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PREFACE

GLANC is a computer code for obtaining the solution, by finite
difference methods, of Maxwell's equations in one space dimension and
retarded time, for the electromagnetic fields produced by a nuclear burst
near or on the ground. The fields are calculated in the air, in the
ground, and on the ground-air interface. The approximations in GLANC
are such that the field calculations are valid for early times and for
distances less than about one kilometer. The yield of the nuclear device
determines the maximum distance for which the approximations are valid.

x » Ez »
coordinates. In the ground the electrical conductivity is constant in

The field components considered are B and Ey in rectangular
time and space. The source (Compton) current in the ground can be
different from zero or zero. The ground current is always set to zero
when the height of the nuclear burst above the ground is zero. The con-
ductivity in the air is found by solving the 'air-ion" equations, which
take account of gamma-induced ionization, electron attachment to O, ,
and electron-ion and ion-ion recombination. Transport of gamma rays in
the air is handled by prescription, using attenuation lengths and build-
up factors. The sources in the air for the currents and ionization are
determined by any of three methods: (1) injection of Compton electrons
and solution of their equations of motion; (2) wusing the LEMP fits to
Compton current and ionization rate as function of the fields; (3) by
simply making the Compton current and ionization rate proportional to the
gamma flux, without field reaction. Sample results from GLANC are given

in a companion (classified) report.
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SECTION 1

THE DIFFERENTIAL EQUATIONS

1.1 MAXWELL'S EQUATIONS

GLANC is a computer code for obtaining the solution, by finite
difference methods, of Maxwell's equations in one space dimension and
retarded time, for the electromagnetic fields produced by a nuclear
burst near or on the ground. We start with the two Maxwell equations
that determine how the magnetic field B and the electric field E

change with time,

1 3B =
T x - VXE
(1-1)
e OE - _ > >
ry —a"jt" + 4mOE = VxB-4nJ

We use cgs Gaussian units in the code: thus charge and electric fields
are in esu and currents and magnetic fields are in emu. The output from
the code can be designated as Gaussian or as MKS units. The relation
between the system of units is given in the Appendix. Since the other
two Maxwell equations, not written here, are only initial conditions, we

need not consider them further.

In Eqs. (1-1), the medium has been assumed to be nonmagnetic
(u =1), and the dielectric constant € has been assumed constant in

time. We take € = 1 in the air and € = constant in the ground. The




electrical conductivity o will be constant in the ground. The con- ’

_)- -
ductivity in the air and the Compton recoil current density J will
vary with space and time and, for various cases, with the fields (see

Section 3). The velocity of light ¢ = 3 x 10'° cm/sec.

We shall use standard rectangular coordinates Xx,y,z and let

only the field components Bx s Ey , and Ez differ from zero. Then

Eqs. (1-1) become

JE oE

B

1% % R (1-2)
c at 9z oy ?

JE 9B
€ Yy = X -
r 5'— + 4nc E)' + 47 Jy = 3z ’ (1-3)

oE oB
3 z _ x )
c '3—'E— + 4mo EZ + 47 JZ = - 'g'y— (1 4)

The geometry is shown in Figure (1-1), where the source is shown off the
ground. ' The ground-air interface is the x-y plane. The line from the

z
. . . . - . >
The unit vector in the direction of T is n . We want to calculate the

source to the air-ground interface is given by the vector T = I&y -1z.
fields along the line in the z-direction (y-z plane) which is drawn at the
intersection of the source ray and the ground-air interface. Specifically
we make the approximation that all rays from the source which cross this
line of calculation are parallel, i.e., the line of calculation is short

and far from the source. We now define the retarded time Tt' by,

->
T! = ct -n T (1-5)
> > . .
and note that n « r = y cos 6 - z sin 6 . Thus, the retarded time at

the ground (z = 0) T is given by

ct - y cos 6 (1-6)

A
n

so that

T T+ zsin @ . (1-7)
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Figure (1-1). Geometry
We note the functional dependence
J = J(ct - ; . ;,z) = J(ct - y cos 6,2) {(1-8)

which allows us to use the retarded time on the ground. Thus, from

y' = y
(1-9)
T = ct - y cos ©
we find that
1 9 ,3
¢ at oT
(1-10)
— > - cos 8§ 2
P) d ay'




so that Eq. (1-2) and Eq. (1-4) may be transformed to retarded time and

give,
9B 9E JE oE
X = Yy __Zz _Zz
oT - oz oy’ T ¢os o ot
(I-11)
BEZ 3Bx an
EF+4TTO’ EZ+41T JZ = COSBF‘ay—'

For our one-dimensional approximation we drop the 9/3y' terms in Egs.

(1-11) so that, with Eq. (1-3), we have

oE 3B

Y, 4m0 = _4m 1 _x 1-12
3T T e Ey € Jy MR ( )
0 aEY

5?'(Bx - cos O Ez) = 57 (1-13)
] = - -
5?-(8 Ez -~ cos B Bx) + 470 EZ = 4w JZ (1-14)

or, by multiplying Eq. (1-13) by cos 6 and adding Eq. (1-14), and by
multiplying Eq. (1-13) by e and Eq. (1-14) by cos 6 and adding we

obtain

BEZ ) aEy

e (e - cos® 0) + 470 Ez = cos O ol 4T Jz (1-15)
and

dB oE

—= (e - cos? DA
3T (€ -~ cos® 0) + 4n0 cos © Ez € 5 41 cos B Jz

(1-16)

When the burst point (source) is on the ground-air interface we have
8 =0 (cos & = 1) so that in the air {e = 1) Egs. (1-15) and (1-16)
become redundant. Thus, when the height of burst is zero (ground burst)

we cannot use Egs. (1-15) and (1-16) in the air but must use

1 aEy JZ
E, = dnwg 3z "o (1-17)




BBX BEZ BEY
4 trai T T (1-18)

where Eq. (1-18) was obtained by the use of Eq. (1-13).
1)
To summarize, we use Eq. (1-12) to advance EY in time and Eqs.
(1-15) and (1-16) to advance EZ and Bx if the burst point is above
ground and Eqs. (1-17) and (1-18) in the air to advance EZ and Bx if
the burst point is on the ground. Egs. (1-15) and (1-16) are used in the
ground (g > 1) in either case for Ez and Bx .

2
) 1.2 THE AIR-ION EQUATIONS

3) In order to compute the air conductivity ome has to keep accounts
of the production and recombination of electrons, positive ions, and nega-

tive ions. Electrons, density ng and positive ions, density mn_,

14) are made as a result of the absorption of gamma Tays. The source of both
will be called % , ion pairs per cm® per sec. Electrons attach with
rate coefficient o to 0, , forming negative ions 0; , density n_ .
Electrons recombine with positive ions, with rate coefficient B .
positive and negative ions recombine with each other, with rate coefficient
v . The differential equations for n, , n_ and n_ are

15) dn

(] - ¥ -
cg7 * (o + Bn+)ne = Y (1-19)

¢ o— + (ynn_ = on (1-20)
16)

C o (yn_+ Bne)n+ = % (1-21)

it) The effect of charge transport on the densities is unimportant and is

neglected.

-17) It is not necessary to solve all three of these equations, because
of the conditions of charge neutrality which follows from them, plus the

assumption of initial neutrality,

L —————E



n n_ +n (1-22)

In GLANC we carry n, and n_ . If n, and n, are carried there is an
instability of the difference equations when Bn, becomes comparable with

or larger than ¢ .

