r/c.

Thus we have reduced the problem to solving Eg. (1.2). As we have seen

we may identify ¥ with U or with &. Differentiation of Eq. (2.10) by 6
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and of Eq. (2.7) by T shows that Y_ could also be identified with E or
with G. The reason that all this variety is possible and also the
reason that we need not distinguish whether conduction or displacement
current dominates is that the conductivity is independent of time.

Introducing the new time variable

cT

(2.12) Z=ry5—=,

we can write the solution to Eq. (1.2) in the form

Z
l 1 4 Z L}
(2.13) ¥ =3 f e(z ){1 + erf (-—Z-:—Z—) dz
-C0

from which we readily obtain

Z
)4 , , 2 ,
(2.14) < - _‘_;/-_1_: /‘ _g(_.z%q_z,'_e-z /Mz-2')
-0

where g is at present an arbitrary function which will be determined by
boundary conditions. Physically Egs. (2.13) and (2.14%) represent the

Green's function solutions to Eq. (1.2) with the arbitrary source term

g added in the region z > 0, outside the domein of the eguation.
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3. The Wave Phase

In discussing the fields in the air it is necessary, as in
reference (l), to consider separately the wave phase and the diffusion
phase. During the wave phase the displacement current dominates con-
duction current and the diffusing quantity Y+ is the radiel field E.

Thus the Green's function solution to Eq. (1.1) is

€

1 , ,
(3.1) E=§fs(c) 1 + exf (—ﬁ) at' +

=00

g
+_]: f(’;') 1 - erf (_z_) dC' .
2f alt - ¢
-0
For the magnetic field we have
: 2
3.0) =B .1 S(61) = £(57) gpv . g2 /ME-E)
U TRt e ) e
-0
where, as before,
(3.3) e | =

and f is the as yet undetermined image source located in the region z < 0.
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In discussing the fields in the ground it will be simplest to
restrict ourselves, for the time being, to the case of high ground con-
ductivity, such that conduction current dominates displacement current

in the ground. This means essentially

€
(5-}4') 5 >>m' 9

which is still well within the range of possible soil conductivities.

In Section 5 we shall remove this restriction. Under condition (3.4)

we have
ol
(3.5) G = %% and E = é%? ;

therefore it is convenient to identify Y_ with . Evaluating Egs. (2.13)

and (2.14) at z = O we obtain

()
(%.6) E, = %;E
and
T
(3.6") G = = —=— g(t") _ cdt!
-0 - -Jz(‘r) - Z(T') hns
-0

1k




for the fields at the ground. An obvious change of dummy variable has
been made.
Continuity of E is ensured by equating Eq. (3.6) to the result of

evaluating Eq. (3.1) at z = 0 and gives

(3.7) %(;;-rs—)= f (s(t') + £(11)] %{—;,—)— .
-0

Setting Eq. (3.7) into Eq. (3.6') and integrating by parts yields

T
= - L [ T - T' 1—1 + T’ Cd..r'
(3.8) G—-O o Bns f VzZ(Tt) - z{t') [8(7') + £(71)] Tro(77)
=
-
The remaining boundary condition is that G be continuous. This is
achieved by equating the right hand member of Eq. (3.8) to that of
Eq. (5.2), evalvuating the latter at z = 0. The result is an integral

equation which we may write in the following form:

¢ ¢
(5.9) ) - ) 13+ w(g,pn)la - f 2 g eae
f Ve - RN
-00

where
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(3.10) P(L,t") 98 320Psa(e WL - L ILZ(E) - 2(27)] .

The integral equation for the image current f is a bit complicated;
we therefore attempt only an approximate solution. Our method will be
based on the fact that the gamma ray pulse, and hence the function 5, is
very short in time.

