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The Effect of Electron Cascading on
the Electromagnetic Pulse Generated by a
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Abstract

Using a simple analytic model, the effect of electron cas-
cading, or avalanching, on the peak fields of the high altitude
electromagnetic pulse (EMP) is investigated. From the experi-
mental cascading data presented, it can be seen that the phe~
nomenon should be significant in the 25 km to 40 km altitude
region. Analysis shows that the attenuation due to the in-
creased conductivity will reduce the field peak less than an
order of magnitude; probably 50 percent or less. However, this
increased conductivity could have substantial effect on the

late time signal.




1. Introduction

This note addresses the questioQ of electron cascading in
the upper atmosphere under the influence of the nuclear electro-
magnetic pulse (EMP). The field strengths predicted by the high
altitude burst computer codes indicate that, for certain yields,
cascading may be a significant effect. A detailed study is be-
ing made with these codes to see under what conditions cascading
is important and to what degree. These results will be pub-
lished separately. This note is an analytic study using step
function sources and constant cascadfng rates. While this ap-
proach may not appear useful, since the cascading rate is highly
field dependent, it does yield important information related to
the relative effects of the various conductivity parameters as
well as to the cascading rates that must be produced if cascad-
ing is to reduce the peak fields or change the pulse widths.

The high frequency approximation to Maxwell's field equa-
tions is used. Cascading is studied in terms of its effect on
the time of peak and peak field value. Computer solutions of
the same equations aré shown so that the influence of cascading:
on the entire waveform can be observed. Results are plotted in
such a way that the separate effects of the cascading rate,
electron source rate, and electron mobility can be seen.

2. Cascading Data

The cascading rate data used in the ¢ompﬁtg} study, to be
published, is shown in figures 1 through 3. This is oxygen
data based on measurements made by Ph.elps.1 The oxygen data
was compared to some nitrogen data2 and it was found that the
Thompson coefficients for each gas were in close agreement for
most E/P (electric field/pressure) ratios of interest. The at-
tachment coefficients are higher for oxygen than nitrogen, but
the computer studies indicate that attachment plays a very
small role in influencing conductivity for the altitudes of
interest.
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Figure 1 shows the Thompson coefficient as a function of
electric field strength, both normalized to relative air den-
sity. Figure 2 illustrates the drift velocity as a function of
the normalized electric field strength. Figure 3 illustrates
the ionization and attachment rates as a function of electric
field, again with both normalized to relative air density.

3. Mathematical Formulation of the Problem

Using the high frequency approximation Maxwell's field
equations reduce to (MKS units)

-:i:—r + g— E. = z_r (3.1)
o o
for the high altitude field, where
E = radial electric field
jr = radial driving current
Ep = transverse electric field
jT = transverse driving current )
e, = permittivity of-free space (8.85 X f:_lz-farad/m)
My = permeability of free space (41 X 10_7 henry/sec)
c = speed of light in free space (3.00 X 108 m/sec)
0 = conductivity of the media
T = local time = t - r/c
r = distance from burst
The conductivity is related to electron density by
0 = eun | ) ‘ B - (3.3)



where
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e = electron charge (1.602 x 10 ~7 coul)

B = electron mobility
n = electron density.

The mobility is electric field dependent. If some type of air
chemistry is important, the electron density is both time and

field dependent. In reality, the conductivity also depends on
the concentrations of the various ionic species, but, for the

time frame of interest, these can be neglected because of their
relatively low mobility. Since we are considering only cascad-
ing (not attachment or recombination), the electron density is

given by

B -0+6n - (3.4)
where

Q = electron source rate (elec/sec)

cascading rate (sec”1).
The cascading rate is field dependent.

For purposes of this discussion, both B8 and u will be con-
sidered field independent. In this case, Ege conductivity will
be strictly time dependent. The set of equations then has the
solutions:

T T T' :
n(t) = expj gdT f Q exp —f gdr"|dr! (3.5)
o o) o

g = eun

T'
f ocdt"|drt’ (3.6)
o



r a r r'
ET(r,T) = exp[—af Odr]ff r'jT exp[af odr"]dr' ' (3.7)
o o o

-

where

= 188 ohm/m

a-= Egi
)

Alternately, these equations have the form

T 3 T
E_(r,Tt) = j{ =X exp[-—jr OdT"]dT' (3.8)
X > '
o] o T

a r r - -
ET(r,T) = —f jnr' exp|- j gdr"|dr’ (3.9)
-~ r J, T et

Equation (3.9) sums up all the contributions to the transverse
field generated between burst and observer. In high conductiv-
ity regions, the skin depth of the plasma is relatively small
and the fields seen by the observer are those generated close- .
by. In this case, the fields can be approximated by integrating

from some distance ro, instead of r = 0. Thus,

) fxr 1 o ' “
_ - ' A
ET(r,T) = lexp i]; odr = Eo(ro,T)
o)
a r r B
+ = jf jmr' exp -.jr odr" dr' . (3.10)
r r T r

o

In this form, the solution shows the attenuation of the propa-
gated field to be the product of the geometric attenuation and
an exponential attenuation due to the conductivity of the re-

gion. Near the edge of the deposition region, the current and



conductivity drop to zero and only the geometric attenuation

term remains.

