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HIGH ALTITUDE EMP ENVIRONMENT CODE

ABSTRACT

This report discusses the mathematical formulation of the field
calculations and boundary conditions used in HAPS, the AFWL high-~
altitude EMP envifonmeﬁt code. The finite difference scheme employed
in the solution of these equations is also described. A final section

" exhibits some results of comparisons that have been made between HAPS

and other environmental codes,
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This report describes‘a two-dimensional finite difference code,
HA.PS, that has been developed to calculate the electromagnetic pulsé
(EMP) generated by the high altitude detonation of a nuclear weapon at
latitudes in which the earth's magnétic’ field is nearly vertical. The source
presently used for the determination of these fields is a distribution of
curreﬁt in the atmosphere arising from Compton collisions of the weapon
I;roduced v-rays with electrons in the air, It is anticipated that x-ray
sources will be incorporated later. The turning of these Compton elec-
trons by the earth's magnetic field is accounted for in an approxima’qe way.

A previous high altitude code, HEMP, developed at AFWL by -
Capt. John Erkkila (1967) employs the high-frequency approximation of
Karzas (1964) to reduce the intrinsically three-dimensional field calcula-
tion to one involving a single coordinate along the line of ’sight from the
weapon to the observer, "I‘he original motivation f;;r doing the present
problem was to obtain a morle exact solution from Wl_'liéh a determination
of the accuracy of this _lligh-:fréquency apprbximatio‘: for iat_er times of o
calculation could be made. Favorable comparisons of the two codes is
given in Section IV along with comparisons of HAPS and B, the AFWL
medium altitude code. |

It is well known that an oééillating sphe_rically symrrfetric current

distribution will not radiate electromagnetic energy. For the high altitude

problem this symmetry iS'deﬂstroyed by an asymmetry of the weapon, by



the deng*  wrzdieri of tha stmos chare, Wy the influenca o ihs eppks's .
magnetic field on the sources, and at greater distances, by reflections
from the surface of the earth. In general, these effects will jointly deprive
the problem of all symmetry. The resulting calculation then involves six
field components each of which is a function of three spatial dimensions and
time.

To reduce the problem to a more manageable one, its scope has been
limited in HAPS by the assumption of azimuthal symmetry, which implies
the limitation on the orientation of the earth's magnetic field mentioned
above, and in addition requires symmetry in the weapon's output. Although
the number of field components to be calculated remaiﬁs the same, the
differential equations are simplified and the number of required spatial
variables is reduced to two, This places much less stringent storage and
calculation time requirements on the computer.

It has proven most realistic in the past to use weapon-centered coor-

dinate systems in EMP environment calculations because the solution of an

EMP problem requires a boundary condition at the outer &dge of the mesh. - - .

In addition an inner boundary is often employed to prevent numerical insta-
bilities, These boundary conditions are most conveniently specified along
lines of constant céordinate. A problem éccurs, however, -when attempting
to simulate the surface of the earth for reflection purposes with, for
example, a spherical bomb-centered coordinate system. Because of these
considerations, HAPS was written in prolate spheroidal coordinates. By

approximating the earth's surface with one of thé hyperbolas of the prolate

.-



g ‘°1d:a,‘;1‘§°}?"'.9“‘ o ameters, tha ‘-‘«nh]nn‘ﬁ, of e ieg}gg?ba&p:a; dled.
adequately As for the inner boundary cond1t10n, a hyperb_c;la above the
source region has proven successful in actual calculations. Interestingly,
lines of constant radius frofn the weapon can also be mapped over the
prolate spheroidal grid with little difficulty.

The azimuthal symmetry reduces Maxwell's equations to two sets
of uncoupled differential equations that determine the transverse electric
fields (E p B & Bg) and the transversé magnetic fieids (B & EE’ Eg)
respectively. The two sets of fields are indirectly coupled by the depen-
dence of the sources and the conductivity of the aierr.l the total fields. -All
of the field components must therefore be solved concurrently in the finite
difference code.

