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KARLY RADIO FLASH FROM

A LOW-ALTITUDE AIR BURST

B. R. Suydam

ABSTHACT

This report reworks an earlier theory of the

early part of the radio flash from a low eir burst

by extending the results to gquite general gamma ray

vs. time histories, and to times about ten times

longer than the earlier theory.

The previous theory

is also improved in that error estimates are given

for all approximations used.

are presented.

Typical signal shapes

I. INTRODUCTION

Some time ago a method, called the high-frequen-
cy approximation, was developed for calculating, ana-
lytically, tine early part of the radic flash from an

air burst. Subsequently the method was extended

2) The first of these references,
(1) it

is classified, and (2) in it many approximations were

to a ground burst.(

however, suffers from two defects, namely:

made in order to obtain simple results without any
estimates as to the limits of validity of the approx~
imations. It nas accordingly been deemed advisable
to rework the theory removing as far as possible the
defects.
Qur analytical theory of the radio flash re-
quires three classes of approximations:
1. Analytical approximations to the
temporal and spatial behavior of
the source functions, J and o.

2. An approximate treatment of Maxwell's
equations, arrived at by dropping

certain troublesome terms,

3. The evaluation of certain integrals
which express the solution of the
simplified set of Maxwell's equations.

In Section II we derive the equations of the
high-frequency approximetion, first in full general-
ity, and then specimlized to the low-altitude air
burst. In Section III we discuss the source fune-
tions J and o in sufficient detail to indicate tnat
the analytic form we assume is sufficiently general
to cover all practical cases. Thus item 1. above
presents no problem. In Section ITI we also calcu-
late the radial E-field which is needed in the next
section.

Section IV conteins our results, namely ana-
lytic expressions for the radiated signal, togetner
with typical curves. These results are, of course,
based on our high-frequency approximation. This
approximation may be viewed as the first term of a
series expansion of the solution to Maxwell's
equations. We have made the usual heuristic esti-
mate of the limitations of the theory by calculating

the second term of this expansion and noting under



what conditions it is negligibly small. The details

of' this calculation are in Appendix D. Generally
speaking, we can be confident in the first miero-
second of the calculated pulse. In order to express
the solutions to our equations in simple closed form
approximate expressions must be found for certain
integrals. These approximations, together with re-
mainder terms, arc worked out in Appendices A and B.
As the remainder terms given are exact, there can be
no question as to the range of validity of our ap-
proximations; at the expense of more complicated for-
mulas, correction terms of any desired precision can
be added to our formulae.

Finally in Section V we discuss our results.
In this section it is pointed out why one may ignore
all nonlinear effects, as we have done throughout

this work.
II. THE HIGH-FREQUENCY APPROXIMATION

The Compton current, J, and the electrical
conductivity, o, are both produced by a short pulse
of gamma radiation wnicn expands radially outward
from tne burst point with the speed of light. It is
therefore appropriate to describe events in terms of

vreper time, T, rather than ordinary time, t
(2.1) »=1t-r/c,

wnere r is distance from the burst point. When ex-
pressed in terms of proper time, T, and position, £,
Lne Compton current and the conductivity have approxi-

mately the forms

-
[}

J(z)f(T)
(2.2) ,
s(rle(r)

Q
n

wnere f and ¢ represent extremely short pulses.

Clearly,
. aJ do

(2.3) 22 . 99 . .

(2.3) 3 J/n and >~ a/n

where A is the gamma-ray mean-free-path. Now A/c is
about 2/3 microsecond and the pulses, f end g, are con-
siderably narrower than this. Therefore the operator,

Ad/or, operating on J or 0, is much smaller than the

h\J

operator, 3/cdt. It is reasonable to essume that the
same 1s true ol the field quantities, at least for
the early part of the signal. The high-frequency
approximation congists in ignoring d/dr of various
field quantities compared with 9/cd7 of the same
quantity. The dropping of such cmall terms must,
however, be done with circumspection, first noting
ell cancellation that may exist among large terms
before small ones are dropped.

The easiest way to see how the high-frequency
approximation works in detail is to write out the
full set of Maxwell's equations in polar coordinates,
(r,0,9), and in terms of the proper time, T, rather
than ordinary time, t. Under this transformation,

Maxwell's equations take the form

JE_ -
1 r 1
EET—+J+HGEr=_h,(Jr+m
o sin $B_) 3B,
a3 "
oE 3B
% ?%2 + boBg = -bnJy + ¢ in . 15;
_lé(qu,)+lchp
r  or -
JE 3B 3(rB,)
17 _ 177r 1. ]
(2:4) 4 EF+h"UE¢_-hﬂJ¢-r§§'+r ar
_1%%
c 7 !’
l aBr _ 3, aEﬁ 6( sin &EQJ) .
cJr “rsind| 9 " a3 |’
;aBe_;a(,rEqa)_ N aEr‘_iaEq)
cor ror rTsino 09 ¢ or ’
lan)_laEr la(rEB)+i‘aﬁ
cdr " rdd Tr  or c oT

The first step is to eliminate Be and q@.by formally

integrating the last two equations



r T
rB = -rE + 9 rE_ecdr
e ®  or P
-o0
T
. 1 Q
{2.5) < T f E cdr ,
-C0
T
chp=:L'EB ngch-%frEcd1.
L A <

Then substituting these results into the two

equations for EB and Ecp gives

5E
N 3 1
(2.6} 55 (rEe) + 2nu(rEe) -2rch + -3—-—
T
5
T L1
5 sin 3 33 E cdr + 5 2f rEecd-r
@ sy
and
oE
3 i 1 T
(2.7} 55 (rE(p) + Ena(rEQ) = -21(1-.Iq> o e iy
T T
3B 2 2
1 r 1 1 a 14 -
BENa: s & ar .
536 " 2sinFory | O tE araf rEjcdr
Zo Zo

So far everything is exact; Egs. (2.5), (2.6) and
(2.7) together with the first and fourth of

Eqs. (2.4) are equivalent to the original Maxwell
Note that in Eqs. (2.6) and (2.7) the
cancellation of the two large radiation terms has

equations.

taken place.
The high-frequency approximation consists now
in taking the awkward set of equations (2.5), (2.6)
and (2.7) and ignoring terms in d/dr, as compared
with those in d/cdr of the same quantity.

for example, the first two terms on the right-hand

side of Eq. {2.5). We see that
T T
_ 9 3
(2.8) B, = 57 f rE‘Pcd'r > 5= f rEq)ch ,
-0 -0