We note that the mean value theorem guarantees the existence of
numbers ga, ;b such that the quantities P can be replaced by their mean

values and teken outside the integration, yielding

¢ ¢
(3.11) [1 + B(¢,¢.)] 5= e - Bt ) / 2sat
° f NE -t & e - ¢

-00 -CO

in place of Eq. (3.9). Moreover, as S is known, P(g,ga) can readily be

calculated. Calling this quantity Po(g), we have

g £

3,12 - 2SPd§' 2548’
R Tt %ot

-0 -

Now S being a sharply spiked function, f the image source is likely to
be so also. We might therefore expect that S - f will have a shape

similar to that of 8, in which case we would have P(Q,Qb) =~ P(Q,Qa).
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Thus as a first order approximation to f, say f

or ¥e have

£ £
S - f P
1 O 4pr _ 10 osdt
(3.13) J/p JE_:_ET ag T+ PO J/p JE—:jgr HO(C) ’
o ~oo

say. Equation (3.13) is readily solved by the method of laplace trans-

forms and gives (see Appendix A)

¢
H(E " )at"
(3.14) §-fy=2 —f/%;—c— ,
- g'
-

the prime on H standing for the derivative. Now, if we wish, we may
use § - f, to make a better estimate of P(g,gb) and using this solve for
S - f, and so on, We shall stop with Egs. (3.13) and (3.14).

Direct examination of Eq. (3.9) shows that in the limit P >> 1,
as will heppen for example when s is very large, the solution is
S - £ = 25 very nearly. Thus Eq. (3.13) is asymptotically correct in
the limit of large P. Similarly for P << 1 Eq. (3.13) is seen to be
asymptotic to the correct solution. Thus if Eq. (3.13) is reasonably
accurate for PO ~ 1 we can have confidence in our result. ‘

As an example we shall consider a moderately close distance where

saturation occurs at some time Tos either in the o-phase (TS < 0) or at

1T



the end of the Q-phase ('rS = 0). 1In this case
(3.15) t = -cbnao , S = Ea(h-:w)2 s
which yields immediately

(3.16) P = %LQJ;E; .

Thus Eg. (3.14) becomes

£

' \/-—' + 5A/1+
(3.17) s -1 =22 dt & ,
° f (02U ¢ T+ Al

-0

where we have set for short

2
nc E
(3.18) Kk d=ef (0} , A dgf 2¢ sc .
2052 a o

The integration is elementary but quite complicated. Therefore we

revert to the approximation method given in Appendix B and obtain

8kA | N-t + 3A/4
su(-£)2  W-t + A%

(3.19) s(¢) - £,(L) =

18



For J:E = A the approximation is very good. As J:E-increases it becomes
progressively worse until in the limit JtE >> A it is off by 13 percent.
Thus Eq. (3.19) is entirely adequate for estimeting the next order cor-
rection to P(§,§b). When this is carried out as in Appendix B we find

P = 1.127 and the error of Eq. (3.13) is about six percent when Py = 1.
Accordingly it seems conservative to claim 10 percent accuracy, especially

as P0 will normally be considerably larger than unity in the most inter-

esting time regime.

L, The Diffusion Phase

We suppose that our observation point is sufficiently near the
explosion that at some time Ts £ 0 saturation occurs. Thus for T > Ts
we have bxg >> 9/cd7. This does not change our formulas for fields in
the ground, but our method for calculating fields in the air changes.
During this diffusion phase the diffusing quantity in the air is o,

the same as in the ground. It is convenient to break it into two parfs,

(4.1) O=0,% 9 5 G=0Gy +G ; 0(7)=0=0a/().

The first term, @O, is the result of further diffusion of the field

left at T = Ts by the wave phase. The second term @l starts zero at

T = TS and thereafter grows owing to the source S.
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At T = TS the fields left by the wave phase are

s

(h2) G = - se) - f(xr) ean 72 /HECR)-L(T]

. = ol V() - £(7') bro(T')

-C0
z 20,
in the air and
2 /ulz(7_)-2(1")]

(L.3) G g(r') car! e'z/ BTg)e

’ S“ JZ(T - Z(T ) [l-JfS ?

