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1. INTRODUCTION

Scott (Ref; 1) has presented results of measurements of the electrical
conductivity and dielectric constant, as functions of frequency, of many

samples of soil and rock.

In the present note we show how to use the frequency-dependent parameters
to formulate a time-domain treatment of electromagnetic problems. The time-
domain treatment is useful in finding computer solutions to problems involving

electromagnetic pulses in the ground, or in other media.

Our method can be applied to any particular type of ground if the
frequency-dependent electrical parameters are known. In many cases, complete
data will not be available for the ground of interest. However, Scott found
that, subject to some variations, the conductivity and dielectric constant of
many samples scale with just one parameter, namely the water content of the
samples. Thus, if one knows the conductivity o or the dielectric constant
¢ at one frequency, one can estimate both ¢ and € as functions of fre-
quency using Scott's "universal" curves. This result is obviously of great
importance in practical work. Because of this, we transform Scott's universal

curves to the time domain.

For a discussion of situations where large deviations from the universal
curves may be expected (in particular, in locations with high rainfall) the

reader should refer to Scott's paper.

We also indicate how the time-domain electrical parameters can be

measured directly by pulse techniques.



S ——

2. TIME-DOMAIN THEORY AND ASSUMPTIONS

We postulate here -a.general relation between the electric field E
and the electric current :density j induced by E . We assume that this

relation has the following properties:

(a) it is local; i.e., the current density j at a point x in

space dependé 6n1y 6n the field E at that point;

(b) it is linear; i.e., if j, results from E; and j, results

from E, , then (j; + j,) results from (E1 + Ep);

{(c) it is causal}'i.e., j at time t depends only on E at times

no later than t ;
(d) it is invariant under changes of the time origin.

Of these assumptions, we may expect (a) to be true in an average sense, pro-
vided we do not look on the scale of the microscopic or crystalline structure
of the medium. We may expect (b) to be true for sufficiently small E
applied for sufficiently short times (experimenters should watch out for
non-linear effects). Assumption (c) may be expected to be always true.
Assumption (d) may be expected to hold unless physical changes are occurring
in the medium, due to other effects (e.g., shock waves, drying) on the time

scale of the electric fields.

Consistent with the postulates (a) - (d), the most general relation

between j and E is
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jlx,t) = J/.é(x,t') K(x,t-t')dt" . 1)
-0
Here é is the time derivative of E . We could have written E instead

of E inside the integral (integration by parts shows the equivalence), but
use of E will be convenient. The kernel K can depend on x , but since
x occurs in Eq. (1) only as a parameter rather than as an essential vari-
able, we shall henceforth suppress it. For the present we think of E and

j as scalars rather than vectors.

If E(t') were a step function, E would.be a delta function. Thus,
the kernel, XK(t-t'), is the current that flows in response to a step function
in E . The general form of this current or X(t-t') will be as indicated

in Fig. (1). There will be a delta function at t-t' =20,

. step function
E(t)
Fig. (1). General form of current
t' t that flows in response to a step
function in E .
<« delta function
K{t-t') Lonstant
t' t

corresponding with the infinite-frequency dielectric constant. For large
t-t' the current will approach a constant, corresponding with the d.c.

conductivity. At finite times the current will vary in some way.

It is convenient to separate out the infinite-frequency dielectric

constant and the d.c. conductivity, rewriting Eq. (1) as

Em hd t -
j©) = 0B ¢ oo B +f EGeO keethae L @)

-0



where we have used the same symbol for the new kernel, and c¢ is the velocity

of light (cgs gaussian units).

The connection with the frequency dependent parameters is found by

letting E be proportional to ettt . Then one finds

iuusg0 © .
jl = Oo + g + iwfe U g () du| B (w)

0

Thus the frequency-dependent conductivity is

o0 -
o =  @gg + Re(iwfe_lwu K(u)du)
0

and the frequency-dependent dielectric constant is

o .
€ = g, + 4—25 Im(iwf gt K(u)du)
0

Here Re and Im stand for real and imaginary parts.