Consider,

and so on. We thus obtain

T
1 3 .
rBe = -rEq) TSine f l:.rcd-r,
-®

T

rB_ = rE + 9 E cdr,

@ B 30 r

-co

d(rE,)

0 _ 1 9F
—5— * 2nu(rE9) = —EnrJe * 539
(2.9X
1 3B

a(rEq))

= N S )>
5 * 2rw(rE(p) 2nrJqJ t e =

aar

1
M

-

where we have written

.
JE
(2.10) 8% g - f = cdr

~00
for short. We do not drop the smaller integral in
this case because it introduces no complication. On
the other hand, it does extend the range in time over
which the approximation is wvalid. A}l transverse
field components can readily be obtained from
Egs. (2.9) and (2.10) once the longitudinal field
components are known. For tnese components we have
the equations
-

, O

r 1
37 + '-IvﬂUEr = -ll-!(Jr

r sin *

oB
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How these equations are solved depends on whether we
are concerned with a ground burst or an air burst.
For the ground burst, the operator, 0/0§, becomes
very large near the ground and this allows an 8pprox-
imation scheme discussed in detail in Ref. 2.

In this report we confine our attention to a
low-altitude air burst, in which case there are
three possible asymmetries:

a. Asymmetry of the bomb itself.

D. Asymmetry resulting from vertical
gradients of atmospheric properties
sucn as density and water vapor

content.

C. The geomagnetic field.
All three of thnese are small effects, the second be-
cause atmospheric gradients are small, and the third
because Compton electron range at low altitude is
much shorter than its Larmor radius in the geomag-
netic field. As the asymmetfies are small, so also
are the transverse components. Moreover tne angular
derivatives are small operators, of order 1/r or
smaller. The result of tnis is that the transverse
fields may be neglected in tne radial E-equation

giving

whicn is immediately integrable by quadratures.
Formal integration of the radial B-equation yields

T
1 o)
sin 9 op U/p Egedr
-

(2.13) rB_ =

1 o)
- —_— A .
sin 5 58 [ 5P Epcdr

-0

Using this in the remaining equations, we see that
the new terms involving integrals may be dropped for

exactly the same reason as could the others and we

have

A rE 1 3%

> * 2no(rhe) = -2nrd + 5356
(2.14)

S(rEg) 1 3

S5t 2na(rE¢) = -2ner t oS 5

Thus our procedure is first to solve Eq. (2.12) for
E_, next to calculate E from Eq. (2.10) and then
Egs. (2.14) are soluble by quadratures.

Note that the geomagnetic field enters solely
through the quantities, Jé
asymmetries enter solely through OE/36 and OE/dp.
Furthermore note that E will be a function of atmos-

phere density, p, of water vapor content, W, and of

and {9, whereas the other

bomb asymmetry, 2. Thus we may write

OE _ dp JE _ oW OE | 3n oF

(2-15) 56 = 36 55 * 35 5% * 38 50 -

In other words, the right-nand members of Egs. (2.14)
can be broken into a series of terms each of which

expresses a single asymmetry. The same is therefore
also true of the fields.
rately the individual asymmetries, knowing that the

We shall consider sepa-

resulting signals mey be combined linearly to obtain
the total signal in the complex real situation.

IXI. THE SQURCE FUNCTIONS

The gamma rays from an explosion result from
inelastic scattering of neutrons in the bomb materi-
als themselves and in the air immediately surround-
ing the explosion. Other sources of gamma radiation
such as neutron capture and fission fragment decay
are of too low intensity to be of any importance to

the prompt electromagnetic signal. During the reac-

tion the neutron population in the bomb rises as e°7
and, after the peak which we conveniently define to
be at v = 0, falls exponentially as e®T. Both a and
b are of order 108/sec. The prompt gemma rays follow
this same time history at the source. Fast neutrons
which escape scatter in the air and, with every ine-
lastic collision emit a gamma photon. It is easily
seen that this population also decreases exponen-
tially with time, samy as e‘K T, but as air density
is much lower than that of bomb yaterials K5 is much
less than B, typically around 10°/sec. The air ine-
lastic gamme rays also vary with time as e_sz. The
Compton electron current is proportional to the

gamma-ray flux and therefore varies as

(j-l) J = -;)(r,s,qn)f‘(r) ’

where



™" for 1< 0 ,
{5.2) 1) =
-KnQT
e-ST + €e 2 for r >0,

near the explosion.

The electromagnetic signal, however, comes
mainly from a region which is 5 to 10 gamma-ray
mean-free-paths, i.e. a distance of 1 to 2 kilome-
ters, from the explosion. At such distances scat-
tering strongly medifies the time history and the
intensity of tne gamma rays and the Compton current.
A convenient way to describe these modifications is
in terms of a build up factor, B(r), which is the
ratio of scattered to direct radiation at a dis-
tance, r, and ot a response function, u(r,r), which
describes the time history of arrival of scattered
gamma rays at a distance r from e d-function source.

Then at a distance r from the explosion, we have
(5-5) J = -,7(1‘,’3,(!)) f(T) + B(l‘)

-0
where § includes the exponential absorption and

l/r2 attenuation of the unscattered beam.

A fair approximation to the response function,

u, is the simple exponential, Xo® , where ko is
constant in T and varies slowly with r. In this
case Eq. (2.3) readily works out to be
s
kB
1+ < ézr for r < 0
a+ kg
o]
kB -K.T
e 1 -2 +x Be ©
5~ O 0
(3.4) J=-9<
1 1« ]
a+ Ko 5 - Ko Kg T Ko
x_BE -8 AT
P e 2 for > 0
L KO ’Ca

7

Typically ‘0 is of order 10' so that it is consider-

ably larger than k At the large distances wnich

0"
interest us, the build up factor, B, is quite large,
of the order 10, and therefore we see that J falls

~-knT -
as e 0 rather than e o7

throughout most of the
prompt period.
At the large distances of interest to us,

electron-ion recombination is completely negligible

f(s)u(r- s)d%} s

and the conductivity, o, can be separated into
electronie conductivity, 04 and jionic conductivity,

I governed by the equations

doe
at Pl = -AJ
(5.5) T da,
i 2 _ _
o *aloy) = -Ad
o=0_ +a, ,
L e 1

where B is the electron attachment rate in air, g =
loalsec at S.T.P., and A_ is a factor depending on
electron mobility, Hos the number, v, of secondary
electrons made by a primary, and the Compton elec-

tron patn length in air, £, namely
(5.6} A, = Vue/l .