In the limit as the distance, r, from the weapon becomes large E§
and BC behave as Coulomb fields (i.e., approach zero as 1/r2). The
other field quantities are radiation fields and beha.ve as 1/r. Each set,

(E pe B E) and (E g B ¢) may be separe?.ted into inco;rning and outgoing waves.
At large distances, the incoming waves must vanish.‘ These phenomena
have been observed to hold wvery well in the code. b 7 o

To make the fields vary more slowly and thué facilitate calculation
by finite difference methods, they are transformed to new variables which
behave as the appropriate value, r or rz .tirnes the original field. Fortu-

nately, this transformation considerably simplifies the differential equations.

Perhaps some insight into the reason for this may be gained by observing



thiat in the "[‘jM case the transformation for the alootric felds igpreniscly
the one that transforms the static field of a charged conducting ellipsoid
into a uniform field,

The magnitude of the spa;‘,ial gradients in the problem is further
drasticélly reduced by empioying the re%arded time of the burst point as
{he independent time-like variable, Indeed, with this transformation,
grid spacing as large as 500 meters by 1000 meters has been used. This
spacing is larger than a v;ra.velength for some of the-hi.ghe'r 7frequencies and
wquld thefefore not be feasible for a real-time code. An additional bene-
fit resulting frbm the transformation to retarded time is that regridding

in time near the wave front is greatly facilitated.
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Transverse Electric Fields
In this code the independent time-like variable, 7, will be the

retarded time of the burst point defined by
(1)

PN SN Sl 1
C (o4

T =
in which r is the distance from the weapon of the field point under consid-

After making the transformations

eration.
v.,y.L 8 (2)
caoT
el 9
ol (3)

at

and exploiting the azimuthal symmetry of the problem, Maxwell's curl

equations in prolate spheroidal coordinates become
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— B.E+BY+B, ¢)=- —"(\/(§ -a)(l-E)E)
L S - A - £9°F ¢
f /(Ez - a )(1 - &%)
s 3's' \/(f a)(l-E)E¢
N PRy - £%®
3 3
B §2_,§2azE s §2'§232'E il Egg_ E¢_&
3t a2 ¢ ¢ g2 & ¢ |21 r 11" ar
OE OE
S £ )3
+(‘”11 ar ~ %21 a7 )‘b , (%)
in which @y and a,, are defined by
raap §tayt (6)

For a description of the coordinate system and notation used see EMP
Theoretical Note No. 62, Observe that Eqs. (4) and (5) separate into two

sets involving E , B B and E E., B We shall refer to

b’ g g Bgr Jp Jp

these as the transverse electric fields and transverse magnetic fields,

o 7 -

respectively. The former set will be treated in this section. The differ-

_ential eqﬁations governing these fields are

2p - \/(r -a*)1 - g9 8 §2-§2a2H 8 tz_gzazH
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B = uH D=eR i (9)
also put
1
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u Vi3 (10)
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Al s point we note that 7 - A . .
a
= --= = : 14
“117 "k, \/ - (e
\/ - E a_

(15)
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Substitute these into Eq. (11) through (13) to obtain

By _ g, zft: -8t o f [P-e%? ) o [P-gf?
oT € 2 2 . o0& §,2 2 T o 2 g

¢® - &% - a ¢ 1-¢
s (.22 By W2 [2..2 95 o)
c Vg,z_gzz o7 c\/gz_gzaz ot
9B 2 OE
£ 1 3 (/ ) 1 § - a ¢
—— = - —— [ Jle® =251 - )E, ) += =
TP © 8/ V- T
(17)
9B 2 OE
e L 5 (/ ) a | 1-¢ )
= = (V- - e, )2 /S .
b S - et - % % V- g%? O
| (18)