Having n, and n_, we calculate the conductivity from the

equation
— e -
o = E—[neue + (2n_ + ne)ui] s (1-23)

where e = 4,803 x 1071% esq, 1, 1is the electron mobility and My is

e
the ion mobility. Note that we use the symbol e for the absolute value
of the electronic charge. We assume, for lack of data, that positive and
negative ions have the same mobility. In GLANC we use the following fits*

and values:

N
8
o = LZXA0 L 6 45k 107 exp (- ]Ellzi‘?g_pm) (sec™)
E|] + 0.03 ’
= 2 + E2
|E| VEZ + B2 (esu)
= : . _gms _ milligms)
P air density (liter - T em®
B = 2.5 x 1077  (cm3/sec)
- (1-24)
Y = 2.3 x 107%  (cm3/sec
Hy = 750 cm/sec per esu
y _ _ 3.93x10® exp(-0.87p)
= 4 Z
e p[3xlg . 109 4x103P‘(0‘61 0.07P)
+ 3x10°[0.04 + 0.01P]
P = percent water vapor in air J

*The fit for M, Was done by John S. Malik.
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22)

ith

23)

lue
and

its*

\ (1-24)

It may be noted that o and Mg will be functions of z and T
through their dependence on |E| _ GLANC can also have constant (input)

values of o and U, -

1.3 THE EQUATIONS OF MOTION

One method of obtaining a source (see Section 3) for ? and J
is by running sample Compton electrons (particles). For this procedure
we need the correct relativistic equations of motion for the electrons

in the retarded time frame. We start with the equations of motion in

real time
T [E Y ﬁ] N 25
@ - eErcr Ry (1-25)
where v/c = B//P?im?c? , m is the electron rest mass, P = |3| ,

and A is the drag force of the air on the electrons in dynes. A 1is

obtained from the fitted range-energy relation,

0.312 x 10° Eez

e (0.3 + E) (1-26)

where Re is the range in cm and Ee is the electron kinetic energy in
Mev. We calculate A = dEg/dRg from Eq. (1-26) and obtain (A in dymes,

and Eg 1in Mev),

1.6021-10"5p(o.3+ﬁe)2

A= 317.0 Eo(0.6+Ee) (1-27)
where Eg = mc2 (/1+(P/mc)? - 1) , with mc? in Mev. By Eq. (1-6) we
calculate

v
dt = ¢ dt - dy cos O = c dt(l - EX cos B) (1-28)
so that Eq. (1-25) may be written as
> >
%E- = o< [E + LB+ 5—%] (1-29)
T 1-cos © EZ' ¢ ¢ e
11
NN e




For the field components of GLANC, Eq. (1-29) gives the equations of
motion in a retarded time frame as

TxoL 1 an

dr V. ¢ P
1-cosgL

dP v P

-y - 1 e _z Ay -

dr - V. ¢ [ﬁy t 3 Bx T e P ] (1-30)
1 - cos gL

dPz 1 e Vy A Pz

—— = - -— E -.-—B [

dt v c Z c X e P

- A
1 cos 6 P

When electrons (particles) are injected to serve as the source
for GLANC, their motion in the z-direction must be followed in retarded
time. By Eq. (1-28) we calculate

A
dz _ 1 z
ar = v = . (1-31)

1~ cos o-L
c

In GLANC we inject a specified number of particles at regular time
intervals. At each injection time we inject N, particles at each space
(z) location. Each of the N, particles is injected with different
initial momentum components. A gamma ray of energy E is assumed to
make the Compton recoil electrons. In Figure (1-2) we show the geometry

of the gamma ray and the relative electron recoil angles, ee and ¢e




Figure (1-2). Geome-tf'y for 6, and 9 -

is the total Compton cross section when the element of solid angle of the
recoil electron is dQe = 27 sin ee dBe . To obtain ng values of Be
such that at each and every angle the electron is equally probable we

first let 6P = oc/ne . Then, let P = P/2 and integrate on &, until
6

oo 2,

0

1}
vl

This determines the first ee . Then add &8P to P and continue the

integration until

]
,/; dQ = P
e e
0
This determines the second desired value of 8, - Continue this latter
procedure until all ny values of ee have been determined. All values
of ¢e are equally probable, so we select n¢ equal angles ¢e . We

here let &¢ = ﬂ/n¢ and set the first value of ¢e equal to &¢/2 . The
second value of ¢e is obtained by adding 6¢ to the first value. Add-
ing 6¢ to the last obtained value of ¢e is continued until n¢ values

are obtained.

We set nP = ne X n¢ and note, for determination of initial

values of momentum components, that




RESHIRAN -

v = v_ cos 8
e e

v = v, sin ee cos ¢e (1-32)

<
n

v_ sin sin
e ee ¢e

where
1
Ve = c\d/l - 57 (1-33)
mc2
and
2 .2
E = %:TYL; (1-34)
and
2 cos? ee
& = (T+)% - y(y*2)cos? 6_ (1-35)
and

E

The velocity components in Eqs. (1-32) determine the spherical components
Pr R Pe , and P¢ of the momentum with the r-component in the direction
of the gamma ray. For GLANC the rectangular components of the initial

momentum are given by

P = P

Xo ¢

Pyn = Pr cos O + Pe sin 6 (1-36)
p =

-P sin & + P cos B
T

Zyg 0

where 6 is the illustrated angle of Figure (1-1).
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SECTION 2
THE MESH AND THE DIFFERENCE EQUATIONS

2.1 THE MESH

GLANC uses a nonuniform z-mesh. Near the ground the gradients
of the fields are large and a smaller mesh size is required. By examining
the differential Eqs. (1-12), (1-15), and (1-16) which are to be differ-
enced, we see that if Ez and Bx are carried at some mesh point Zy s
then Ey should be carried at Zk+1/2 . If the mesh is to be nonuniform,
then the Zy

mesh points, i.e., the EZ and Bx equations will be centered and only

mesh points should be exactly centered between the 21 41/2

one equation, that for Ey , will then need special attention to make it

centered. The z-mesh defined below accommodates these features.

The z-mesh in the air is calculated from four input numbers:
Z0a is the smallest mesh size in the air, n, is the number of 'split"
cells in the air, Ne, is the number of "final" cells in the air, and
Ma is the magnification factor in the air. Figure (2-1) shows the mesh
for a specific set of Input numbers. Four similar numbers, zog R nsg s
nfg , and Mg are used for the ground mesh. The value of z on the
ground is zero and z on the ground is indexed as 2 +141/2 ° where
ng and n are defined in Figure (2-1). Ey is inde%ed as Zy,y/2. and
Bx ) EZ , Jy . Jz and ¢ are indexed as Zy The mesh always has
two uniform mesh points just above the ground-air interface and two uni-
form mesh points just below the ground-air interface, these mesh increments
being Zoa and zOg . The mesh increments are then (usually) increased

by the magnificati&n factors (Ma and/or Mg can be unity) for n_, (or

nsg) successive times. One then adds ne, (or nfg) uniform increment

15
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E » 2z - B ,E ,J ,J
yn +n +1 ng+na+1+1/2 x’ 7z %y 2 Vg0
g a
B and ©
M3z X > %5 4n
a“oa n_+n g a
g a
9 M = 1.5
J a
3 n = 3
Mazoa sa
‘ nfé1 = 2
[ n = 2 +n + 1 = 7
a sa fa
M3z <
a“oa
£
M2z
a“oa
)
M z
a oa B 7
A X > "n +1
n_+]1
. / & e
oa |. 3
AIR Z
0 - #‘** By * ns1e1/2 = 0
GROUND og 1 ng+1+1/2 g
+
X
M = 1.5
g
3 n = 3
sg
) nfg = 2
n = 2+ +n = 7
g sg fg
sz .
: E s 2
; 1 Yoz 0 2H1/2
B s Z
x1 1
Tsg,  Tsg
E s Z = -2 (2+M +M +,..+M +n,. M
T Yie1y2 7 14172 og" g g g Mg )