The quantity, Ai, is the same thing but formed with
twice the ion mobility, 2pi, instead of pn, (two ion
species), and a is the ion-ion recombination coef-
Ticient expressed in appropriate units. On our
time scale it is quite accurate to set a = 0. Be-
cause the electron attachment time, B‘l, is so short,
the conductivity, Gos follows the prompt source, N
-AEJ, except for a short period of duration about B
after the peak.

-KoT
and falls as e

. (o}
Thus g also rises as e T for v < 0

at first. Later the conductivity
levels off to a broad shoulder falling, let us say,
-KoT
as e 2 . This leveling off may occur because air

inelastic gamma rays have caused J to level off. In
the absence of air inelastic gamma rays, ¢ levels

off because of the build up of ionic conductivity.
—KT
As we indicated above, Ko

approximation to the scattering response function,

is only a fair

u(r,7). It can be made a good approximation, how-

ever, if we replace the constant, x., by a time

0)
It follows, then, that

except for a very short period of order, (0<¥<1/8),

dependent function, =(r,t)}.

the conductivity can be accurately described by the

expressions

G = 1}_(r,a,¢)eaT for 1 < 0
(5.7 ]
-j-KdT
. 0 -3
g = L1+(r,ﬁ,m) ke + ne for v > 0 .

v



with « a slowly varying tunction of r and T, nea

slowly varying function of r, and x., a constant.

2
The v > O part of such & curve of o vs. T is shown
in Fig. 1. The quantities, ~ _ and <, , are allowed
to differ; in fact they must be so chosen that J is

continuous at T = 0. From Egs. (3.9) we now find

i _ B+a .. or .

Jrq- n e for 1< 0O

e
(5.8) * 3 _
Jr=-A—+{ﬂ-x+K/n)ne-“
e
~ "EQT
L +(B-x2)qe }for‘r>0.

Continuity at v = 0 yields

no(ﬂ -8yt ;EO/KO)
B+ a

..ﬁ"‘g

_~
_é-l_'_

(5.9) = _

where dots mean d/3r and zero subscripts mean the

value at v = Q. We have defined

.
(3.10) u %&F [ndf.
J
0

wnen there are many air inelastic gamma rays, the
electronic conductivity levels off before ionic con-
ductivity becomes important and we have

7 = T (with air inelastic) .

[ 5.41)

In the absence of' air inelastic gamma rays ¥ vanishes

and
.
Ai . . _“(1')
(5.12) oi=A—e;,+ (B - & + &/x){xe "dv
0]
A.
B CRCEEN U
e

Tous, as (B - x)Ai/nAe is very small

A,
(5.15) n= A—l (bo - no) y Ky =0 (no air inelastic)
e

in the absence of air inelastic gamma rays. The peak

to shoulder ratio, xo/q, is normelly of the order of
100 at distances of interest to us.,

With the above general expressions for o and
for J we can calculate the radial BE-field. For this

we define two auxiliery quantities, S and Es’ defined

by
T

def bncodr

(3.14) s
&nd

(3.5) B, %gis .

From these definitions we readily see that

(3.16) 5 = e 2 +[1 —eH e (1 e""ET)]
Ko

fort> 0,
(S is undefined for T < 0), and

»

ES=Ea=(ﬂ+a)/Ae for Tt < O

_ “RST
1 | (B-x+i/e)e “+(ﬁ-n2)('ﬁ/1<)e
(3.17) <E_= —
s Ae e 4 (n/n)e-xeT
for > 0 .
\

All of our equations so far are accurate except for
a period of order {1/8) after the peak. During this
period, that portion of the signali which arises from
asymmetry of Er is very small and sizeable percent-
age errors here simply do not matter.
We can now solve Eq. (2.12) for E_. In fact,

from our definition above of Es we see immediately
that -’

T
-(£ bregdr! | f Yxcodr”
- -00
(5.18) E .=e Ee brcodr’ .
-0
As ES = ):':Q = constant for 7 < O we have immediately

(3.19) Er('r) = Ea[l - e-lmcola] for + < 0 .

For t > 0 we break the range of integration at vt = 0
and we split S into two terms, writing



0 1
. b
{ 5.20) bo r(c_,+ y
-KAT
8, = bne -{e'" ~l(1-e © i}
K
2
and obtain
- -8(1)
(5.21) Er(T) = E(-0)e
r
Sl(f) -Sl(f')
+ e ES(T')e bxodr’
0

where Er(—O) is given by evaluating Eq. {3.19)at v =
0.

Note that Sl becomes much smaller than So after
a period of a few times ((O)_l. During this short
period when the two are comparable, E3 varies but
little and this circumstance enables us to evaluate
the integral of Egq. (3.21) to good precision, ob-

taining simply

(3.22) Er(T) = Er( -o)e'S + Eo[l - e's] s

where EO is the value of ES obtained by evaluating

Eq. (3.17) at T = +0. The details of evaluating the
integral to obtain Eq. (3.22) are all worked out in
Even Eq. (3.22) can be simplified. As

we shall see, at times in the neighborhood of the

Appendix A.

pesk the signal comes from a very narrow region about
the point r = R_ where 2o = 1/N, very nearly. 1In
this neighborhood, therefore, dnco/a is very small
and

2c
(3.23) Er(-o) ~ By ¢ oy SE,

so that the term in Er(—o) may be dropped, giving
S
)

(3.24) E = Eo(l - e

As we shall see, carrying the term in Er(O) would
introduce no additional complication, but would not
contribute noticeably to the signal.

In order to evaluate the integrals required to
calculate tne radiated fields, it is convenient here
to define a new function, k, by the relation

-K,T
1-e™+ (n/ky)i-e @)
_K'2T r

dgf

(3.25) k s/o=lbrnc

e ™M+ qe

for + > 0 .

so that Eq. (3.24%) may be written as
. ~-ko
(5.2v) ]:.r(T) = Eo(l -e ) forT>0 .

We see that k depends only weakly on position but
strongly on 7.