In order to cast the field equations in simpler form, we make ine

E E!
ANV i (19)
o) T¢

transformation
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where the primed quantities are those used previously. Then Egs. (16)

through (18) become

. 5
By dg vk -aAa-d| 1 Be 1 PPel aln-g)
9
o7 € 2 - £2,2 a2 98 [ _ 2ot |7 2 22
3 2 2 2 9
B!’ st -a B‘s‘ (22)
oT c §,2 _ E2a2 or
aB oE oE .
e (23)
o1 5¢ ¢ or
B oE oE .
£ .20 (24)
or oF c or
Make the replacement
j g toE  a (25) -

The final form of Maxwell's curl equations for the transverse electric fields

is
. om .
%z_i_gE L2 1 - g2 aBr_112 ¢% - o2 B§+au2 1 -2 By
2.2 9 2 0
ar € € ¢ ¢ _ 2,2 9% - g2,2 0 o 2 (2.2 07
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ar 8¢ ¢ or (27)
8B, OE OE
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Define integers i, j, k such that at a mesh point
£=1+(1-iAg, ¢=a+(j- 1AL, r=kar  (29)

With this notation, the field equations are approximated by difference

equations centered at the point (i, j, k-1/2) in the following way,

1 . . 1.. .. . 1 .
E[Ed)(l, j» k) -E¢(1, Js k—l)].= "E'J(b(l, Js k-'l'/2) - s=o(i, j, k-1/2)

%€
u2 1 - Ez '
[E¢(1, j. k) + E¢(1, i k-l)l + SAE §2 - gzaz. [Br(l-l, j» k) - B§(1, i, k)
i,j
u2 §2A - 3.2
+Byli, §, k1) - B+, j, k-l)l “mtp 2 [BE(L i+l k-1)
i, j ’
aﬁ 1- 52
'Bg(l’ j» k-1) + B§(1, 3 k) - BE(;, j=1, k)] + cA-r<§2 - gz‘é‘;'z [Bg(l, j» k)
i} i
u2 §2 - a2
“Byli, J, k-1)| + (Bl 3 10 - Beli 5, k-_1)] (30)

(?AT §2 _ §2a2

1, ]
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—— B, 5, k) - P (4, J+1, kC1) - &8 §, k-1)
=~ Bg(l,.J, k) -8 l ¢(1 ] k=-1) T ] )

(is jx K_J-IJ =A-§-A';"'€ ¢

§

+E, (4, j, k) - E

" i, j, k-1) (31)

¢

. 1 .
(1, ]'1, k)] +E—A:[E¢(1’ 1 k) - E¢

1 .. ..
= |Belb 3 0 - B k—l)] ZM [E (i-1, j, k) - E, G, j» k)

¢

+E, (i j, k-1) - E

. . ' a oL
p (i+1, 3, k—l)l +E[E¢(1, i, k) - E

(i, 3 k-l)]

¢ ¢

(32)

provided the fields are known at (i, j-1, k), (i-1, j, k), and at all mesh
points for the preceding time step. EquationsJ(BO), (31), and (32) may be
solved simultaneously for the three field components at the point (i, j, k).
Thus, from a knowledge of the fields on the boundaries and at the initiai
time, one can apply these equations successively to obtain the fieids

throughout the mesh at later times.

2, Transverse Magnetic Fields

The field components (E ) in this portion of the code satisfy

§’
the same differential equations as those calculated imgthe air by the prolate -
spheroidal code for a low-altitude burst. The latter code is discussed in

an EMP theoretical note (Knight, 1969). The results of that calculation

will be quoted here for completeness,

-11-



The dacintion begins by writico Mzxywell's curl aountions g o5
prolate spheroidal coordinates in the retarded time of the burst point and
taking advantage of the azimuthal symmetry. The resulting differential

equations are then subjected to the transformation

E E!

IV OO (33)
E B!

) L - i -a (Y  (34)
i i)

B, - Ji -ada -8 B, (35)

in which the primed gquantities are the original on'es.. The final form of

Maxwell's equations for these field components is then .