55 Figure (2-1). The mesh.
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Sg)

cells to the "top" (or thottom) of the mesh. These last ng, (or nfg)

aniform increments are all of width M's2 z {or M'sg z ) . One
a oa g oa

first calculates the for k=1, ng+na+l , mesh points. Then

z

k+1/2 °
set 2, = 1l2(zk+1+1/2 +'Zk+1/2) for k=1, ng+na . This last operation
ensures that the z; values are (exactly) centered between the correct

values. is not centered between values of Zk in the

Zx+1/2 ZK+1/2
nonuniform portions of the mesh. Thus the z-derivatives will automatically
be centered when differencing the Bx and E, equations but the EY
equation will require special attention. Conversely, if one forms values
of

first and lets be centered between these values of

K Zx+1/2 g
then one must give special attention to centering two equations instead of

only one equation as above.

The time (1) mesh is obtained by advancing forward in time by
successive cycles. At the beginning of any time cycle, say ™ (n=

cycle number), it is assumed that the mesh values (Ey , B, Ez , etc.)

X
are known at " and the cycle calculation is performed to advance time
+ . N . . .
to T 1 . The time increment (8t) is constant 1n GLANC, i.e.,
ER
8t = o 1 _ ™ for all n , due to the fact that GLANC is not designed

to Tun to late (large) problem times.

The calculations performed during each cycle are ordered. This
ordering is partly dictated by the variety of sources allowed and partly

by implicit differencing considerations. In a cycle one first calculates

the sources, 1.€., Jy s JZ , and % . C? is only calculated in the air.)
Then ng , 7. and o are calculated (only in the air). With J and
¢ we then advance the fields Ey , Ez , and Bx in time. There axe

various kinds of input and output operations before, during, and after
the cycling operations. The presentations of the various cycle calcula-
tions will not be given in the order described above in order to avoid

various complications.

2.2 A GENERAL FORM FOR MOST DIFFERENCE EQUATIONS

Before presenting the difference equations, it may be noted that

most of Maxwell's equations and the air-ion equations can be written in a

17
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similar form. We note that if one has an equation of the form*

of = -
sErYE = v , (2-1)

then the exact solution is

£ ,
£g) = X&) [f(e:o) +fpg)eX® )da'} , (2-2)
_ : g
where y(&) = _"YX(E”)dE“ . To first order in &8¢ = & - £, , the
Eo
solution to Eq. (2-2) is
(e - 0¥ e [Y : (2-3)

where x =8f + y and y is vy evaluated at E = 1/2(E+Ey) . For
second order accuracy in the integral term of Eq. (2-2), one uses the
following procedure. Let &(£') = ¢(&')/y(£') so that &; = ®(Eg)
and ¢, = ¢(&) ; then for ¢(&') assumed to be a linear function of

x(&'), we calculate

(&) = f(go)e_§-+ ¢1[%;(1 - e_is - e-i]
X
v 8, [1 Lo e_X)J . (2-4)
X

The forms presented by Eqs. (2-3) and (2-4) will be evident in the differ-

ence equations as they are presented.

2.3 THE AIR-ION EQUATIONS

The air-ion equations (Eqs. (1-19) and (1-20))are differenced as

-$ -¢ . n
n+] _ n e € Y
n ) = neke + (1-e ) [§+Bn+ }k (2-5)

and

*The Y or other symbols used in this section have nothing to do with the
same symbols used in the air-ion equations or elsewhere.

18




1)

2)

3)

Fa] e

er-

v

‘he

n
an
S T I [—e] (2-6)

+Jk
where
n
St
@e = {0. + B n+]k C— N
n
¢ = [yn] i—T , and
k
n,=mn,+n_. The values of n, and n_ are then used to calculate ;
1
n+l _ e r
oy = E'[ne“e + (2n_ + ne)ui]k . (2-7)

When the various parameters in Egs. (2-5), (2-6) and (2-7) are field
dependent (see Eqs. (1-24)) and should use the electric field magnitude

(]E|n+1) which is not known at Tn+1 in this portion of a cycle, one uses
lE]n . Also, one could have integrated the air-ion equation from Tn—l
to ™1 with a time interval of 267 by back storing nz—l and n?-l

and thus formed equations like Eqs. (2-5) and (2-6) which would be time

centered. This last procedure was not considered necessary in GLANC.
This is because essentially no error is introduced and the added storage
requirements were not desirable. We do, however, have Jy’ JZ, and 0

at two successive times for centering Maxwell's equations.

2.4 MAXWELL'S EQUATIONS

We will first difference the Ey equation (Eq. (1-12) so that it
will be centered in the nonuniform (and uniform) portion of the mesh. We
will use the form indicated by Eq. (2-4) and with the indexing indicated

in Figure (2-1). 1In the air (e = 1) we write (for k = ng + 2 to ng + na),

19




A A

a a
En+1 1+£ * 1+Ak En+1 = e—Y E; 1+£ 1+Ak E;
yk+1/2 ay 2 yk+1+1/2 k+1/2 a a k+1+1/2
. é(1-e’Y)-e'Y ) n1<+1/2 . K :
Y JL %172 41TO‘1<+1/2 k “k- ])
ol By -
1 -Y k+1/2 k -
* Ll _-‘17(1_3 ) Tt S : (2-8)
L k+1/2 k+1/2 L k- 1
where
Zc, T%k+1/2
A = L ,
ax ’ Zk+1+1/2_zck
1
zck - E{Zk+zk—1) ’
_ n+i/2 n+1/2
Y = 2wét (Ok + Op-1 ) s
n+l/2 _ _l( n n+1)
% = 7% * % ’
n _ 1(n n )
Ok+1/2 = ZGJR * 0, (or replace n by n+l) ,
and
n+l _ 1{mn+l n+1
Jk+1/2 = lf(éy + Jy ) (or, replace n+l by n)
k k-1
Eq. (2-8) is centered at zck ., If the mesh is uniform, then zck Zk+l/2
and Aa is zero. For our nonuniform mesh Aa is normally small and
k k

depends on the magnification factor in the air. The left-hand side of Eq.
(2-8) is the interpolated (not extrapolated) value of E at z_ and

at T +1 . The first bracket on the right side of this equation %s Ey

at zck and at T' . The rest of the terms on the right side of Eq. (2-8)
are cernitered at z, by the definition of z, and the positions in the