Note that the kernel, K{(t-t")

(3)

(4)

(5)

s could be determined experimentally by

applying a step-function voltage to a sample and observing the current flow

at later times.
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3. APPROXIMATION OF K{u)
We shall now assume that K(u) can be approximated as a series of
decaying exponentials,
4) -8B u
. n L
K(u) = E a e (an, Bn positive) . (6)
As we shall see below, this form is advantageous for use in numerical compu-
5) tations, and allows a simple physical interpretation in terms of equivalent
electrical circuits.
Inserting this approximation in the time-domain equation (2) we
by find
low e
. - Lo o] .
) = o0 B ¢ g B+ Dy 5 () (7)
where
_Bnt t . B‘nti
It = e fE(t') e ™ det (8)
-0

Obviously, the Jn(tJ satisfy the differential equation

dJ

Efﬁ' * Ba N E(t) ' ©®)

In numerical calculations, the Jn(t) can be carried forward in time at

each step by use of the difference form of Eq. (9). This procedure will be




generally much less time-consuming than evaluating the complete integral

of Eq. (2) at each time step, and also does not require storage of E at

all previous times. This advantage derives from the special form of
Eq. (6).

Use of this form in Eqs. (4) and (5) leads to the frequency-

dependent parameters,

2

]
g = Op + & an w . (10)
n n
Bn
€ = € + 4mc ¥ a YRR . (11)
o n n Bnﬂu

Later we shall discuss the fitting of Scott's universal curves by these
formulae. First, however, we shall establish the plausibility of the

approximation Eq. (6) by examining the equivalent electrical circuit.
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-4, THE EQUIVALENT ELECTRICAL CIRCUIT

Consider the two-terminal a.c. circuit shown in Fig. (2). By
standard a.c. circuit theory one finds the current j that flows in

response to the applied voltage E,

j = 1-—-+ iwC + X 1 E (12)
Ro ®  n R+ ’
n iwC

n

T

I T P T
T . TC1 TCZ _____-[Cn_____

Fig. (2). Equivalent circuit,

< [T —

Rationalizing the terms inside the summation and letting

we find that Eq. (12) can be written as

B
. 1 1 w? . 1 n
j = (——-+ T ——-————7) + iw(C + I = = )| E . (14)
[,Ro n By BZFuw ® By Byt

If a unit volume of the medium is represented by our equivalent circuit, we

have the correspondence



These equations will be completely equivalent to Egs. (10) and (11).
in addition to Eq. (13), we let

1
Co - = ﬁ 3 (17)
€, = 4me C_ , and (18)
_ 1
a.n = T R (19)
n

then Fig. (2) is indeed an equivalent circuit for the approximation of Eq. (6).

It is plausible that "ground" should be representable by RC networks.
In the many fissures, with water present, one would expect to find ionic
conduction, accounting for the resistors in the equivalent circuit. A
fissure which terminates will be capacitively coupled to other fissures
which begin nearby. Unless the fissures have helical paths, one would not

expect to find inductances beyond the free-space inductance.

While the RC network of Fig. (2) is special in that all paths are in
parallel without cross coupling, it can be shown that any two-terminal RC
network can be replaced by an RC network of this type having identical
external characteristics. The proof of this theorem is outlined in Appendix

A, for those who wish to pursue it.

10
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, 5. A FIT TO SCOTT'S UNIVERSAL CURVES
We now turn to the fitting of Scott's universal curves by forms of
the type of Egs. (10) and (11). For purposes of numerical computing, we
) desire to keep the number of terms in the summation to a minimum.
3) . To see how many terms may be required, consider the following
example. Scott's € , for some frequencies, is approximately proportional
?) to w !, so that we is roughly constant. We therefore need to discuss
how one fits a constant function by a series of functions of the form
1. (6). | 8 o |
gwB) = Fmagr | (20)
rks. P 7
In Fig. (3) we have superimposed two functions of this type, one with
Bn = 10 and one with Bn = 100 , both with amplitude factors unity. The
sum of the two functions is approximately constant between w = 10 and
St w = 100. Thus by_superimposing such functions one decade apart in Bn* one
can approximate a constant function. By spacing the functions closer in
frequency (logarithmically), one could do a better job, but this accuracy
in is good enough for our purposes. In general it is desirable to keep small
" the number of terms in the fit.
1dix _ Therefore we decided to fit Scott's universal curves using one term