2 0B
u

OE ] 8B , .
& 9m £, 2 ¢ _uw ¢
5, - Telp e tUtHm TS o7 (36)
or € ¢ € 28 c o7
°B, CZ_.aZSEE_ 1-g? OBy o gl By ¢ _ a2 O,
oT §2 _ 2a2 ¢ §’2 _ E28‘2 98 ¢ f? _ E28.2 or c §,2 _ g2a2 or
(38)

By using the notation of Eq. (29), Egs. (36) through (38) can be replaced

by difference equations centered at (i, j, k-1/2). Thus,

-12-~
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- [E§(1, i k) EE(1, i, k 1)] 5e [Eg(l j» k) EE

(3? k-l)] '

gl i k-1/2) 2 |
- o [B¢ (i, j*1, k-1) - B

= (i, j k=1)+B_ (i, j k)

¢ ¢

G § k-1 (39)

2
. . u . B
- B, G L, 1;)] -—CAT[B¢(1, i, k) - B

¢

_ U(i: j, k"]./2)

1 L .

Z B 1 0BG g k- 1] - 2 [Eei 3 0+ EG 3 kD
jg,(i, Js k-1/2) 2

- - 2AE[B (-1, 3 K) =BG j K + By § k-1)

- B, G+, §, k-1)] - 2 [B G 3 0 - By § k- 1] | (40)

[Eg(i, #1, k1)

1 z;,2_&2
ar (Bg 3 B - Byl g, ke ”l 2A§ 2 _ 22
| A

2
1 -8
_EE(L §, k- 1)+EE(1 i, k) "Eg(l j-1, k)] SAE (g §2a2>

i,

[Bgitl, 4, k-1 - By, 4 k1) + Byl 3 ¥ - E 61§, ©|

2 2 2
a 1-E& .. .. 1 ¢ -a
- E 4, j, k) -E (i, j k-1)] -
c/_\:r(rz _ Ezaz> . j[ $ § ] CAT (gzl_ §2a2> ij

[Eg(i, i K) - E

e

£l Js k-1)| - (41)
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SECTION Ti1: ROTNDARY CONDITIONS 7 e

The azimuthal symmetry of the problem implies that at the z-axis

the normal field components as wellas E, and B, vanish, i.e.:

¢ ¢

E. - 0
Bg = 0
E¢ - 0
> asf{-1 for {>a (43)
B, - 0 .
3
B, - 0
é J
E, = O }
> as f—-a for ~1< E<1 x (44)
B, - 0 :
r .
By = 0/
The remaining field components have been calculated on the z-axis by the
code in various ways. Perhaps the s:’.thplest of these (and incidentally,
- the first one used in the code) evaluates the equations
1 : L)L -t - o
—IB (1, j, k) - B(1, j, k-1 =-—-[ ., 3, KY+E, (2, i k-l] 45
Bl 3 0 - B g kD] s [B 2 4 R+ E @ 5 kD] @s)
— , 1, k) - B 1, k-1)| = -— , 2, k) + , 2, k-1 46
~[Belt 1, 0 - B )| = 5ag [By @ 2 W+ E G )] (46)
—1—[E (1, j, k) -E (1, j k-l)]= ;—10(1 j» k=1/2) [E (1, i, k)
AT g ' S 2e¢ et ¢
2 '
. 1. . u
+E (1, 3, k-l]-— 1, j, k-1 -— , J» k-1 . 47
t;( j ) €;|§( j /2) aE B¢(2 j» k-1) | (47)

2,

. =14~
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G E I RO PN W ISR I SRR LN G G SR A 2 SR e BELH
ar Log gl T | L
1 u2
+E (i, 1, k-1)|~=3j.(G, 1, k- +— B (i, 2, k-1 4
g Lk 1)] ciglh L k-1/2) + 25 B ) (48)

on the z-axis., The appropriate field equations are then applied at the
a;djacent mesh point. In each of the four cases, the method yields four
simultaneous algebraic equations which determine the unknown field at
the z-axis as well as the corresponding three field components at the-
adjoining mesh pc;int.