mesh of B, , J k
X Yy

, and ¢ . To make the imp&icit character more emphatic

and to facilitate later operations, we write Eq. (2-8) (for k = ng+2 to

+
ng na) as

2



A
n+1 ( 1 A
E + n+l n+l n+l
Y. 1+A ) (1+A )E Dl +D2 (B -B ) (2—9)
k+1/2\ ey 2/ Yis141/2 KRy e
where
_ -Y|.n
D1 = € E
k [5'1<».1/2(1+ k) (“A ) yk+1+1/2]
% By - By
. [1{1-e‘Y)—e k+1/2 kK X1
Yo k+1/2 4“°k 172 F%k-1)
Jn+1 y
_ Yk+1/2 [1 _1l-e ]
n 2
Uk+1/2 Y
and
_ 1-e7Y 1
Dp_k = 1 - "
Y 4wdk /2(Zk K- 1)
In the ground we have € > 1 and o0 = gy so that, by similar

techniques as used above, the Ey

equation (for k=2 to ng) is written

as
A
En+1 1 + gk n+1 n+l n+l
1+A 1+A E Dy, +D -B 2-10
ke1/2\" gy 8/ Yk-141/2 Pk P X 1 (2-10)
where
Z —
A o ZFke1/2 T ek
x zck""k-l-l/z
Yo = 4—-"0-1 6'1' 3
Jgn = l-Jn +J° (or, replace n by n+l} ’
k+1/2 2\ Yig

21




- g
by = g i ) B
Yk+1/2 g, g/ Tk-1+1/2
b P |
1 Yo} -Y, Yk+1/2 k k-1 i
HoM-e "7 Z, -2
Yo o W"( k k-l)
n+ |
- J |
[1 _ 1-e 0] Yk+1/2 ;
Y, Go :
and
- 1 -Yp 11
D, = 1 - ‘—(].—e )
k [ Y, 4nao(zk—zk_l)
Note that A is zero in a uniform mesh and that we have again inter-

polated (not gxtrapolated) to center the equation. The symbols le and

D2k are again used though the index now runs from two to ng

The solution for Ey on the ground-air interface k = ng+IEL)
is a little more involved. Ey and Bx are continuous at the interface
and EZ is discontinuous. Ey P Bx , and Ez all have discontinuous
derivatives at the interface. We thus write the Ey equation twice, once

centered just above the interface and once centered just below the inter-

face, and use these two equations to eliminate Bx on the ground (B:+1)
th of Za above the g

interface as (for k = ng+1 =L and, for simplicity, dropping the 1/2 on

Thus we write the Ey equation centered 1/4

the Ey index), !

n+]1
SEML, % g+l = Dy (8] —B;Hl) (2-11)
7L Y141 L g

and the Ey equation centered 1/4th of zOg below the interface as,

n+1 1 .n+l = = n+l n+l
E + — E = Dy. +Dy (% -B ) (2-12)
YL 4 Yi-1 L 7°L xg X1

Bl

where
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Y1+1/4 L Y141
5 1
J = 23 -=3J
Y1-1/4 47y 1 4 Y2
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Y -Y) -Y L+1/4 L
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— 1_(__\{0) —
Day = [1 - Yo\ ] 4ﬂ00(§-zog)

D, and Dy are two numbers which are calculated and stored separately

from the D1, and Dy meshes. Though one is always worried by having
to use extrapolations, the extrapolations for 0L+1/4 and JYLi1/4 in
GLANC give no problems, probably due to the fact that the curvature of
source functions is small near the ground and due to the small mesh
We first solve Eq. (2-11) and (2-12) for B1;+1 and

o
o

these
size near the ground.

find
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B2+1 - Dl { g_ n+l %—E“+1 +D1L+D2LBn+1
g 2y, L Y141 *L |
(2-13)
e i L +Dy D, BT
g Dy L "L-1 L-1]

1

Adding these two equations gives one equation in which B2+ is eliminated.

8
This one equation, with the terms collected and multiplied by DZL , gives
D2 D2
En+1 §(1+ L)+ 1 En+1 + 1 "°L En+1 -

Dy
Y L n+]l _n+l
y, 4 7% "1 Dy Dy, — DZL(% B L)

Dy L+l " Dy YL-1 D, o RS

(2-14)

It should be noted that Bg is needed to calculate DIL and to calculate
EIL and therefore must hav€ been back stored before the cycle began. One
thus needs a value of Bg initially (zero time solution), which will be
given later in this repor%. Also, at the end of a cycle when Ey and Bx

n+l

are known at Tn+1 » one must calculate By from (one of) the Eqs. (2-13)

and store this number so it can be used for Bg in the next cycle. Since
the calculation of the fields is implicit we mugt have all the difference
equations to solve for the fields. After differencing the B, equation
and the E,

and (2-14).

equation we will then return to the use of Egqs. (2-11), (2-12)

The B, Eq. (1-16) is not of the form of Eq. (2-1) and is differ-
enced with space and time centering in the usual differencing manner in

the air as,

n+1 a n 8t n_.n n+l_n+ n+l/2
BX = BX - m 2m cos O O'kEZ +O'k EZ +4T cosH JZ
k k k k k
En+1 +En _pn+l _En
Yk+141/2 Yk+141/2 Vis1/2 Vk+1/2 (2-15)

02y ,141/2 % ke1/2]
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The only pitfall one will encounter in differencing this equation is that
n+l/2

pooTr (inaccurate) results will occur if the nonlinear term (UEZ)k is
. n+l/2.n+1/2 1/ n.n n+l n+1) .
differenced as Ok EZk instead of E(UkEzk + 0y Ezk as 1s
shown in Eq. (2-15). We write Eq. (2-15) in the air for a burst point
above the ground-air interface as (for k = ng+1 to ng+na)
n+1 _ n+l n+l n+1
B - C1k+C2kEzk +C3k(EYk+1+1/2-Eyk+1/2) (2-16)

XKk

where (for k = n +1 to n +n 3}
g g @

n+l/2 1/ n+l n
Jzy = E(Jzk * Jzk) ’
Byia1s1/2”®
_ n &1 n_n n+l/2 k+1+1/2 Yk+1/2
Ca = By, - Tocczg ]l cosé oy Ez +471 cosf J - —
k k 1-cos<0 kK Zk Zk 2(2k+1+1/2 zk+1/2)
- 61 n+l
Cay = T:ESEEE'ZW cos® oy >
C - St
*k = 2(0-cos78) (Zy 141 /2 %ke1/2)

Similarly, the By equation in the ground is given by Eq. (2-16) when we

define (for k =1 to ng)
n n
n 8T n n+1/2 © (Eyk+1+1/2‘EYk+1/2)
Cy = B} - —2L - {ong, cosB Egy +4m cosd Iy N
k Xk ge-cos zk k 2(2k+1+1/2-zk+1/2)
- 8t
Cay = - Tlcosio 2mog cos@ >
C _ 8t
%k T Ze-cos?6) (Zk+1+1/2_zk+1/2)

When the burst is on the ground (cos © = 1) we use Eq. (1-18) in the air

and difference it as,

n+l n n+l n
nel  _ on @+l 6T Eyy 1012  Evie 10172 Byke1/2 Y ke1/2
Bxx = BytBr Bt Z -
k+1+1/2 k+1/2