-0
z 20,

in the ground. The functions f and g are determined as in the preceding
section so that GS+ and Gs_ are known functions of z. The standard
method(e) of determining the future behavior of GO is to sum the contri-
butions of instantaneous point sources distributed according to Egs.
(4.2) and (4.3). In general this summation is awkward because of the
jump of the diffusion constant at z = 0. If however we restrict our
attention to points on the ground plane no contribution to GO(T) crosseas

the discontinuity and the result can be written simply as

20



o .

G ' (22 )
(4.4) Gy(7) = f s+(2") . (z")7/ulg() C(Ts)]dz’ .
Jhﬁ[Q(T) - g(ts)]

G
0
G -(z") ~(2")2/ulz(7)-2(7 )]
+ e S az 3 2=0,
Vix[2(7) - 2(7 )]
-0

where G_,, G__ are given by Egs. (4.2) and (4.3). We can easily per-

s-
form the 2! integration, set in the value of g given by Eq. (3.7), and

perform a partial integration. The result is

(5.5)  aym) = - I [ So L oI

wr (%% ) (o) - g(en) 7o

~00
T
S
1 . at’
+ Bns fdz(r) - Z(") [s+fj%ﬁ .
-Q0

This, of course, gives GO only on the ground plane.
The function Gl is determined in the same manner as was the wave-
phase field, now however using Ty rather than -co as the initial value

of T. The diffusing quantities both in the air and on the ground are
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® and 99/d8 = G.

(4.6)

Thus in the air we have

[s(tr) + £(vr)] 9T

1+ bo(T1)

;

edT!

.

and in the ground

(h.7)

6 .. /s-(r')-f(r-)
ool ) Ne(v) - (7)) bmo(s)
T
S

a)

- ; "
1 ‘ cdT’
©-=35 | &)
T
]
< -
T
G = ..~ g(t!) cdT!
Yo ek ) Nz(n) - (e S
. s J

for z=0,

for z =0 .

In using the same symbols f, g as in the preceding section, we do not

wish to imply any kind of continuity at 7 = 7 .

to

S

22

The boundary conditions that E and G be continuous are equivalent



(4.8) ¢, =0 and G., = G

The first of these determines g es

(k.9 -g,% = g5 [8(7) - £(7)]

Setting this into the second of Eqs. (4.7) and the result into the

second boundary condition yields the following integral equation:

X T
(k.10) s(r') - £(v') [1+ P(7,71)] edt! 2s(t!)P(t,T*) cdr! )
JQ(T) - t(t) bpg(tt) Jc(f) - t(t) bxo(T)
T T
S s

similer to Eq. (3.9), but now

(k.11) P(7,T) dzf\/ g(r) = g(r1)
z(t) - z(T")

Again, use of the same symbol P as in Section 3> does not imply any
sort of continuity.
Equation (4.10) we solve in the same fashion as we treated

Eq. (3.9). Thus in lowest order we have

25



¢ ¢
S -f P ,
(1;_]_2) _____Q..dclz 0 _g%,
gf%-s' “Pofdc-g'
. S S

where
3 t
(h.l§) P (E) dgf J/p ESPdg' 2Sd§’ .
0 Je ot Jo- o
C’S s
. = L. -

As an example we shall consider a very close observation point
where saturation occurs long before the peak of the gamma ray curve.

Thus we may ignore what happens before saturation. We have

(4.14) S=E_ - (4xo) ,

where E_ is the saturation voltage (Qa for © < 0; E_ for 7 > 0), so

that

(h 15) ﬂ dg' _ 2ES « cdTt!
Ve - ¢ e (T - 7)
T

ek




or

hye
s
”Ea = « Nl --rs) , fort<o
o8P
(k,16) — dt' = <
Vg - ¢!
¢ n
s ne E
LE SiVeon + Eory,  for1>0.
[0 (01 S ~
.