To complete our evaluation of tne source func-
tion we need the time integral oi Eq. (%.20). From
Eq.(3.16) we see that S, i.e. ko, is essentiaily
constant in T except for the first couple of gener-

ations after the peak. Therefore we can write

T

-ko

(3.27) E cdr = Eo(l - e et

te good precision, for when T is so small that ko i
varying this expression does not differ significant-

1y from zero. Thus we have

T
oE

def r
F cdr

(3.28) E "= E -

o]
Ok
. Y] -ko , -kg
= (EO - CT —F)(l - € ) + LOZCchre B
where Z is defined by

def 1 9J(ko)
(3.29) z°= s 3¢

Clearly 2 is about 1/A and the correction term tc E_
would not be needed for cr << )., We keep the correc-
tion term in order not to be restricted by such a

severe limitation. The source function for atmos-
pheric and for bomb asymmetries is obtained by dif-

ferentiating Eq. (3.28), and is

2
et oE Jd°E
JE _ 0 0 -ko
(5.30) 55 = [ % - °7 aear][l - e ]

JE oE

0 0 3z ko
- c"(Q > 43w oC ane) kae

-ko

.. 2
+ HLOACT[ko - (ko) }e

where we have written for sunort



def

(5.51) w 9% 9(ka)

1
ko d8

The terms proportional to T, which arise from

Eq. (5.27), we shall call the secular terms; they
are clearly of importance only when cT/A\ is appre-
ciable.

In deriving Eq. {3.30) we have allowed specifi-
celly for all eifects of gemma-ray scattering except
for one, namely tne change of angular distribution
of Compicn electrons with distarce and with time.
This effect can, however, be included by simply re-
delining the guantity, v, the effective number of
secondary electrons per Compton electron, to be a
function of 7 and of r. This introduces additional
T and r dependence of Es’ but we already have specif-
ically allowed Es to depend on these quantities.
Thus, with proper interpretation, our results are

quite general.
Iv. SPECIFIC SOLUTIONS

We have seen that the geomagnetic signal can be
discussed separately from the other signals. As
this signal has been discussed quite well elsewhere
and is well understood,(j’u’j) we content ourselves
nere with deriving the basic formula which we do
simply for completeness. We consider a perfectly
symmetrical explosion in a perfectly uniform atmos-
phere but in the presence of a uniform magnetic
field, BO'

of _Bb

A

Cnoosing our polar axis in the direction

we find

_ 4 : =
{+.1) J¢ = 53 J sin 9 , Je =0,

where ! is Compton electron range, a is its giro
radius in the geomagnetic field and J is the radial
Compton current. Our only surviving field equation
is

o{

rqv) 1
(+.2) — + 2nu(rhq)) = =2nrJ (-2—';) sin 9 ,
whose solution is

r

(n.5) rEcp = £—%i?—g X J/ﬂ rEse'X2nodr ,

o]

where
(e8]

(b.8) x % | opgar .

At large distances we can set r = co in the right-

hand side and obtsin for the radiated signal

[oe]

! sin 3

(4.5} rEq): e

rEse-xanodr .

0

The factor, 2n3e_x, has a very sharp meximum at r =

iis, the point at which

Qs

(%.6) g,

2ng = Z=-'!:
o

E1

This fact enables us to evaluate the integral. The
details are given in Appendix B and, to lowest order

in A/ﬁs, we obtain tne well-known formula

(&.7) rE, = —pa— RSES(ES,T)

So long &as Es is considerably larger than A\, Eq.{4.£)
above indicates that it is proportional to log a.

Es is constant during the &-phase and changes rapid-
ly at the peak, dropping to & lower nearly constant
value during the x-phase. Thus the geomagnetic sig-
nal is a short, sharp spike having its peak slightly
before ¢ reacnes maximum.

We now address ourselves in somewhat more detail
to the other asymmetries. We may ignore geomagnetic
effects, setting J¢ = JB = 0. It is convenient to
choose our polar axis vertical. If then we suppose
tnat the bomb itself is azimutnally symmetric, so
will be the field equations, which reduce to

o(rEy) 1 dE

(h.&) ——Sr— + 2rw(rEa) = § 3— N

which has the solution
(u.9) rEe _ eX 1 0E -X
o]

X being the quantity defined above in Eq. (4.4). We
confine our attention to the distant field, writing



s 0]

;- 1 JE
(4.10) rEg = 535 € ar,

and shall refer to this as the radiated signal. If
we now substitute for BE/BB the expression given by
Eq. (3.30) we obtain

e o)

(k.11} rE, =

-ko] -X
A tpl[l - e ]e dr

+ qazkcre-ka'xdr + qaﬁ[kcr - (ku)e]e'ko'xdr s

0 0

where q)l, tp2, cpj are given by

2
_
. =laE0,c.,aE°

17 2j08 3139 |’

i+

(s.12) *<P2= QE0+CT(EOg%+ZBT'QF

QEOZCT .

ol

¢3 =

We have d:fined Z and © in Eqs. (3.29) and (3.31).

Now consider for & moment the second term of
Eq. (%¥.11). The factor, k7 exp [-k3 - X),is a rapidly
varying function of r with a sharp maximum at r = RS.
that value of r for which

(v.12a) 2noy = 2 , y %2T 1+ kz/en .

On the other hand ?5 is a slowly varying function of
r and this enables one to evaluate the integral with-
out specifying the functional forms of @ and of o,
In Appendix B this is worked out in detall, es are
also the first and third integrals. In this Appendix
expansions are given out to third order in (,\,/Rs).
As this quantity is normally about 1/10, it normelly
suffices to take tne first terms of these expansions

obtaining the result

P ok Pk
1 2 3
(u.13) rE =[—— log y + — + ] .
;] Z 2ny 2”2 =R

If higher order accuracy is required, additional cor-
rection terms will be found in Appendix B, along with

error estimates.

The quantity. k, [Eq. (%5.25))] is a rapidly vary-
ing function of T and, at most, a slowly varying
function of r. The 's,on the other hand, vary at
most linearly with v. Normally cpj is of the same
order as the seculer term of Py and, as y becomes
quite large, the term in cpj is a relatively small
correction.

We can now dispose of the G-phase in & general
way. During this period we have k = hne/o and Z is
very nearly 1l/a so that

~ 2c _2cfa
(4.14) rE; = Np; 1og (l tax ) * % T¥ Scjon

2c[a
tQ

s (1+ 2c/cx;\)2

But 2c/ox << 1 and the terms of @, @, o, which
are proportional to T are completely negligible at
this stage. Thus we may expand Eq. {4.ls) and

obtain

JF
i c L « 1 du
(4.15) TEB—FEQ{%¥+E% for r <0,

where Ea is the (consta.nt) value of Es when v < (.
The signals which come later are clearly of order
AE, which is much larger than EcEa/a. We can there-
fore completely ignore the (-stage signal.