Let Q and jr’ jT have step function time dependence and

l/r2 spatial dependence. With B equal to a constant,

%(eBT—l) , B >0 (3.11)
n=
or , B =0 (3.12)

for times less than Tor the pulse duration, and

% Ne?T, B> 0 (3.13)

QT _ B =20 ‘ (3.14)

for times greater than Toe Here,

-8
N = (l-e To)

Because of the l/r2 dependence, the quantities

. 2. . 2.
JTO(T) = xr ]T(r"[) r Jro =r Jr(rrT) ’ (3.15)
& _—

and
2
oo(r) =r-o(r,T) . (3.16)

are constants with respect to r. The field equations then be-

come

1 T 1 T 1 v
E_(r,t) = exp|- 5 f 0. dT|—= jro exp | —= Uod'r" dt’
r er Jo ° e, r” Jo gr Jo

(3.17)




r aj r n
ET(r,T) = exp [—aco f d—;] rTo f -i'—_-,— exp|ac f dr 5 dr'
o p o o (xr")

(3.18)
during the time the source pulse exists.

Note from the above equations that the radial field is de-
pendent on the time integral of the current, while the trans-
verse field is dependent directly on the current. At the end
of the current pulse, the radial field will fall at a rate which
varies with the plasma conductivity, but the transverse field
will cease immediately. The transverse field at time, 1, is the
sum of the fields generated between 0 and r, attenuated by the
conductive plasma, at each point's local time, T. The radial
field does not propagate.

Assume that the current and conductivity time histories
are known at some reference distance, R. Then UO(T) = RZU(R,T)
and jo(T) = sz(R,T), where the current, j, is either transverse
or radial. During the existence of the driving pulse (T £ To),
the radial field is given by

Jor - T p(re |
or P(T{/Z P (T ) g , B =0 (3.19)

€ X
(o]

j } T (1t
or_ Bm_l; Bltarr g0, (3.20)

o

Er(r,T)

where

jro =R jr(R'T)

2 o _(B=0,T)
P(r,T) = B—EQ%EL T2 = —9————7—— T

2r 2eor
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2 (o _(B>0,T) - o _(B=0,1)]
B(r,t) = E_E%lﬂl[%(eBT_l) - T] = 2 > o
r'g €T B

'
]
M| M
o2

After the driving pulse has ceased, the field will decay accord-

ing to the equations

—aoT
e Ero ’ B =0 (3.21)
E _(r,T) =
T Bt
exp (-ce )EB ’ B >0 , (3.22)
where
. - co(6=0,T)
o e r2
T
J Y 0
B - _ro e (o] eP('r)dT
ro e r2
o) o)
= . - i - -
- GO(B o,To) )
o 2e r2 o)

00(6>0,T) -81

_ o
*= £ rZB ©
o
j "o
EB = r02 er eB(T)d'c
€T o

11



The solution to the transverse field equation has a closed
form in terms of the Exponential Integral of the first degree.
The Exponential Integral is defined by

-3 e-t
< dt . (3.23)
X

m

El(X)

The solution of the transverse field is then

ajTo (aoo) (aoo) .
ET(r,T) = —— exXp\-% El = ) (3.24)

Figure 4 shows the function E;(x) compared with e */x and
n(l/x). Note that for x >-1,

El(x) ® ’ ' (3.25)

and for x < .8,

Ey(x) * n(l/x) .- — @ (3.26) -

Thus, for aoo/r > 1,
ET(r,T) r =, (3.27)

and, for aoo/r < .8,

12

aj _
ET(r,T) ( To)e r ln(—E—) . (3.28)

7 L=



E, (x)

10

Ol -

In (17x)
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In the following chapter, we will investigate the varia-
tion of the radial field peak with the cascading rate, 8. A
problem arises with the transverse field generated by a step
function current because the field starts at infinity (£finite
current divided by zero conductivity) and monotonically de-
creases with increasing conductivity. There is no field peak
without a time dependent current. It is instructive to calcu-
late the value of current time derivative, jéo' at the time the
field peaks. If the conductivity remains small or does not
vary, the field would follow the current time history and peak

when jéo = 0. Normally, however, it will peak when

7% r

A _
Jro T T (aco) (aco) 1]- (3.29)
aoo exp - El —_—

For large conductivities (aco/r >> 1), this formula again re-

AN
gk

duces to jfo = 0 as the field equation reduces to jTo/Go'

4. Variation of Radial Peak in Time

The peak radial field occurs when the conduction current

equals the driving current, ie,

OEr = Jr ’ “a (4.})
or
j .
_ Y
Er = &m ° (4.2)

Time will be divided into two regimes: T < 1/8, when cascading
does not dominate, and T > 1/8, when cascading dominates.