The denominator of Eq. (L4.13) has been calculated in reference (1),

For example

(k.17) e ;tE-l, for 1< 0

whence, if TS is much less than zero
(4.18) P, = ﬂg‘fg - NofT - rs) , for T<O0.,

For T > 0 the expressions become longer.
At very close distances ¢ becomes very large and PO consequently

becomes small. At such a close distance we have



g
(4.19) Gz—;:/%g;—, (Py << 1) ;
b13

and, as we see from Eq. (h.l6), the spike is completely lost., At
larger distances it begins to reappear, but smaller than would be the
case were the ground conductivity infinite.

At T = Tl the conductivity and the Compton current level off and
are essentially constant for T > Tl' When T is sufficiently greater

then 7., Eq. (3.27) of reference 1 gives

[

R

¢
, b
(4.20) /JE&L~MEK 7 ~\/a, for T - 00 .
£ -t
C‘S

Combining with Eq. (L4.16) we see that

(4.21) PO(T) ~ ‘/oil , for T > ;

that is to say, as the semistatic phase is approached, our formula
approaches the result derived by Longmire(B) for the semistatic phase.
At this point we have calculated G only on the ground for the

periocd T > Ts. Should desaturation oceur at some time Tu we would
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0
This can be readily calculated by the standard methods of heat flow

need to know G at Tu for all z in order to calculate G. for T > Tu.

theory (see e.g. reference 2, p. 356). In each medium we calculate
separately from the known initial value G(z,TS) at all z and from the
known boundary value G(0,T) for Ty =TS T,+ We do not give the
results here, but they go through exactly as above except that the

formulas get longer. 1In particuler § is a rather complicated function

after desaturation [see reference 1, Egs. (3.42) to (3.52)].

5. The General Theory

In Section 3 we imposed the restriction of Eq. (3.&), or more
generally U4xs >> €3/cdT, which we now remove. Naturally the theory
will be more complicated. We start with Egs. (2.8). Evaluation of

the solution of these equations on the ground plane yields

r T
- 1 .y cdrt’
U,=35 8(t') 4=
-00
(5.1) %
T
1
o) 0" e=2" U('l")ez‘rf %— , Z def bnsc/e .
-0

Evaluation of Eg. (2.7) on the ground plane gives

21



ou r g(t") cdrt’
(5.2) G_, = (g") = -~ ——
-0 °/0 2ol Ja(7) - z(xr) S

Setting the first of Egs. (5.1) into the second and partially inte-

grating yields

T
_ 1 r =2(t-Tr)y 1 o,y cdT’
(5.3) ° o = ﬁsftl‘e 13(7) Ts
-0
or, equivalently
T
5T
_ e iT! yy car’
(5.4) E = 5 J/P e” g(t") oz -
-

In the wave phase we found the following expressions for the

fields on the ground:

( T
Bo=3 | Istr)+s(r)) SE-
(5.5) < - ]
G = - X S(t') - f(T') cdr’
+0Q 3/; \/g(‘[) - g(.l-.) hno
-00

28



. Continuity of the E component yields
T
g(7) _ €(8 + f) cdT!
(5.6) bxs =  bnag + bxs (s + 1) Tro
-00

(wave phase) .

Setting this into the expression for G-O and partielly integrating

yields

(5.7) G 4=-—== 'S + f] CdT'{BﬂS\/Z(T) S () + ¢ }
i o besVZ(T) - Z(T")

(wave phase) .

Thus, continuity of G recovers for us Eq. (3.9) but now P represents

the slightly more complicated function

(5.8) P(7,7') = 3ex"so(*WI2(T) - Z(t)ii(7) - L()] +

. &o(7) '/E(T) - (1)
S z(t) - z(1")

(wave phase) .




An approximate solution to Eg. (3.9) is now found in the same way as
previously.