(2-17)




or, we can write (2-17) as (2-16) if we define {(for k = ng+1 to ng+na) ,

n n
nn 8t Byke141/27Byke1/2

Cl = Bx _EZ + — — E]
k Kk 2 2y 172 P12
c2k = 1.0 )
and
_ ST 1
Cgk = —

Zk+1+1/2_zk+1/2

The E, equation (Eq. (1-15)) is of the form of Eq. (2-1) and

can be differenced in the form of Eq. (2-4), i.e., in the air (k = ng+1

to ng+na) with the burst point above the ground-air interface we have

n 11 n
n+l -Zn J1-e"% - Iz COSB(EYk+1+1/2_EYk+1/Z)
E = e E, . + -e - +
Zx Zk YA on 4 Un(z .
k Tx\%k+1+1/2 k+1/2)
n+l n+l n+l
1-e” % || Iz °°59(EYk+1+1/2'EYk+1/2)
- = - + (2-18)
Un+1 4wcn+1(z -z )
k k k+1+1/2 “k+1/2
where +1
ZWGT(UH +0n)
;- k "k
- 1-cos?8
Write (2-18) as
n+l n+1 n+l
Bz = le+sz(EYk+1+1/2"EYk+1/2) (2-19)

where we define (for k = n +1 to n +n )
g g a

Gy

m
tm
+

— n I 1]
e _e-%l e COSG(EYk+1+1/2'EYk+1/2)
4won(zk+1+l/2hzk+1/2)

"
k k




—_——

m)

-18)

19)

iv

~-Z
- 1-e cos 9§
G = [ -
2k . Z J, n+l

4moy (Zk+1+1/2‘zk+1/2)

In the ground the E, equation is also given by Eq. (2-19) when we
define (for k=1 to ng) R

n n _ n
Gy = e gl +[__1-e'z° i e—z[,] [ Tz, 2% (EYk+1+1/2“EYk+1/2)]
k Zk Zo Oo 41!'0'0(Zk+1+1/2-zk+1/2)
n+l
Tz 1 - 1-¢%0
(o] Zo ?
and
_ l—e_Z°] cos 6
Gz = - — 4o, (2 ~z ’
0 °( k+1+1/2 k+1/2)
where
7 _ dmgodt
¢ = e-cosZp

If the burst is on the ground, then in the air we use Eq. (1-17) for E,

and difference it as

En+1 _En+l Jn+1
En-!-l - Yk+1+1/2 “Yk+1/2 _ Zk (2-20
Zk n+l il ~20)

4oy (zk+1+1/z'zk+1/z) %

or, to make the E, equation have the same difference form as Eq. (2-19),

we define (for k = n,+1 to ng+na) R

g
n+l
G = I
1k = - ol >
k
and
_ 1
Gy = Al

4noy (zk+1+1/2_zk+1/2)

The implicit solution to Maxwell's equations in difference form can now be
given. One first eliminates E?;l from the By equation (2-16) by substi-

tution of E2;1 from Eq. (2-19). Then one forms the difference k= 2

to ng+na) R
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n+l n+l - n+l n+l1 n+1 _

Bk Bxpep T Xlk+X2kEyk+1+1/2_X3kEYk+1/2+X‘*kE)’k-1+1/2 (2-21) ’
where

Xlk = Clk'clk__l+C2kG1k—C2k_lG1k_1 R

sz = Csz2k+C3k s

Xop = Gyl #Cap#Cyy 1Goy 14Csy ;
and

Xog = Cag 40 14Cay

With Eq. (2-21) inserted into the Ey equations (Eqs. (2-9), (2-10) and
(2-14)) we obtain a three-value difference equation for E, and write the

result as (for k = 2 rto ng+na)

n+1 n+1 n+l _ _
Byie1/ 28 B 10128 By 10108 = Awg (2-22)
where the coefficients are given by the matrix
k=2ton k=n+l=1 k =n +2 to n_+n
g g g g a
D
1 3 k 1
Ay, = T — D2 X3 711t — D2 X3 T
k 1+Agk k*7k 4 Dz, kA%k 1+A 4 +D2kX3k
A
- 1 ak
Azk - -DZRXZR '4_ _DZkX2k FA; —D2kx2k
A D,
. - gk _ 17k |
; Asy = T+h . ~D2pXuy 7 = “Dayxuy “DagXuy
i gk D,
i k
- D2k
Aue = Dag*Dagexay PPy == *Dzpay | DuyDapxay
2
k

To solve Eq. (2-22) one needs a boundary condition so that
n+l

can be obtained and a boundary condition so that En+1

Y1+1/2 Yngtng+1+1/2
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22)

can be obtained. We let E;;11/2 (for all n) be zero, i.e., we place an
infinite conductor -at our deepest mesh point in the ground. Thus, by
selecting the four input parameters which define the ground mesh in an
appropriate manner, one can either make the mesh deep enough in the ground
that no electromagnetic signal reaches the infinite conductor or make the
mesh a desired depth which will show the reflection of an electromagnetic
pulse. At the largest value of z in the air we solve Eq. (2-8) for

n+l by assuming that Bn+1 = - Bn+1 where N = n_+n This
Byne1+1/2 BY g XN+l © My 0 = Ng™hg -
“upper" boundary condition has the effect of stabilizing the field calcu-
lations at the "open end" of our calculation. Before giving the details

of this upper boundary condition we must first solve Eq. (2-22).

To solve Eq. (2-22) we let (for k = 2 to ng+na),

Bz - e Byrs1e1/2" 5k (2-23)
define ey and fk . Then

B/ e 1Eyn1/2* ko1

substituted into Eq. (2-22) gives

n+l n+l ( —Azk + Auk-Askfk—l
EYk+l/2 = EYk+1+1/2 A1k+A3kek_1 A1k+A3kek_1

or, by Eq. (2-23),

_Azk
®x - A1k+A3kek_1 ?
and (2-24)
o - o
S 5 1

which are the recursion relations for % and fk (k=2 to N= ng+na).

With k = 2 and E3111/2 = 0 (lower boundary condition) Eq. (2-22) gives
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e, Ay

n+l _ n+}
Byrri2 = Bysa i, A
or, by Eq. (2-23)
_A22
62 = A12
and (2-25)
qu
£ = —
2 A12

With the recursion relations (Egs. (2-24) and (2-25)) one solves for ey
. . n+1l .
and fk for k =2 to N . With the quantity EYN+1+1/2 known (as will

be given below) and the values of € and fk known, one solves Eq. (2-23)

by (backward) recursion for all values of 53§11/z for k=N to k=2.

With all mesh values of Ey known at Tn+1 » one solves for all mesh values

1
of E, at Tn+1 by using Eg. (2-19). Then the values of B, at a
can be found from Eq. (2-16) and Maxwell's equations will have been advanced

one time step.