In the first case, and when 8 = 0,

LN
B

n = Qt (4.3)

14



and

t P(t
PPar = 8 ! ' (4.4)
T kn_(t) *
o P
(o]
where
kn (t)T
_k 2 _ (o]
P=30T =—>
x = S
eO

tp = time of field peak

=)
i

o electron density without cascading (QT)

Changing the variable of integration from T to P,

P(tp) p P(tp)
-?-—dP=]%n——(t—)-' (4.5)
o] P o' p

where P = kQT = kno(T).

Utilizing the Mean Value Theorem of integral calculus to

pull the linear term through the integral,
o i : c _ —_—

P(t )
p P(t))
f ePdP = e P, (4.6)
P

o]

l'l'lri'l

Choose the intermediate value, t, to be tp/2, then
£ = [Zﬂ,nz x 1 . (4.7) '
P kQ ka

This equation can be used to find the rangé of Q which al-

lows tp < B-l, namely,

15



o> B%/k .

(4.8)

Table 4.1 gives the minimum Q necessary as a function of B and

M.
B8
E§ 107 3.10’ 5.107 108
1 5.5(10%%) 4.9(10%2) 1.4(10%3) 5.5(1023)
2 2.8(10%1) 2.5(10%2) 7.0(10%%) 2.8(10%3)
5 1.1(10%%) 9.9(10%%) 2.8(10%2) 1.1(10%3)
10 5.5(102%0) 4.9(10%1) 1.4(10%%) 5.5(102%)
20 2.8(1029) 2.5(10%%) 7.0(10%%) 2.8(10%%)
Table 4.1
Values of Q Necessary for tP < B;l
When cascading dominates, equation 4.4 becomes
tp B(tp)
B(T) _ e
f e dt = EEI_(t_)— (4.9)
o P
%
where
n = electron density with cascading
= 2(fT-1)
B = }%(n-no) '
where nJ is the value of n which would be seen if cascading did

not occur. Following the above procedure,

16



fB(tp) e® dB = eB(tp) (4.10)
. é kn(tp)

3 ‘g—Q(eE‘T 1) = kn(1) ,
and
B(t.)
o) - B{(t.)
f eBap = Ze P, (4.11)
o]

where n is an intermediate value of n.

The quantity n can be approximated by calculating n as a
function of some representative value of time t. When calcu-
latiﬁg the B = 0 case, we used t = tp/2 because n was a linear
function of time. 1In this case, n is nearly an exponential
function of time, so that t can be expected to be weighted to
times larger than tp/2. For large Btp, n can be approximated by

n=n' eBT ' (4.12)

with n' constant. Then, define

tl
jr eBTdT
n=n' 4, (4.13)
P

where t' is some time when n' was equal to the electron density
(before cascading became important). For tp >> t',

17



Substituting 4.14 into 4.12,

T _ _ 1
t = tp E inBt ’

P

or

8

Typical values are B = 10  and tP = 3.10“8

et
[

Wi
ot

Now,

5151
i

or, for large BtP:

- - -F)) = -8
= exp( B(tp t)) exp( 3 tp) .

=17

Then,

eB(tp) = 1 = 1 + exp(—g-tp) .

Continuing,

. SO that

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

AT



En(l + exp(—% tp)) X exp(-% tp) . (4.20)

B (tp)

For n >> n_, ie, significant cascading,

B
Bt ~=t
E%—(e P-l) =e 3P (4.21)
B
or
2
_3 . (8%
t, = 1§ zn(ko + 1) | (4.22)

Using the equality,

0, = euR’Q(R) , (4.23)

equation 4.22 becomes

eoBzr2
in\——— + 1} ' (4.24)

%

t =
p

glw

The field value at the peak can be found by substituting

the value of the peak time back into = -
3
_ -xo
fr =5 Tp - | (4.25)

With cascading, then,

19



IroP
Q
_ o
Er(Tp) ] 2 2 3/4 (4.26)
e B r
( o + 1) -1
QO
E_ (1) = Jro (4.27)
r''p 5 ) 3 1/4 '
[QOB (&gt )]

for

>>lo

The peak field varies inversely as the square root of B and is

inversely proportional to r3/2.

Table 4.2 compares the peak times calculated by computer,
using the radial field integral equation, and the approximate
peak times calculated using equation 4.22. Note that this

equation starts breaking down near B8 = 3.107.