For the diffusion phase calculation, we again break the field
components into two parts as in Section 4 [see Eq. (4.1)]. The
quantity GO(T) is calculated precisely as before and is given by
Eq. (4.5). For the source driven terms we have Egs. (4.6) for the

fields in the air. In the ground ¢, and G,_are given by Egs. (5.3)

1-

and (5.2) respectively upon replacing the lower integration limit o

with TS. Continuity of E is equivaelent to continuity of ¢ and yields

0 a

(5-9) %g=4ns[ﬂﬂfjﬂ] +§§[ s(x )+f<T)]

(diffusion phase) .

Setting this into the expression for Gl , we find the following

condition for the continuity of Gl:

(5.10) S“ﬂ)-ﬂT)[1+Ph'wH CM: +
Ve(T) - ¢(1) Ho{ )

S
T
L€ 1 cdt' D [S(T')+f('r') _
© ) V2D - gz s OFL hwelTh) N
TS
T
- 2s(t)p(T,T") cdr' . € 1 cdt' d [23(7') ]
Je() - ger) W) J Na(w) - g(zr) s OF' [ BwalT) |
S S

30



where now

(5.12) Hr,7) \/Z'(—T—L((:) = z(—)-::)

(diffusion phase) .

We can write Eq. (5.10) in another form which will be more convenient
for obtaining an approximate solution. In Appendix A is given a formm-
la for differentiating a2 commonly occurring integral. Applying the
result to the two terms containing derivatives Egq. (5.10) is seen to

be equivalent to

T
S -f cdrt! € 9 (s - £)P cdt’
.12 [1+ p] + e =
(5:32) T -ty e WSS | GEsT iy Mo
TS TS
T
=(1+€ a) o8P cdtt € [S+f] ,
Lxs coT JE(T) ~t(t) bxo hﬂsJZ-:&Z; Yng

the subscript s standing for evaluation at T = Ts' This equation is
handled in the same manner as our previous integral equations. First

we write




t
(5.13) 5= T acr = H(¢)
E/P NE - ¢

for short. Once H({) is obtained we can invert Eq. (5.13) obtaining

€
1k - _1 f E(gnate
(5.14) s(t) - £(¢) “f el
S

whence it follows that

(5.15) £(L) = s(c)

S

and the term on the extreme right of Eq. (5.12) is evaluated. We now

apply the mean value theorem to Eq. (5.12) obtaining

(516) [1+ B(L,0) I + 15 BL,8,) S < p(g,0,)7 +

28
€ oI € s
T MOt S

where I is short for

32




¢
(5.17) g def 2s(t ')t
Je - ¢t
¢

S

and is a known function and ga, gb, Qc, and Cd are certain values of

¢' all lying in the interval (gs,g). The functions P, = P(g,ga) and

Pc = P(g,gc) can be calculated. As before, insofar as S - f is similar
in shape to 25 the approximetion P(C,gb) = P and P(Q,Qd) =P, isa

reasonably good one and Eq. (5.16) is replaced by

GPc(T) aH0 €Pc QI

(5.18) s oSt t (1 + Pa(T)]Hb = PaI s = -

2es()

) ps o hnc(TS)JZ(T) - Z(TS) ’

This is an ordinary linear equation and is soluble by quadrature. Once
the lowest order approximation to HO is obtained we can calculate § - fo
by Eq. (5.14), make better estimates of P(;,gb), P(Q,Qd) and so on.

Alternatively stopping with the lowest order gives

H, .

I
ole O

(5.19) Gy(7) = -

33



In the limit

(5.20) o<1,

we recover exactly the theory of Sections 3 and 4. In the opposite

limit

(5.21) T a3 > 1

" we obtain simply

2s(r )

(5.22)  H(7) = I(7) - ea(%) cdT!