per decade in frequency. In Fig. (4) the solid curves are Scott's universal
curves for € . We fitted these curves first, using B =27 (10%, 103,
10%, 105), with an adjustable a, (Eq. (11)) to go with each of these
four Bn's. By also adjusting g Wwe could fit the curves exactly at five
points, which we took to be w = o (102, 103, 10*, 10%, 10%). These
points are the triangles in Fig. (4). The values of ¢ and the a; so

determined for each water content are given in Table 1.
11
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sum

g{w;10) g{w;100)
0.1

function

0.01 1 10 102 103

Fig. (3). Approximation of a constant by the
sum of two terms of the form of Eq. (20).
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Table I. Fit Parameters for Ground Conductivity

and Dielectric Constant, from Scott's Universal Cuxves.

Fit is from w = 27 x 102 to 2m x 10° .

Beiany I I S T T
0.3 11.8 | 1.08(-6) | 2.12(-6) | 5.10(-6) | 2.95(-5) [ 1 25(-5)
1 16.7 | 3.86(-6) | 5.25(-6) | 1.38(-5) 5.15(-5) | 7.25(-5)
3 23.3 | 1.24(-5) | 1.49(-5) | 3.35(-5) { 1.12(-4) | 3 75(-4)
10 39.3 | 5.33(-5) | 5.48(-5) | 8.88(-5) | 2.84(-4) | 2.15(-3)
30 74.1 | 2.07(-4) | 1.82(-4) } 2.77(-8) 6.27(-4) | 1.20(-2)
100 169 1.12(-3) | 8.04(-4) | 1.01(-3) 1.79(-3) | 8.26(-2)
o(cm™?) = gy + 2: a 82+w2 -o= 0.3 ¢ (mho/meter)
4 Bn
e = €, T AmC EE% a Egiﬁf (Evacuum =1
1+
Bn = 2m10
Note: 1.08(-6) = 1.08 x 1078

1k




Using the fit, we then calculated & at other frequencies, and the
results are represented by the circles in Fig. (4). In general, the fit
droops a little below Scott's curves between the fitted points, especially

— in the upper frequency decade. The fit could be improved easily by increas-

ing the number of terms, but we were satisfied with the present results.

We then had left one adjustable parameter, O, , to fit the conduc-
tivity. In Fig. (5), the solid curves are Scott's universal curves for o .
By adjusting op , and using the Bn and a, determined above, we
obtained the fit represented by the circles in Fig. (5). The values of

Op SO obtained are also listed in Table 1.

The satisfactory quality of the fit indicates that Scott's universal

curves are at least approximately consistent with the RC network model.

For readers who may wish to use the conductivity in mho/meter, note
that

o (mho/meter) = g(ecm™1)/0.3 . ‘ (21)

15
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6. AN_ALTERNATIVE TYPE OF FIT

Although the fit described above is most convenient for the purpose
we had in mind, there is an alternative fit that is theoretically inter-
esting. The reader may observe that Scott's universal curves for € have
the property that two curves for different water content can be made to
coincide (very nearly) by shifting one of them horizontally in Fig. (4),
i.e., by simply scaling the frequency. In fact, within a few percent, all

of the curves can be represented by one function

€ = € (w/Wt?) R (22)
where W is the fractional water content by volume,

Note that Eq. (16) can also be written as

£ = 4dme C, *Z (23)

_n
2
n 1+(5L)

We therefore see that, in order that a change of water content should corres-

pond only to scaling the frequency, the capacitances C, must be independent

n
of water content, while
1 1.3
= 2" e
R C Bn W ’
nn
or
L Nt d (24)
R_ .
n

17




These results imply that the fissure geometry (C,) does not change,

while the conductance in the fissures increases with water content.

The conductivity o is also reasonably well fitted on this model,
although it turns out that oy increases slightly faster with W than do
the 1/R, from Eq. (24). It would be interesting to know whether the
data from Scott's many samples could be fitted just as well by functions
of the form

m
n

e(w/g(W)) s (25)

Q
1}

g(Wo, (w/g(W)) . (26)

for some suitably chosen function g(W) of the water content.

18



NUMERICAL METHOD FOR MAXWELL'S EQUATIONS

With the current density from Eq. (7), Maxwell's equations become

1 %

T = -UxE R : - (27)
€ of . :

=% - UxB - 4mooE - 4T Izl a J_(t) . (28)

> > ] } .
One carries E and B forward in time using these equations, whereas the

quantities J,(t) are carried forward in time using Eq. (9).