For T > O the radiated signal behaves essen-
tially like the first two terms of Eq. (&.12), the
third remesining always a small correction. Thus,
aside from the secular terms, which are important
only when T approaches a microsecond or so, the
signal is given by a linear combination of the two
functions of 7, log y and Zk/2ny.
range of T, Zk/2n is large end these become slowly

Over most of the

varying functions of k and hence insensitive to its
details. This becomes clearest if we examine these
quantities not as functions of real time, 7, but

rather as functions of generation number, [', which

we define as
def [ 1
= !‘
(k.26) T Lsign T;Llog (ope ! /o('r)] - -

In Fig. 2 we have plotted the two functions

O



F(I') = log (1 + k/2nA)
(4.17)
k/2a\
6(T) = T% w/oan

as functions of the generation number, I'. Each was

calculated for two different cases, namely:

a. The solid curves are computed from
T history of Fig. 1. This
case is described by a prompt burst

the o vs.

with x varying from an initial value
of 2.8 x_lO7 to a final value of

5.8 x 106, plus & long teil of air
inelas?ic gammas for which n, =

4 x 10°. The peak to shoulder ratio,

(uoln), is 70.

b. The dotted curves are computed for a
prompt burst of constant k, k = kg =
2.24 X 107 and without any long tail

to a.

The curves of case a. correspond to a o histery
which is far from being a simple exponential, yet
tne dotted and the solid curves lie remarkably close
to one another. It is clear that for many purposes
"universal' curves for the two functions, F and G,
would suffice. In addition, of course, one would
need a g vs., T curve to translate generation number,
T, into real time and for times not much less than
Afe the secular terms in ml and ¢2 would have to be
included.

We shall now proceed to discuss in detail
special cases. We have in every case retained all
the secular terms, including the small one in ¢5 but
have calculated only to lowest order in (A/RS),
which we have supposed to be 1/10. 1In all cases
calculations were made for the two o vs. 7 histories
designated as a. end b. above. Curves are shown
(case a-solid, case b-dotted) for normalized signal
strength vs. generation number I' and also vs. real
time, 7. For the quantity, 2, itself, we have used
simply 1/A, but have used higher order terms to com-

pute 32/36.

A. Bomb Asymmetry Alone
1f the only asymmetry is that of tne bomb it-
self, then J and o have identical angular dependences,

10

which may be written as

J= Jxr,7) * afe)
{%.18) g=olr,r) - w(e)
Q= dm/ude .
Thus Eo is independent of 9; as there is no atmos-

pheric gradient it is also independent of r and
Eq. (4.13) reduces to

cT/A
1+ k/2nx

1 k/2n {
TBy = 5 Mg T kel

(4.19)
In ease b. the secular term is completely unimpor-
tant, in case a. it never exceeds 0.1, and this
only after 1 microsecond. Thus this signal is
essentially described by the function, G. Curves
are shown in Figs. 3 and 4 giving rEB Vs, gener-

ation number, I', and real time, T, respectively.

B. Gradient in Water Vepor Cencentration

Next consider a perfectly symmetric explosion
in an atmosphere of uniform density. However, owing
to a gradient in water vapor concentration, the
electron mobllity, and hence o, varies with altitude.
If, for convenience, we take the varistion to be of
the form
(4.20)

= ex {-£ cos 0}
He = Hg ¥P "%

we find

r R_ sin @ or Rs cos 9
,(Rg) 2h Eo[l'R_(l+ h )

s

R_sin 38
__5 2\, 2\ cos 8
1 %2(Rs) -*—aTr"Eo[l (1* TR )]

R_sin 3
5 cT A , A cos @
B — O — — et e
L%(RS) 55— Eq }\[1+R5 s ]
Assuming one is near erough to the equatorial plane
thet R
s

RS sin 9
(4.22) rEg = NEo| —5p—

{[1 (1- %i) log (1+ k/znx)} .

(&.21)

cos 9/n << 1, the radiated signal is

et _k/2nn ] _k/an
1+ k/2ﬂ)d1+ k /2N




to lowest order in A/Rs. Here the secular term is

of order cr/\ and quite important at 1 microsecond.
Curves of rg, vs.

9

time, v, are shown in Figs. 5 and 6, respectively.

generation number, [*, and real

C. Atmospheric Density Gradient
At low altitudes air density varies exponen-
tially with the altitude so that we may write

(#.2>) p = Py ©XP {-r cos e/H}.

The quantity, H, is called the relaxation height and
In this sub-
section we shall always use the subseript Q to indi-

may be taken to be about 9 kilometers.

cate the value of a quantity at burst altitude. As
electron attachment is a three-body process, the

attachment coefficient, B, varies as = so that

(4.24) -2r cos 9/H )

g = Boe
Now writing

(4.25) J = -g(r,8) - F(r) ,

we can write for 7,

(4.20) 9:2—5[%-0_";_]{‘3] exp [-%(l . rgﬁs 1‘])]
0 .

so long as we confine ourselves to regions suffi-
s ©OS 8/H <<
1. The bomb yield expressed in appropriate units is

ciently near the equatorisl plane that R

Y and b is & constant arising from an empirical fit
to the build-up factor. The details are given in
Appendix C.

In calculating derivatives of Es from Eq. (3.15)
we shall ignore any dependence of k, 71, and Ae on

position as we do not at present know these. Thus

we write
(4.27) EEE = L 9B _ EQ . 2r sin 3
: 98  A_2Je . H ’
aEs - . EQ 2 cos 8
dr H
e
with Eqs. (4.26) and (4.27) and the reletion, g =

J/ES, we can celculate the functions Py, Py, and ¢3.
When the result of this calculation is set into
Eq. (#.13) we obtain

(i) (R
remiog )|

R [ k/enng A, 4B, cT/x,
TR\TFE 2nk R_ AE_ L A wray ey
Cerf,, 4B, k/.’-_’nxo LA 8;:0 .

I ’

R, KE, | T+ x/2nn, R | EE,

correct through first order in A/Rs. As ﬁO/ACEs ~ 1
and A/RS ~ 1/10 we see that the secular terms are
again of order cr/h. Curves of this signal vs.
generation number, [, and real time, v, are shown in

Figs. 7 and 8, respectively.
V. DISCUSSION AND CONCLUSIONS

We have shown how the early portion of the radio
flash from a low-altitude air burst may be computed.
Use of the high-frequency approximation enables us
to obtain simple analytic expressicns for the signal
starting from a quite general o vs. T history. A
question still unanswered remains, namely, for how
long & time is the approximation valid? To answer
this question we have used the solutions found to
estimate those terms of Maxwell's equations wnich
were originally dropped. Inserting these estimates
into Maxwell's equations, one can solve and obtain
first-order corrections to tne high-freguency ap-
proximation. This process is carried out in detail
in Appendix D, where it is shown that the fractional
error involved in using the high-frequency approxi-
mations is about CT/RS, Rs being our usual signal
radius defined by Eq. (4.12a), that is to say, the

approximation is good so long as

(5.1) er << Ry

Typically this means that we can have confidence in
about the first microsecond of the computed wave-
form. It should be pointed out here that condition
(5.1) was achieved by including the secular terms,
which our earlier theory did not do. Without theue

secular terms the much more stringent conditien

11



cT << A must be fulfilled.