P (T WE(T) - Z(7)

T
s

Although this section removes any restriction regarding relative
sizes of displacement and conduction currents in the ground, ground
conductivity is still restricted by Eq. (2.6). Thus any conclusions
one might draw by setting s = 0 in any of our formulas must be viewed

with caution.
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Appendix A

On a Certain Integral

Consider the integral
(A.1) (¢) = 2s(t')dtr

If we attempt to calculate the derivative by the usual rule we find

£
» =9I _ lm | 2s(t’) _ s(tr)aer
N A N fW

both terms of which are singular. We get rid of the singularity upon

integration by parts; thus

g
2s(a) 2s'(t")
. I = + d,o
) L [ e
a

This method works, in fact, for any kernel function of the type

K({ - ¢') and depends simply on the relation
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oK oK
(A.L) =5t

We next consider Eq. (A.l) as an integral equation; I is known
and we wish to determine S. The result is well known but the solution

is very simple and so we give it here. In terms of shifted variables
(a.5) x=§{-a, y=¢ -a,
we may write Eq. {(A.l) as

X

A.6) I(x) = as(y)dy
( : oy

Now applying the Iaplace transform, and denoting the transforms of I

and S respectively by J and 8, we obtain

(A.7) Ks) = 4 T 25(s)
or
(.8) 25(s) = Y £ e) = 2y E - sxs) .
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Now as

(A.9) ] sd(s) = S[g%]

we can apply the inverse transform. Changing variables back to £ and

£' we have the result

(A.10) 2s(¢) = J/n ___ELlELL
Ve - ¢

When a = -oo the result still holds &s one sees readily by pro-
ceeding to the limit. Alternatively the two sided Laplace transform

could be employed.

Appendix B

Method of Estimating Error

In Section 5 we saw that the error may be estimated by calculating
H, from Eq. (3.13), then calculating S - £, from Eq. (3.14). When this
has been done we can calculate the next order value of P(C,;b), say

Pl(c), by the equation

38




( ) (0) P(S-fo) Cs-fo
B.1l P.(&) = —_—dt —_—dtr | .
t Je -t Je -t
-0 - Q0

Finally comparing,Po/(l + Pl) with.PO/(l + PO) gives an estimate of
the error in our computation of G using fo instead of the true f.

The exact computation of these integrals is often quite laborious.
As we are only trying to estimate an error which, it is hoped, is not

large, accuracy is not needed and we can use an epproximetion scheme.

Iet us write

4
' def 2s(t')at’
(B.2) (L) =
NE - €
-~00
for short. Then Eq. (3.13) gives
P
0
(B.5) HBo=T1+p
0
whence
P (P, + 1) + IP!/T"
(B.4) Hy=1'0; g dgf | 20 - ,
(Po+ 1)

59




and we suppose that the function ¢ is slowly varying as campared with

I'. Thus the integral

£
: 1 & I)Il 1 ]
. S-f == e d
2 0 “fwuc
-0
can be approximated by
<
.6 -f,. = Eiﬂl L ag’ = 25¢ ,
e oro- 48 [ 2o

the last step being the inversion of Eq. (B.2). Now, in order to

evaluate the integrals of Eq. (B.1), we expand &(t') as follows

(B.7) o(E") = o(t) - o () < (¢ -t) .

Setting Eq. (B.6) into Eq. (B.1) and Eq. (B.7) into the result one

obtains
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u//ﬂ 28E - £ at!

¢

-

4 4
.28 25P
=5 gt —=2 gt
_Z\/c-g' AT

The integrals in the denominators were evaluated in calculating PO;

those in the numerators are normally relatively easily evaluated.

The

reliability of this method seems to depend on whether ¢ is in fact

sufficiently slowly varying.

that the error is large, which in fact it is.

But if it is not, Eq. (B.8) will say

We have written everything out as though we were considering the

initial wave phase.

Needless to say, we have only to substitute an

appropriate lower limit to apply the result also to other stages of

the calculation.

advisable.

In some cases a modification of Eq. (B.7) may be

That is, we may find it better to expand ®({') about some

point other than {' = {; for instance we might expand about the point

where S(t')ANt - ¢' is maximum, or probably even better sbout {' =

The changes thus induced in Eq. (B.8) are obvious.
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