. . n+1

The following procedures are used to obtain the value of EYN+1+1/2 .
The E, equation is differenced as in Eq. (2-8) except: Aak = 0 in the
uniform mesh, Jy and ¢ at k=N and k = N-1 are used to extrapolate

n+l n+l . .

to ZN+1+1/2 ,» and BxN+1 = 'anN as discussed above. One obtains an
equation !

n+l _ _ n+l _

EyN+1+1/2 = DipgypDay, By (+1) (2-26)

where DIN+1 and D2N+1 are essentially calculated as in Eq. (2-9),
except for the extrapolated values of Jy and ¢ . The gradients of Jy
and ¢ are small at the upper boundary so these extrapolations do not

cause any problems. The input constant n was set to unity in most

problems and very little effect was observed with its reasonable variation

from unity. Substituting in Eq. (2-26) for BE;I by Eq. (2-16) and then

for 52;1 by Eq. (2-19), we find
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n+1 _ n+1 Let -
Byvez2 T Bymerers2®ntiy (2-27)
where
L Day (00D (GaGaytCay)
N D2N+1(n+1)(C2NG2N+C3N)
and
e - Diy, D2y (111 (Cap*Capay)
N D2N+1(n+1)(C2NG2N+C3N)
Eq. (2-27) and Eq. (2-23) with k = N are then used to eliminate
n+l .
EYN+1/2 and find
f,-f!
n+l _ N °N
E}’N+1+1/2 - eN-eﬁ : (2-28)

2.5 THE EQUATIONS OF MOTION

The semi-implicit method used to difference the equations of motion
(Eqs. (1-30)) in GLANC, which will now be given, was selected on the basis
of simplicity, of calculational speed, and of accuracy. Differencing Egs.
(1-30), we have

n/.n+l n
8t A (P +P )
Pn+1 : Pn _ X X
X X n
v
2(1-0056 _y) cpP?
c
e n/.n+l n
= 8t v_\" §t A (P +P )
prtl . pn__C @n+(_2) B“)_ y Y (2-29)
y y EAVAT X W
1-cosg A 2\1-cosb 4 an
[ c
+1 a 2-61 A ("A\" . ST AD(P2+1+P2)
p" = pr- S {8}
z z n\ z \c X '
v v n
1 - cos® c_y 2(1~cose Ey_) cP

31




If one defines

A 8T

£ = = s (2-30)
v n
2(1—cose C—y) cP

then Eqs. (2-29) simplify to

n+l1 _ n 1-&
Py - - 1+&
peq ) g'dT N fz_Bn
y( -€)- MY ¢ x
n+l I-cos6 EZ) |
Py = T+E (2-31) |
e n
- 0T v )
n c n{'y} .n
Pz (1-g)- Vn) IEEZ (c Bx]
- A
Pn+1 _ 1-cosg c
z - 1+¢

The location in the z-mesh of the particle with momentum P is known by
the use of Eq. (1-31). The fields used in Eqs. (2-31) are evaluated at

the particle location by interpolation of the field mesh values.

There are six numbers carried in the computing machine for each

particle that is injected. Besides the three momentum components and the

position in the z-mesh, a "weight' is carried and an index (Kp) is carried.
The weight is discussed in a later section. The index Kp is zero if the
particle has been '"turned off." -The index Kp is equal to k if the
particle is in cell Zy i.e., if the particle location Zp satisfies
241/2 S.zp < zk+1+1/2 > and if the particle is 'turned on'" or active.

It may be noted that the index Kp is not necessary, i.e., the weight of
the particle can be zero to indicate if the particle is "off" and greater
than zero to indicate the particle is "on" and one can locate the cell the
particle is in from the number zp . However, the nonuniform mesh would
make the search for the cell containing z_ rather time consuming and,

P
thus, we use the index K
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The drag force (Eq. (1-27) becomes infinite as the electron energy

) , approaches zero. Thus & as given by Eq. (2-30) is used as an indicator
to turn off an active particle when its energy is so small that the
particle no longer contributes in the source calculation. The particle

is turned off if & > 0.5.

ed.

w
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SECTION 3
SOURCES

3.1 [INTROBUCTION

In order to solve Maxwell's equations we must have J J; , and

y 2
0 as a function of space and time for the GLANC geometry. ¢ is obtained
from the air-ion equations by knowing ? . The source calculations must
therefore provide a method of obtaining Jy s JZ , and & as functions

of space and time,

The transport of the gamma rays from the burst point to the line
of calculation (z-mesh) will be characterized by a fractional loss of
gamma flux
-uy_*10"3%pr
. l—lt.Y P

00 yrr (3-1)

where r 1is the slant range (see Figure (1-1))}, p is the density in

gms/liter, Mt is the total absorption coefficient in cm?/gm.

The number of gamma rays of energy E (Mev) per square centimeter
per second gives the gamma flux at the line of calculation:
Ye K

E
L Y

Hh
1l

¢ F(t") fr (3-2)

where Y 1is the yield in kilotons of the nuclear device, eY is the
fraction of the yield that appears in the form of gamma rays, K =
2.613+10%° 1is the number of Mev per kiloton (kt), and F(t') gives the
time history of the gamma rays at the source, as described in the next

section, in units of per centimeter.
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It may be noted that the above prescription for the gamma ray
source at the line of calculation does not account for any space or
time build-up factors. Since GLANC is only designed for close-in and
short-time calculations, the buildup factors are easily simulated by
selecting the input parameters which determine F(t') and by changing
the magnitude of, say, EY , 1.e., with the shape in time and the peak

magnitude controllable by input, the gamma flux input is flexible.

3.2 THE TIME HISTORY

In all source calculations the time history of the gamma ray
pulse is prescribed by an analytic function, F(t') , where

' = T+z sin 6 as in Eq. (1-7). We define

1
= AgAeePT for 0<T<T,

A2A0(1+ g%)eBZ(T ~To)

FOD 1 % TR Gy T TR (89
B
- 1
L= AjAge BuT for T, STLT o

where Bl: BZ: 83) Bh; Ta) To, Tb; Tmax)

z-dependence of the retarded time and of the gamma ray attenuation in the
eYoZ/Sine

and Ao are input numbers. The
ground have been included. A, = in the ground when 6 is
greater than zero and Ap = 1 in the air. If the burst point is on the
ground (6=0) the sources are zero in the ground so that A, is not used
in the ground. vyp, is the reciprocal of the gamma ray attenuation length
in the ground. The values of A;, A, and A; are determined in the
following manner. We want the functions to be continuous at T, and Ty »

the integral

[oe]

fF(T)dT = 1 (3-4)

-00
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(3-3)

and To {(the value of T at the peak) to be selected reasonably so

that T, <To < T, . Set A, =1 at, say z =0 . Then find A

and

Az such that F(t) is continuous at 71, and T} respectively.

Defining I, and I, by

Ta
I, = ./rF(T)dT = g%-eBITa
and
I, = ‘/rF(T)dT = %%—e_B“Tb ,
)

one calculates by use of the computing machine the value

Ty

1 = I, + I, +v/P F(t)dr s

T
a

so that Eq. (3-4) can be satisfied by the normalization of the initially

assumed constants, i.e., one replaces A; by Ai/I , A2 by A/I

and Az by Aj3/I . Since all the z-dependence of the source has been
included in F(t') and since GLANC carries only the retarded time on the
ground (z = 0) , we will sometimes write F(r') = Fy(r) for the time

history at z; .