Following ;ls a derivation of the boundary conditions presently used
in the code for the tangential field components at the z-axis, The first
one considered is E§’ at £ =1, ¢&a (i.e., . the radial electric field on the
z-axis above the burst point). From Eq. | (37) it is evident that to deter-
mine E, on the z-axis, one must evaluate 9B .

< ¢

Let n be a coordinate that is antiparallel to £ with the dimension of length. .

/8% in the limit £-1.

For a differentiable function, (£, § ¢, 7) it follows that

df - 1 8f L
— = - . e - L5 7 . -0
o Vi £ WY «49)
or, putting f = B¢
1im %8 1um . B (50)
§~1 8§ n-0"§én
The scale factor, hg’ is given by
2 2 2
h’g‘ = 5;_'.'_%1_ , (51)
1-£

-15-



e viphtehand 2ide.of Foo (30 canbo evaluated wivh ibe TS L laimmpere s

law which in retarded time is

—_ ! — -l _a 8 e | p—ry 1 a A 1 —_

H-dy =_[j-ds+—-— D-ds +—-——fr-H-ds (52)
c S orJs coTJs

Throughout this section primed functions represent the real quantities and

those transformed by Equations (19) through (21) or (33) through (35) are

unpfimed,

Evaluate Eq. (52) at the small circle, ¢, of radius n shown below.

z
A
ds
n .
x
dzg r
zZ—-a %.

Y

-18-
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are approximately uniform within the circle. The azimuthal symmetry of

the problem requires that B, is constant on c. Equation (52) reduces to

¢

1 2‘| 2 a '
= + — :
21rnB¢(n,z,7) umn Jr(n,z, 7) +puemn aTE_g,(n,z,, T) . (53)

The last term in Eq. (52) yields a quantity of higher order in n and may

be neglected. Write Eq. (53) as

B, 2,7) = Bl jn 2 )+ B2 2E n, 2 m) (54)

1
Since B, vanishes as n -0, we have

¢
X ) B ( )
. aB N, zZ, T . N, 2,71
lim ¢ - lim ¢ (55)
n—- 0 an n-0 n .

Using Eq. (54) this becomes

8B .
lim ¢ _ ]_1m pe 9 t
n _,O an I (2 Jg(n z,T) *+ 2 7 Er(n,qz, 'T)) “(56) 7

EY

Combining Egs. (50), (51) and (56) yields:

BB LT .. 5
lim Q _ lim _

-17-



The fr'w" formea. :1ds are reiats) tu¥Fe paal fislds ascerdingg H.&,ﬂ”-x.r
(34) and (35). Using these, Eq. (57) can be written in terms of the trans-

formed fields. Thus

lim _3[ By ] _tim | (- 1
§-198 | /(2 - .50 - e8] 0 1 - g2 Jie? - 2229 - &%)
7y oK
¢ ue T

or

) 9B £EB . ‘ k3o

lim ¢ ¢ _ lim _1 £
£ ~1| 798 +'1_§2 “p .1 T3 \HeTHeE (59)

Using L'Hospital's rule, one finds that the limit of the second term in
Eqg. (59) is just minus twice the limit of the first term. Hence, we have

lim <i> lim 1 j§ _a_E_S' ‘ (60)

u_ —

£ 1 3E £-12\€ oT

According to Maxwell's field equations for the transformed fields in retarded

time,
) j '
tim 2% um [ _Jg P (61)
g 1 EYS £ >1 € oT :

-18~
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5B - -
lim °g -
—= =0 (62)
o0& :

£ 1

Substituting this into Eq. (37) indicates that the equation to be solved on

the z-axis at £ =1, is

j
¢..2 ¢ (63)

This is the required boundary condition for E_at £ =1, ¢ >a,

§

Next, we congider E_ at ¢ = a, i.e., the tangential electric field on

g
the z axis below the burst. At { -a, Eq. (368) becomes

oE i 9B
_f__oxp 8,29
or GEE € +u ot o (64)