The second conclusion we wish to point oul is
the limited variety of possible pulse shapes,
Leaving aside the geomagnetic signal, we saw Lhal
all other asymmetries lead roughly to signals which
are linear combinations of' two basic pulse shapes,
described by the functions, M and G, of Kq. (4.17).
Because of the presence of the secular terms, this
is not strictly true; nevertheless, it is true in a
practical sense as illustrated in Fig. 9. 1In this
figure we have plotted as a solid line the atmos-
pheric asymmetry signal of Fig. 8 (solid line),
together with tne dotted curve which is a linear
combination of the bomb asymmetry signal and water
vapor gradient signal (solid lines) of Figs. 4 and
2, The linear combination chosen is an improbable
one, but it does show that there are essentially
only two independent pulse shapes. This should, of
course, nave been obvious from the beginning, for
there are only two basic asymmetries, that of J and
that of g. Practieally, this meens that inclusion
of new effects, such as the spatial dependence of
Ag and of k, will introduce no new pulse shapes. It
also means that it is impossible to sort out the var-
ious asymmetries from a given signal.

Tnere is one effect which we have not included
in our calculations which might lead to an additional
wiggle in the curve, and tnat is tne effect of dif-
ferential scattering. Owing to the density gradient
of' the atmosphere more of the gamma rays arriving at
some distant point r have been scattered downward
than upward. This will produce a net current of
Compton electrons downward at the point in question,
i.e., a negative JB' The signal produced by this J9
is calculated exactly as was the geomagnetic signal
and will in fact resemble the latter signal, with

two important differences:

a. DBecause only scattered gammas contribute,
the signal will be delayed and broadened
as compared with the geomagnetic signal.

b. The polarity of the signal will be posi-
tive regardless of magnetic bearing.

A rougn estimate indicates that the amplitude of
this signal is small, but further consideration of

(8)

it is surely warranted.
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Nunlint:ar «[fects have Leen omitted from our
Lheory; In fncl they are negligivly small. As the
sipnnd comes from e thin shell centered on r = Hs,
it sulfices Lo confine vur attention to this region.
Uting Lthe formulas we nave developed for Er at tnis
pusition we see that this quantity is simply not
large enouph Lo extract a significant fraction of
Lhe Complon clectron energy. The transverse fields
are ineftective in producing a transverse J for tne

simple reason that Ee, B are very nearly a pure

radiation field so that iheir ef'fects on the Compton
electrons very nearly cancel. The only nonlinear
effect remeining is the field dependence of the
electron mobility, Mo and the attachment coefficient,
B. Over a wide range of field strength, £ and He
depend on the electric field as (6

(5-2) lJ-e = NO/‘\/E ) p= Bo/‘\v/E »

where numerically p _ = lOb and BO = 108 when E is

0

expressed in e.s.u. During the k-phase, the elec-

tric conductivity depends on these parameters as

He Yo

(5.3) g« =
By - WE

B - x

It turns out that x is so much smaller than B that
the nonlinearity of Ko is essentially cancelled by
that of B and the field dependence of o is so weak
that it cen be safely ignored. During the Q-phase
On the other

is very small

we do not necessarily have o << B.
hand the radial E-field at r = RS
during this phase, around 0.03 e.s.u. or less. At
such low field strength the conduction electrons are
essentially thermal and Mos B are no longer field
dependent .

APPENDIX A - THE RADIAL E-FIELD

According to Eq. {3.21) the problem of calcu-
lating the radial E-Tield is solved once we evalu-
ate the integral

.
-5
(A.1) Idsfj

Ee lhﬂcodt'

’

0



where Sl is given by Eq. (5.20). Integrating by be deemed to be fulfulled; it is essentially a

parts gives statement as to how rapidly Es may vary during the
-5 S P s first few generations of the k-phasze, for
o 0 it . ™1
(A.2) 1= Lo(l- e ) —Es(l-e ) - 55(1- e T)dr,
E ~ <
o] s _ €K K _
{A.8) E e - (5 - "‘U) near v = ¢ .
where E:O is ES evaluated at 7 = +0 and the dot means 0 =0
the 7-derivative. The evaluation of the integral,
I. now reduces to showing that the integral on the Supposing condition (A.7) is satisfied, we can
rignt-hand side of Eq. (A.2) is negligible. ignore the integral on the right-hand side of
According to Eqs. (3.17) and (5.20) we have
-K_T . -R.T .
€ -
[1+_"(1-32)e“ e[(x-u)('i'q-.;)-"ﬁ}ee—?ée“
(A3) B(l-e Nesp B L " 2 °
: s 175 A KT 2 g
rl + €go ]
L

where we have written for short
def Eq. (A.2) and we obtain, from Eq. (3.21)
€ =" n/k = shoulder-to-peak ratio

) gt o (8.9) E(7) = E(-0)e™ + E[1 - ™)

Now let T = T_ be the point at which €et = 1 and s

note that k, << x or . As e! is a very rapidly + [Eo - ES][e L 1]
varying function of T we may set €eM << 1 for Tt < T

and €e” >> 1 for v > T Thus we find Finally note that in many cases [Eo - Esl will ve

small for small T, and wnere ,EO - Esl is not small,

" o~ Y
{Q["" - k] - %e } for 1 < 1 §) will be sufficiently small that the tnird term on

. 1l + kT P the right may be dropped. 1In this case Eq. (A.$)
(A.5) S.E_ 2o M oepwk - %1> for v = T
) 17s ¥ A [n m reduces to Eq. (3.22). When this is not the case,
e
. —,_|+n21- the extra term introduces no complication except for
Tk - K]e for t > o ? making formulas longer.

use having been made of the fact that KaTo << 1, The

most severe case is for large r, greater than T’ APPENDIX B - EVALUATION OF BASIC INTEGRALS
For typical cases ™ will be somewhere in the range

(3,5), i.e. (1 + xr )/4 2 1. Thus we see that In our theory three integrals occur very often
), i.e. "y .