3.3 THE PRESCRIBED SOURCE

The "prescribed" source, as in most EMP codes, js determined by

making it proportional to the gamma ray flux. Thus, we have,

> a -+ e (3_5)
J - n fyucRMf c

>, B s

n  is as in Figure

and

-5
where J is the current density in abamps per cm?,

R - s . 2
(1-1), wu. is the Compton scattering coefficient in cm per gm,
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RMf is the mean forward range of an electron in gms per cm? . Similarly,
. E
= . 10”3 -
Y o= e 107, ot (3-6)

where % is in ion-pairs per cm® per sec, L, is the absorption coefficient
in cm® per gm, and 34 ev is the energy needed to form each ion pair. It

is more convenient to write Eqs. (3-5) and (3-6) as,

J = a J(t") ,
and (3-7)

Y = Yo Fp(t")

where we define

J(T') = _JOFk(T) >
Ye~ K
= =Y >
Jo E - MRye® £, (3-8)
Y
and
Ye Kc «1083
y - y ‘aP £
Yo 34 T

Thus, in GLANC, the "prescribed" value for } is given by Eq. (3-7) and

the "prescribed" values of the current components are given by

[
I

J(t') cos &
(3-9)

-
H

-J(t') sin @

3.4 THE LEMP METHOD

The LEMP geometry for DX and DY is shown in Figure 3-1. In

LEMP* the field reaction on the electrons was (nonlinearly) fitted as a

*H. J. Longley, "Compton Current in Presence of Fields for LEMP 1," Los
Alamos Scientific Laboratory report LA-4348. See also LA-4347 (Secret-RD)
and LA-4346.
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Figure 3-1. LEMP geometry for DX and DY and the fields.

function of EY R B¢ s Epo and Ee . DX is the average distance the
electron travels in the direction of the gamma ray and DY is the average
distance the electron travels perpendicular to the direction of the gamma
ray. Ep Ee , and B¢ in LEMP form a right-handed spherical coordinate

system and, in terms of the GLANC fields, are given by

B, = “Bx
Ep = Ey cos 6 - EZ sin 6 (3-10)
Ee = —Ey sin 6 - E, cos 6

If the fields are zero, then DX =R and DY = 0. (Here, and in this
section, R 1is the mean forward range as given by RMf above.) The
LEMP fields as calculated by Egs. (3-10) were used in the LEMP subroutine
to calculate DX and DY . The sources for GLANC, by the LEMP method,

are given by
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J = J(t") [—ﬂsine+n—xcos 6] ,

y R R
DY DX .
= - | 2= e -
JZ J(t") [R cosf + g~ Sin 9] R (3-11)
and

. . E_+e(EyDX +E4DY)
Y = YUFk (T) —

Ee

where Eé is the mean electron energy. The factor in the bracket on the
right side of this ? equation accounts for the energy loss (or gain) of
the electrons due to the fields. This factor was not allowed to be smaller

than 0.2 in LEMP and in GLANC.

3.5 THE PARTICLE SOURCE

The particle source is obtained by injecting sample Compton electrons
at each Z of the mesh in the air at periodic times and then following
these electrons by solving their equations of motion. The fields and the

particles are advanced in time in a completely self-consistent manner.

At the beginning of a problem the fields are generally small.
Thus, the injection of particles is not started until ‘/E;+E§+B; > Egos

where Eg, is an input number of about 0.5 (esu).

The initial values of the momentum of the particles were given in
section 1.3 and the equation of motion of the particle and its position

were discussed in section 2.4.

The number of Compton electrons born per cm?® per unit of retarded

time is given by

dN
e

dr

% 10-3puch (3-12)

and the total number of Compton electrons born per cm3 is given by
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.Irons

dNe Ye_ K .
Ny = I 4t = —Ei}-lo T , (3-13)

-

when one uses the results of Eq. (3-4). The Compton current density

(abamps/cm?) for a particle is given by

->
3 = -WT{T1,2)e v__ 1 (3-14)
P ? c v
1-cos® A
c
where NoFk(T)GT
WT(T,Z) = T— (3"15)
¢

is the weight assigned to the particle at its injection time for its

space (zk) position. Note that the weight becomes Ny when summed over

all cycles (all 1) and over all ne-n¢ = nP . The value of ? (ion-pairs/
em® sec) for a particle is given by
> -
A(B . 1
v c

WT(T,2) {(3-16)

[
Yo T 32:1.60-10- 7

> >
R L] 1 -

In GLANC, the current or ? at the desired mesh point, Z) s is found

v
1-cosH 4
[

where

ooy

-
V/pPmIcT /pTmEeT

by adding the contribution of all particles in the cell surrounding zp

at the desired time.

Since the mesh in GLANC is nonuniform and since the area or volume
is not included as a consideration in the weight of the particle (Eq. (3-15)),
we change the weight of a particle when it changes cells by the ratio of cell

sizes. When the particle changes to the cell from the Zy cell, its

z
k+1
weight is changed by the factor (Zk+1+1/2_zk+1/2)/(zk+2+1/2_zk+1+1/2)' Simi-

larly, a particle changing to the 211 cell from the zk cell has its
weight changed by the factor (Zk+1+1/2_zk+1/2)/(Zk+1/2_zk—1+1/2)'
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The boundary conditions on the particles in the ground cell and
in the uppermost (large z) cell are accounted for by the following pre-
scriptions. When a particle has a value of z less than zero, it is
turned off. When a particle leaves the uppermost cell and is to enter the
cell below, a new particle is injected at the top of the uppermost cell
with the parameters of the particle (except for position) which is leaving
the bottom of this uppermost cell. A particle leaving the top of the
uppermost cell is turned off. At the ground there are other physical
effects which can be included in GLANC, such as the electron multiplica-
tion effect and gamma-ray scattering effects. However, these effects have
not been included in GLANC at this writing due mainly to their

complications.

To save computational time in processing particles a method of
time averaging was devised to allow one to inject particles only every
N cycles, i.e., for injection time intervals 6Ti = N6t . The symbol
N used here is an integer input number and should not be confused with
the same symbol used above for the last cell in the zy, mesh. The need
for such a scheme is due to the small values of Z (smallest mesh size
in the air) required to resolve the field gradlents near the ground and
the consequent small values of &t required, in the solution of the
equations of motion of the particles because of the retarded time factor
1/(1 cosB —1) This factor is more than ten for some of the particles at
injection time. Also, the small values of Z0a require small values of
8T be used in the solutions of Maxwell's equations. For example, we ran
problems with GLANC where, for Z,a =4 cm, 6T =2cm in a problem
which does not inject particles and 6T = 1 em in a problem where particles
are injected. A &1 of one centimeter is (1/300)th of a shake in

retarded time.

At each mesh point z) in the air one calculates an average

value for Jy » J, , and ; at any given time by an equation of the

form
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e

J = 3-1
Jif1+Jaf0+. . .+JNfN ( 7)

where Ji1 here represents either Jy s JZ , or Q at the latest time,
JN is the same at a time N8t -earlier, f.1 is the ratio of Fk(ri) to

F' , the time of F, (t;) is given in Figure 3-2, and F' is Fk(rj at
the latest injection time. Figure 3-2 shows graphically the quantities
used in the averaging scheme at a time of injection with N = 8. The

sum on the right side of Eq. (3-17) is not divided by N since the WT(t,z)
function in Eq. (3-15) contains &1 and not &t; = NéT . The values of
f; follow the time history of the gamma rays (Fk(T)) and are normalized
by Fy (1)  at the last injection time (F'). Figure 3-2 is an example

of the various functions as they might appear on a log-linear plot at

oP1T | The saw-tooth curve

early times when Fp (1) 1is increasing as
simulates the effects of the new injection of particles and the decay of
all the particles. The line through J, represents the source (Jy R