We wish to determine the behavior of 8B, /8¢ as ¢ ;»a; Choose a coordin-

¢ -— -

_ . : S ,
ate, A, parallel with § with a dimension of length, then an equation analo-

gous to Eq. (49) is’

of e L2t

T).—Vf'g-hgaf . (65)
where

h§ = (66)

-19~
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£=a., Assume that A << r ~ z and that X is small enough that EE and j§

are constant in ¢. Then

9 .
Bﬁmzﬂ &1gxmﬂ+%?376azﬂo ' (67)

1
Since B, vanishes at A - 0, we have

¢
A~0  Bx  a-0_ x
from Eq. (67) this is seen to be
8B Lz .,
Ilim ¢ _ 1im )
A0 a ’A-o[ g(lz )+ hE a Eg(h Z:'r)] (69)
Combining Eqs. (65), (66), and (69) yields
. aB' n z,7) . 2 2 2
Iim é _ lim § -~&a f[u.' ue @ -
f—*a a§’ - ;—»a §2 -az [ZJE(E, g: T)+ 2 aT Ee(gs C: T)] (70)
" S , —

The transformed fields are related to the real fields according to

Egs. (33) and (35). Write Eq. (70) for the transformed fields

L ue 9.
Iim _2_ B¢ _ 2 [238(6’ §’: ',"_—) + 9 37E§(E’ g: T)]
£-2 3| fi? “aha - o L - 2D - )
(71)

-20-



lim 8B¢ _ lim
RS

t_..a g_ba '[l-‘.],g.(g, §, 'T) +p€—'-—E (E, g, T)] (72)

ar &

Comparing Eq. (36) and Eq. (72) yields

0B
lim ¢
eoa BE 0 (73)

Thus at ¢ = a, the differential equation to be solved is

oK ]
§. .95 & .
Tor € EE € (74)

The BE and BC components may be treated similarly. Presently, the

fields at the maximum value of £ are being obtained numerically by extrap-

olation of adjacent fields.

-21-



CSECTION T COMPARISON 0F BAF WITH OTHRER 7.2 COLES -

An excellent method; of obtaining confidence in theoretical and com-
putational models for simulating EMP is through comparisons of resulis.
These comparisons can be accomplished with existing empirical data or
with other computer codes of high confidence. It is through the code-code
comparison that the accuracy of the HAPS field code will be illustrated.

The first code-code comparisons were designed to check the effec-
tiveness of HAPS in treating spatial gradients of the sources. These are
caused primarily by the variation of the air density and of the a'ngle between
the direction of motion of individual electrons and the earth's magnetic field.
The B code was chosen for the first compapison sinc:'e it calculates the air
asymmetry signal for burst altitudes between 2.5 km and 20 km. As in
the HAPS code, the B code is able to employ azimuthal symmetryvdue to
the assumed uniformity of the weapon outputs. The use of azimuthal sym-
metry in HAPS also requires the assumed verticality of ;:he earth's magnetic
field. For this initial comparison the Phi current components (and there-
fore the effect of the earth;s .ma.gn'etic field) were not consq;dere'd. Identical
analytic sources of radial currents were input into the two codes for a
10-km burst and time histories of electric fields were compared at points
of intefest.

Figure 1 illustrates an oveflay of HAPS and B results at a coaltitude
observer outside of the source region. The only radiated électric field for:

this burst height, E 6’ is compared (in normalized form) with excellent
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sons in the past, it can be determined from this comparison that HAPS is
correctly treating the air density spatial gradient. It should be pointed out
that the resultant time waveforms at 60 observers compared with this same
accuracy illustrated.