and their evaluation is basic to our calculations.
They are integrals of the form
. -Sl ll-ncZ‘,Eo S5+ T 7:
5 - —— € k-= N
(A.6) E(l-e Dar< e nm(.c R) r
I, = cp(r)2nue-kd'xd.r

We are interested only in the neighborhood of r = Rs,

o

at which point bxc’} ~ L for late times, As € << 1,

L2

X, Ky 8re appreciably smaller than 130, and kT is

-kc] e-x ar

around 4, the integral on the left-hand side of (B.1) < I o(r)[1 - e
Eq. (A.6) is indeed negligible provided only

x
A1 qgowy <t 2

o(r)2n(0)%e X

]
I

in the neighborhood of T = 0. Condition (A.7) will
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where

[o s}
. def
(8.2) x "= f 2rodr ,
r

k is a function which varies at most very slowly with
r and ¢(r) is also a slowly varying function;. the

If the three
integrals are thought of as defining three functions

three @'s are not necessarily equal,

of the variable k, we readily note that

k
. 1
(B.5) I,=4% Il(k)dk ,
0
and
(B.4) 1j = - g—k Il(k) .

Thus we need only compute Il and the other two can
then be found from Egs. (B.5) and (B.4).

ing an expression for the value of Il it will be con-

In develop-

venient to introduce the following short-hand symbols

def

Vv = ko + X,

def _ 1 9(ko)
h ke dr

(B.5) z

def
y -

1 + kz/2n
Clearly, from its definition, z is approximately
equal to 1/A. We shall develop asymptotic expansions
for Il’ one valid for small r and the other valid for
large r. Fortunately the two will overlap.

Note first of all that the factor, 2n0e-w, has
a very sharp maximum at r = Rs’ the point where

(B.6) {(r=R_) .

2ngy = z s

The point, r = Rs, is the natural dividing point be-
tween small r end large r.

For r < RS we have

r

(8.7) 1, = f( %)e'vv’dr :

0

14

which may be partially integrated to yield

r

I
=2 .V @y _-v
Il ¥ e’ - d/[k y) e 'ar ,

Q

(B.8)

primes being used to indicate 3/3r. We now, intro-

duce a new function, w, defined by

(8.9) x=2% 14wy .

When r > )\, w can be expanded in the series

N
W

Y I R
(B.lO) W—-;[-—E- - + ],
2z Z

which will be adequate for our purpose. From
Eq. (B.9) it follows that '

(B.11) v =

1+ w
i

and Eq. { B.8) can be written as

r

’ -y
A LrwieY| e’
(332) 1,=2¢ -f ' (y)[ > w‘dr},

0

which can be partially integrated to yield

’
_® -V _ 1l +w )
(B.15) 1, = 7 ¢ z (y) El(\lr)

’

+f[l;"( ),]El(llf)dr,

vwhere El is the exponential integral function de-

g

fined by

(s

-t
{B.14) El(x)=f ert..

X

We could continue in this fashion, but it is suffi-
cient if we stop here.
In the range r = Rs we consider the integral



(o, =] o

(B.15) ~1=f pe ¥orgdr = -f(%)(e"*v'dr) ,

r r

which partially integrates to yleld

oo

1= q>(l-e¢)+f($5 (1-e_v)d.r.

r

(B.16)

%I

Using Eq. (B.1l), this may be written as

w
?
so-- [ i
r

(B.17) } =

and we can integrate by parts again obtaining

1l + wip

(B.18) T=2(1-e" + . ()[7+losw+Bl(v)]

“«

N

+ /[1 2 “(3)] [7 + logy + Ey(v)]ar ,

where y is the Euler-Mascheroni constent, 7y =
0.5772156 -~

Now put r = R_ into Egs. (B.13) and (B.18)} and
add. We obtain

©
-y e 1+we' y
fcpe 2no‘d.r-[y{l+-—~—z (cp y)
0
(7 + log 1{&] + v
=K

s

(B.19)

The remainder, indicated above by the dots, 1i readily
estimated with the aid of the integrals of kgn.

and (B.18). The outer region contributes

(n.15)

[00]
(B.20) €oxt =f—-—--—
I‘S

r

’.l+w1+w9_'
=~ Z Z y] r=R
5

r

oo
i w(l + W Q]')' . z (-)" e
z z |y 2 )
L r=RS p-1 PO

nlnl

n=1

Similarly the inner region contributes

R

13
(B.21) eint= f l+w/l:w[¢']) v'dr
o
s =]
1ewf1+ el B
~ —z—(—z—[y]) f v
r—RS ‘ys

Cha.nd.rasekhar('r) gives as the value of this integral

(B.22)

whence we find

2 2 1 1 4+ w a
R L ez
2

The error is worst at late times such
Setting z » 1/A\ the fractional

very nearly.
that kz/2n is large.

error is ebout

(8.23) € /I () » ke{' 2—); + _( ) (Wu/) }

RS
s

For functions, :p, which vary as some low power ol r

Lhis error is about 10% if R is as small as 3\.



For yields of reasonable magnitude Rs is more like As these quantities are used only in correction

10) and the error becomes guite small. If to terms, we do not need higher order accura-:.-y.

Eq. (B.19) we add the correction term, Eq. (B.25), ‘

the remaining error is of order ()\/Rs)j and thus APPENDIX C - CURRENT DENSITY IN A NONUNIFORM ATMOS-
small even for such tiny yields as R5 = 3A. PHERE

Applying Eq. (B.3) to Eq. (B.19)} yields
If we write out Eq. (3.3) specifically for a

uniform atmosphere we should have

oo
{8.24) f o(1 - e™%)eXar ye-f/A
J (c.1) g=-1& {£(r) + B(r)F(7)},

2
r

? 1+w o’ 2’ Kz’ where we have written F(7) for the faltung integral
= log y+ (7+los \v) (——-—)108 Yt = . . .
z Z P wyl)]g of Eq. (3.3} and Y represents the yield in appro-

priate units; A is of course the gamma ray mean-

free-patn. The build-up factor is quite well repre-

Simi f . .
Similarly, from Eq. (B.k) we have sented empirically by

o
r

- (c.2) ®x) =L},

2"y2 r=R

[¢] s with b a constant. For distances such ss r = 10A,

(8.29) o2n(o) e Var «

it turns out that B > 1 and we can in fact write -
In order to calculate second-order corrections