If the medium is stratified, the quantities ¢_, 0o , a (and B,)

may be different in different directions.

19
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APPENDIX A
NETWORK THEOREMS

Consider an arbitrary two-terminal RC network. Represent it in

loop form, as in Fig. (6). Here each box represents a resistance and a

Fig. (6). Two-terminal network.

capacitance in series, although some R's may be zero and some C's
may be infinite. All 100p§ may have elements in common with any other
loop. Let loop 1 be the loop with the external terminals, to which the
voltage V 1is applied, and let the loop currents be Ik . Then the

loop equations (voltage drop around each loop equals zero) are

Z11ly + Z12I5 + ... ZmIn = ' 5

(29)
Zo1ly + Zpols + ‘e Zann = 0 R
anll + anIz + ... ZnnIn = 0

The solution for 1I; is




9)

where det stands for the determinant of the indicated matrix, Z.. is the

jk
full matrix of loop impedances, and Zji is the matrix obtained by leaving
off the first row and the first column.

The matrix ij is symmetrical, since ij = ij is the impedance
in common with the j'th and k'th loops. Furthermore, each ij is of
the form

1 /1 : | o
= + -— =

“jk ‘[Rjk*iw(c)jk] & - BD

the plus or minus sign depending on whether the current Ij and Ik pass
through the impedance in the same or opposite directions. Thus both matrices

7 and Z' can be made real by replacing iw by
s = iw . (32)
Thus we are considering voltages (and currents) of the form
st

VvV & e . ' (33)

For convenience, multiply numerator and denominator in Eq. (30} by

s™ . We then have
det(Ték)
I; = sV . 5 (34)
det(Tjk)
where o
T - SR, +K K. = (1) . (35)
jk ik T ik ik Clap
The matrices Rjk and Kjk .are real and symmetric.




To solve for the current that flows in response to a step function
in V, we need the transient or free solutions of the system with the

input terminal, shorted. These are the solutions of the equations

E Tjka = 0 s (36)

which exist only for those values of s for which

1
o

det(T&k) (373
From Eq. (35), this determinant is a polynomial of the n'th order in s s

so that there are n values of s which satisfy Eq. (37).

That these n values are all real may be proved as follows. Write

out -Eq. (36), and its complex conjugate,

Z (s R

= o, (38)
K .

5kt K0 I

I
o

G Rjk + Kjk)Ik (39)

k
Multiply Eq. (38) by .13 > Eq. (39) by Ij » Subtract the latter product
from the former, and sum over j . From the symmetry of R. and K.

ik ik’
one then finds

(s-5) I, o . S o)

L R
. ik
ik J
The double sum here is the power being dissipated in all the resistors of

the network; it is positive definite. Therefore s = S and s is
real.

In fact, all the allowed values of s are negative, since power
can only be dissipated, not generated, in an RC circuit, and currents of
the form of Eq, (33) must decay, not grow with time. '
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(36)

(37)

Vrite

(38)

(39)

luct

(40)

of

of

We now return to Eq. (34). We know that det(Tjk) is an nN'th
order polynomial in s with n real, negative roots. Let the roots
be

s, = -Bg . (41)

where the Bm are all positive. Then Eq. (34) can be written

det(Tik)
I = '
1 : s det(Rjk)[(5+Bl)(5+82) v (5%B)] (42)
Now, det(Tjk) is an (n-1)'th order polynomial in s . Therefore, using
partial fractions, we can write
det (T!,)
ik . b, by, Pn (43)
(s+B1) (s+B2) ... (s+B,) s+B; S+B2 s+B ’

where the b, are constants. Using this expansion in Eq. (42), and replac-

ing s by iw , we have

ai az ' an
I = v + oo b ——p s (44)
1+§-1- .l+.B—2 ].+~.~£
1w 1 1w

where the a; are equal to bm/det(Rjk) . This form is equivalent to Eq.
(12), for the equivalent circuit of Fig. (2), provided all the a, are
positive. The positiveness of the aj again follows from the positive-
definiteness of the power dissipation; a; = 1/R; where the R, are the

resistances of the equivalent parallel circuit.

23
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