While considering the 10-km height of burst region a comparison of
results was accomplished between HEMP and HAPS. HEMP is a line-of-
sight, high frequency approximation code which is generally used for bursts
above 30 km. It was felt, however, that if the magnetic turning signal
alone were examined, a useful comparison could be made at 10 km, To
remove the spatial gradient caused by the differences in air density, EMP
sources were calculated for both coéies using a constant air density through-
out the source region. A vertical magnetic field was thén prescribed in
HEMP to conform with HAPS. An overlay of the results is illustrated in
Figure 2 for a position 7 km below the burst, at a 45° angle from the
vertical. The E p component, which is the largest of the transverse E-
fields caused by the earth's magnetic field, compares adeguately. Some -
positions did exhibit waveform differences on the order of 5%, but these
differences were attributed to observer interpolation in the HAPS code and
the small spatial gradients in HAPS caused by the different a;ngles between
the original electron trajectories ana the local earth's magnetic field vector.

The last waveform of interest calculated at a 10-km _height of burst

was a normal run of the HAPS code illustrating the magnetic turning signal

-24-
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Figure 3 that the magnetic turning signal is very small, as the E p turning
signal component is much smaller than the E ¢ component, but the E é com-
ponent does not exhibit any air asymmetry signal due to the assumed
azimuthal symmetry. Also this observer is outside of the source region
where the air asymmetry signal will predominate over thé magnetic turning
signal,

After completion of these comparisons, it was evident that HAPS
could adequately solve the field equations given accurate and stable sources.
The next step was to compare HAPS with HEMP for a high altitude burst,
allowing the HAPS code to calculate both the magnetic turning signal and
the air asyﬁmetry signal. It was anticipated that some difference would
be exhibited between the codes at later times of calculation, illustrating
the accuracy limit of the high-frequency approximation in HEMP. For a
50-km height of burst Figure 4 illustrates a spatial contour fr-ym the HAPS

code which consists of iso-contours of peak electric field. The line of

sight of the HEMP code used for comparative purposes igovelzrrlayed on the _

HAPS contour plot, and one observer position is marked for time waveform
comparison,

Figure 5 illustrates a normalized time comparison of the E é com-
ponents at observer 1 as shown in Figure 4. There is a slight difference
in the peak values illustrated which is a function of the interpolation of

information to an exact observer position in the HAPS code, The reader

-26-

PN

ey



g8, s G0 bris

el
i

N

cravyazda ol U

apoD SAVH 2u3 WwoJy waojasem 1e0td4 ], vouﬂm&no?

oW,

*g 2an81q

wy g1 = HOH

€19y L-d

-27-



1B1S J0 BUTT JINHH © YHM pake[aasg 9po) SIVH
U} WOJF SPIATd OTIISH Hedd JO 10Td Inowd V, % aandtg

(wy) adury
0¥¢ 007 091 0¢T 08 0¥

| ™ 1 | -

@

- 01

- 0¢

- 0€

- 0%

- 0G

-09

0L

(W) spniRVvy

~28-



1 a243938GQ 18 JINHH pue SdVH JO uostaeduwo)) pazI[eWIoON .ﬁ *c 2an31q

qd-o"

-29~



- ghornidiein the erantness of the field values at the w07 o the: puloee B w0, o~

AE

appears, as one would expect, that each code is calculating the same mag-
netic turning signal. Figure 6 illustrates a comparison of the theta com-
ponent of electric field which in the HAPS code contains the air asymmetry
signal. The difference seen in the figure is small and presumably this is
due to the fact that the theta magnetic turning signal is still dominating over
the air asymmetry coﬁtributions. From these comparisons we can see that
much later times of calculation are required to illustrate some difference
between the codes.

Work is being accomplished to calculate late-time sources in order
to produce an accurate late-time field calculation and comparison between

HEMP and HAPS. The result of this comparison will provide insight into

AL

the necessity of continuing the 2-D effort, and of developing a 3-D code to
solve the late-time, low frequency EMP problem, Research will continue
with the 2-D code and a more detailed classified report .,will be published
indicating the magnitudes of the EMP fields calculated and their low

frequency content. - - %o , -
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