Lv tne field quantities we also need I, and I, as (c.3) J=-9(r) - Kr),
functions of a running upper limit; I.j nowever is ’
needed only in correction terms, which is why where
it is given above to first order only. We have . r/x
already calculated Il(r) and we can see that, as (c.4) 7= we—a(i)
(r) is presumed to vary slowly with r, we have to r
first order . -
g Sometimes in fitting B(r), an exponential factor is
o(r) e-v( r) for r < R included on the right-hand side of Eq. (C:2), but
r ﬂr) s this merely leads to a redefinition of A in our
) Vi Eq. (C.4). :
. n = <
(B.26) ve ° In an exponential atmosphere, A\ is no longer-a
0] constant but is given by
®s -y(r)
— e forrzR_,
ys s -
" (co) 1o LT cos O
A )"0
wnere subscript s means evaluation at r = Rs' Now
frum Eq. (8.5) it follows that
-
2rg
P eng 2ngy z
N - [El( 2 ) El(-—-—z e for r < Rs
“kg. -
{(B.27) ] w1 - e C')exc].v:= <
2ng
o —-X
P 2no 2"9“"5 g :
z | Bl 5 - By z e for r 2 R_ .
8 s s s
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In Eg. (C.4) r/A means the distance measured in mean-
free-paths and tnerefore, in case of a variable den-

sity we must make the replacement

r

(c.0) E. gr o _H -r cos d/H

(¢.0) A J/ﬂ AN, 059 (1-e ]
0

Waen this replacement is made, Eq. (C.4) is found to
correspond with

YbH

2
r A, cOs 4§

0
H -r cos 9/H
exp [' XB_EEE_E (1-e )]

-r cos ﬂ/H]

(c.7) 9= [1-e

in the case of the atmosphere of variable density.

In the end this quantity and its derjvatives
will be evaluated at r = Rs' At low altitudes RS is
considerably less than H.
frequently observed near the equatoriel plane so
that

Moreover the signal is

(¢.8) R, cos 8 << H

When this is true we can expand some of the exponen-
tials simplifying 7 to

DYl cose r Ir cos ¥
(c.9) __9-}‘[1_ SH ]exP[-ho(l-T)]’

o

which is Eq. (4.26) of the main text.

APPENDIX D - LIMIT OF VALIDITY OF THE HIGH-FREQUENCY
APPROXIMATION

In meking the high-frequency approximation,cer-
tain terms were dropped from Maxwell's equations be-
Now that

we have obtained such a zero-order approximation to

cause they are unimportant at early times.

the fields, we can use these results to calculate tue
values of the terms dropped from Maxwell's equations.
These additional source terms enable us to calculate
first-order corrections to the fields, and in princi-

ple one could continue, writing

B = B 4 E(rl) + o

’

(D.l) EB = Ego) + E(;') 4+ e ,
O IRRCIN

We shall carry out this progrem as far as the cor-
rection Egl) to the radiated field. ¢ur aim in
this calculation is not to achieve higner order
accuracy of tne fields but rather to define the
time interval for which the zero-order solution is
valid. Thus we snall content ourselves with some-
what rough evaluations of the integrals wnich will
arise.

Owing to the term proportional to ¢T, the temm
in Ps is normally larger than the rest. As we are
only estimating an error it suffices to consider

this term alone, i.e. we may choose a model in

which
Q’l =9, =0,
(D.2)
P, = 2o (1 + er/n)
2 2 0 ’

typical of our worst cases. fTo achieve tnis we nave
oEO/BQ = 0, whence from Eqs. {3.29) and (2.9) we ob-
tain

(D.3) rB‘go) - %moﬂ{(l + %) T k/2un

and
(D.4) 2“1—%[5511 e - rBéO)]

r sin e

i’

= Mo? 1+ & ) LIS 4+ 2T ko b e7KO

B 21_2 ( AN/l + k/2rA A ?
where

def 1 .

(D.5) af %§ STn s g% (2 sin o) .

AT



In all our cases Q is of the form € sin © whence . fo <]

@/ = 2€ cos 6, where € is a small asymmetry factor (D.11) rE( ll) '\EOQ, ’:C‘r . 212 ] ,~ko-X ar
whose exact form depends on the type of asymmetry .' 4 ' a r2 . ’

0

under consideration. In all cases, howe\;er, Q<<

1. Equation (D.L) gives the source function for

the correction E(l)to E, i.e. plus. terms of higher order in,()\/RS) . Partial inte-
r r

gration and the results of Appendix B show that the
above integral is simply .'L/Rs to lowest order and we

i S C have:-. . ’ . Coe
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Now the quantity k/2may is alv'..-ay's léss then unity ‘ _
Cléarly the correction term is negligible for small

but is very nearly done for all appreciable values o - . -
valies of 7§ it remains negligible just so long as

PR

of 7. Similarly, ko is nearly constént for such’

values of T and we have
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- In addition to Egll)

order correction term, E(lg), which has as its source

®

there is another first-

to adequate accuracy, and tnerefore
. - . the term
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The terms in Of 62) vanish identically when § = /2 This is readily.calculated to be

and are in general small. We have defined

(2) E 22
(D.16) z =—u9- et + 021' eko
(D.9) & = ds/ae . A
This corret.:t.ion' -to E ind'.llces a correction to - 2
(In o] + 2k o z02) 2 . 2
E, whicn we shall call E;~'. It is given by 02 o357 - 2 ko - (ka)7] >,
and
() P gD ’
11 1 X g
D.10) rE = dr
(p.10) [ 2 38 , ®
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R e DY
Setting Eq. (D.8) into (D.10) gives 0

When we set Eq. (D.16) into Eq. {D.17), all of the
integrals are given in Appendix B except for that
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involving the term in azn/Bre. Writing ¥ = ko + X,

we have
Rs Rs
¥ -v,1s
(D.18) e dr = [re "] " - rye ¥onodr ,
0 V]
as the result of partial integration. Now using

Eq. (B.19) of Appendix B, we obtain
R
S

1

(D.19) eYar = et

when we make use ol the fact that Ws =1, Using
this result plus others from Appendix B we obtain

2
A°E .0 22 2
(12) _ "~ 7o cr -113%0
(D.20) TEy = — T + 5~ e 55
. ar
. e'lx;zm 3, za_n} 2 K/
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(1 + k/2x)) r=R5

The worst case is that of the atmospheric density

2

gradient for which Q « r~. Then the term involving

14

. 2
(D.21) = = -ﬁ;

z
Q

Q/

dominates the rest and we have

cT

0
{D.22) ~— .
ELO} eRs

From Eqs. {D.14) end (D.22) we can conclude that the
high-frequency sapproximetion is valid for all times
such that

(D.23) cr <« R, -

Note that this conclusion is essentially independent

of the magnitude of the secular term.
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