JZ , or Yy) as might be given by an analytic function or, here, as the
average which would result from an assumed continuous injection of
particles. A number q =1 to N is carried in the calculating machine
to indicate the time cycle within a given injection cycle. Thus, q = 1
in Figure 3-2 and it is injection time. At this time one must back store
the fi and Ji values that exist in storage at the start of the cycle
except for £, and Ji . The back storage is done by setting £; =1
JN_1 ,(then) JN_1 = JN—Z , etc. until we set Jz =J1 . A
new value of J; 1is found by adding all the contributions to Ji from

and JN =

all previously injected particles (that have not been turned off) plus
one half the contributions to Ji from all the newly injected particles.
When q > 1 the back storage is done by setting fq = Fk(Tq)/F' and
then setting JN to the value of JN—l R JN—l to the value of JN_2 ,

etc. until J, 1is set to the value of J; . The new J; 1is then set

‘equal to the sum of all nlive" particle contributions (each from the

Eqs. (3-14) or the Egs. (3-16)).
At the first injection time, i.e., when it has been determined

by the criterion given above that the fields are large enough to turn on

the particles, one must set up the back storages in the time averaging
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Figure 3-2. Particle Time Average Scheme.

scheme. Figure 3-2 is also appropriate in time for this first injection
and the initial back storage calculation. This initial back storage, as
given below, is done in such a manner as to make the particle sources
fit smoothly onto the prescribed source. We thus set Ji1 equal to the
prescribed current {which exists at the time of this first injection)
divided by N . We inject the first batch of particles and calculate

JPl as the source from these particles with their usual standard weights.

A weight correction W, = fg%i%ﬁ is calculated and the weight of each
of the initially injected partiB}es is multiplied by W. . The current
of the first injected particles with corrected weights, J, , is then
calculated. We then set J_ = Jl—(J+-J1) = 2J1-J+ . Then J, = J_eBp(ST
where BP = 0.0417p is an empirically determined decay rate per cm for
the particles. R was determined by running a batch of particles with

zero fields. Then Ji = Ji_les-paT for i =3,4, ..., N. The initial
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values of f; are determined by knowing the jnitial rise constant, B1,
of Fp(t) . Weset f, =1.0 and f; = fi_leBIST for i=2,3, ..., N.

] We will state again that the average source values of Jy s JZ 5
and Yy are all calculated by the methods given above and characterized
by Eq. (3-17). These calculations and back storages are done each cycle
for each cell in the air to find the sources for Maxwell's equations by

the particle method.
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SECTION 4

ZERO TIME SOLUTIONS

4.1 AIR CONDUCTIVITY

T =0, we have in the air for n_ = 0 ,
dn .
. » +Z S 0
¢ dTe *ong = Y = YoAleBI(T z sin 6)

Letting n, be of the form

BiT
ne = Ngée
one finds
. Biz sin ©
YoAie
Ttg =
cBi+o

Thus © at zero time is given by

o = CSau = € nou
c c e

where |E| = 0 in the calculation of M end o .

zero time solution for o . By Egs. (1-19), (3-3), and (3-7) for

The differencing of Maxwell's equations as given in section 2.4
assume that ¢ is greater than zero. The conductivity in the ground,

Op , 1s an input number greater than zero. In the air we must find a

(4-1)

(4-2)

(4-3)

(4-4)



4.2 MAXWELL'S EQUATIONS ‘

When the burst height is zero there is no appropriate zero time
solution for Maxwell's equations (Egs. (1-12), (1-17), and (1-18)).
This is due to the fact that the radial derivatives are not present.
This difficulty is eliminated by selecting To(T at the peak on the
ground) such that 4mg >> l-, where A is the gamma ray mean free path

A

in centimeters. For this ground burst we set Ey = E, = B, =0 at

zero time.

When the burst is above the ground an appropriate zero time
solution does exist. Here we let o be zero in the air. By Eq. (3-9)

we have for T =0,

B 11:+kZ

(=
[}

JoAe cos B (4-5)

JoAleBIT+kZ sin 6

o
1l

where, here, k = B; sin 6 + g%%—; and vyp 1is given after Eqs. (3-3) and

is zero in the air. Letting Ey » E, , and By vary as eBlT+kz the
Eqs. (1-12), (1-14), and (1-13) give
" (eBi1+4m0)E. - kB = +41JgA; cos §
Yo Xp
(eBl+4ﬂ0)EZo - B cosb on = -AmJyAysin 6 (4-6)
BlBXO—Blcos EZ0 = k Ey0

or, using the last of these equations to eliminate Bx from the other
0

two, we have

k? ;
( - EI)EY0+ (-k cos O)Ez0 = 41JyA; cos B |
(4-7) I
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nd

where, here, n = eBi+4nc and the determinate is given by

k2
D = n{n-B.cos26- ——) . (4-8)
B1
A particular solution for the inhomogeneous equations (Eq. (4-7))
gives,
E - 4nJ oA c0s0
Yo, 81
41JgAy51ind
E = - oS T 4-9
Zo, Ba (4-9)
and
Bx = 0
03
in the air and
\
E = ﬂﬂgﬂﬂl&gﬁg—[n -B1c0526-ky5ind]
Yo b g g
g g
4nJgA kg
= _ 4mdoAl . __8) 2 _
EZo -5 51n6( g B1) kgcos e] v (4-10)
g g
and .
S T4 | S
Ug g 1 J
in the ground where kg = B15in6+ sz; g ng = gB1+4m0y , and

= _ 20 1.2
Dy = ng(ng Bicos“O kg/B1) .

The solution to the homogeneous equations (Eqs. (4-7)) is given

when D=0, i.e., when

kﬁ = B1 [4T0+B1 (e-c0s?0) ] (4-11)
and X
_ h
By = 7 By
(4-12)
_ Bicosb
By, = — Byy,
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In the air the negative sign in Eqs. (4-11) is used so that B, 1in the

air is less above ground, i.e., kp_ = -B.sinf . Similarl , in the ground
g ha 1 Yy g

where =z 1is less than zero, we select khg = +v/Bi{4ﬂco+Bl(€-cosze)}.

Thus, the general solution at early times in the air is given by,

E = LTl eBlZSlne—Bx sing ¢ B1zsind
y Yo, hy
E = BT [% 981251ne+Bx cosf e_BIZSIHé] (4-13)
z Zg h
a a
_ B1T -B1zsin®
Bx = e [%Xhae
In the ground we have,
. Yo
z [B15inb+ — ) kg, z ky
Ey = T Ey o ( sin 6 +Bxh ﬁ_g_e g
°g g g
[ ( 'Y
z|{B1sinB+ —?ﬂ—) z ky
E, = T e Sin0/sp,,  Bacos® T gl 44
i °g g ng
r : Yo
z@151n0+ - ) z kp
sind
B, = Pt Bxg © ey o B
g g
The two unknowns in Eqs. (4-13) and (4-14) are Bxh and Bxh Since
a

. . g
Ey and Bx are to be continuous at z = 0, two equations result from

these continuity requirements and the two unknowns can be found.
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APPENDIX

UNITS
E(volts/meter) = 3+10* E (esu)
@ B(webers/m2) = 107% B (emu)
J(amps/m?) = 10° J (abamps/cm?)
g{(mho/m) = %9-0 (em™ )
£ (MKS) = gge (Gaussian)

-12
i Here €g [(8.85415.10 )

free space, which is well known by users of MKS units.

Farads/meter] is the dielectric constant of

!
]
1
i
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