Approximate
B”(sec-l)' - t_ (sh) rtp (sh)
108 3.1 3.0
5.107 4.1 4.0
3.107 5.0 4.5
10’ 6.3 3.3

Table 4.2

Actual and Approximate Peak Times

20



5. Timé Waveforms

This section presents computer calculations of the effects
of cascading using the same equations developed for the previous
analytic study. The radial eguations (equations 3.19 and 3.20)
were integrated as simple summations of the form

3 _ P(T.)
E_(r,7) = _or_2 e P (T) Z[e * AT] . (5.1)
i

e r
o

The transverse fields were calculated using equation 3.24 and a
polynomial expansion of the exponential integral for aco/r <1,
and using equation 3.27 otherwise.

Three separate parameter studies were made with both the
radial and transverse equations. In each case, a current of 10
amp/m2 was used. The first study is a variation of the cascad-
ing rate using a mobility of 10 m2/V—sec and an electron produc-

21

tion rate of 10 elec/m3—sec. The cascading rate is varied

from 0 to 108 sec_l. The second study is a variation of the

electron production rate using cascading rates of 0 and 3 X 107

sec-l and a mobility of 10 mz/V-sec. Finally, a study of the
mobility dependence is made using cascading rates of 0 and

- 1
3 x 107 sec L and an electron production rate of 102“ elec/mB—

secC. .
“n ) _—

Figure 5 shows the conductivity history for various rates
of cascading. Because of the semi-log scale, one can see when
cascading dominates by noting when the curves become straight
lines. Figure 6 shows the variation of the time waveform with
cascading rate, and figure 7 illustrates the ratio of each of
the fields affected by cascading to the field not so affected.
Figures 8 and 9 depict the production rate and mobility studies,
respectively. Figures 10 through 13 show the same comparisons,

in order, for the transverse field.

21
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Figure 6.

Radial Field vs. Time (8B study)
For Various Cascading Rates
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Figure 9. Radial Fleld vs. Time (u study)
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Figure 10, Transverse Field vs. Time (8 study)
for Various Cascading Rates
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Figure 13. Transverse Field vs. Time (u study)
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6. Discussion and Conclusion

While the preceding analysis does not~reflect a real situa-
tion, its simplicity serves to isolate the various factors in-
volved, eg, the relative importance of electron source rate,
cascading rate, and mobility. The cascading rate and drift ve-
locity can be identified with altitude and electric field
strength through the data in chapter 2. From this analysis it
is possible to draw some general conclusions about the effects
of cascading on a real pulse. '

If cascading is to be effective, it must have significantly
altered the electron density before or shortly after the field
peak. After the peak, the cascading rate will drop and becomes
less influential. If tp is the time to the field peak and if
an e-fold increase in electron density is considered signifi-
cant, then an average value of B equal to l/tP will give the
desired results. In the deposition region, field peaks normally
occur in the 3 to 6 shake region, implying that average cascad-
ing rates on the order of 2 or 3 X 107 sec_1 are necessary.

For purposes of this discussion, we will approximate the aver-
age value of B by the value of B corresponding to the average
field strength, ie,

B(E) = B(E) . {6.1)

As a first apprdximatibn in calculating £, ™consider the average
field (to peak) of a double exponential time waveform,

..'Yt

_ _ _~at
E = Eo(e e )

. ' (6.2)

The approximation is good when cascading produces a small
change in electron density. The time to peak of such a wave-

form is

=£n(0':/'Y) .3
e, = nleo (6.3)
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In most cases of interest, o >> Yy, so that 6.3 becomes
t_ =% en(a/y) (6.3a)
p a - .
The peak field is given for o >> y by

E = e (%) (-1 (6.4)

Figure 14 shows Ep/Eo as a function of a/y. The average field
to peak is then given by

t
E = -E-‘lf P(e‘Yt - e *Nae (6.5)
P [e)
or
Y/
E=zx —ﬂ—-?-—[l - ly ] . (6.6)
(1-3) in(g) |

Figure 14 also shows a plot of E/Ep as a function of a/y. Note
that
%

E=.8E
p

is a good approximation.

The peak fields at thirty or forty kilometers attitude,
from a weapon larger than about 100 kT and above 50 km, are suf-
ficient to produce cascading with the air density present. 1In
fact, by considering typical field values and the.data in chap-

ter 2, one can expect a cascading frequency, B8, of 108 sec_l.
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The transverse fields will be more influenced than the
radial fields because they must propagate through a region of
increased conductivity as well as be generated within it. In
the deposition region, the ratio of transverse field to radial
field depends on the angle between the line of sight and the
earth's magnetic field. Thus, the relative impact of cascading
will vary throughout the deposition region, as well as oVver the
surface of the earth. Based on the preceding analysis and also
on some analysis with the high altitude code HEMP (to be pub-
lished), it appears that peak fields can be affected by 50%.
This is not extremely important in itself, but the increased
falloff of the fields could significantly alter the low and
medium frequency content of the signal.
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