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ABSTRACT

A quasi-monochromatic source signal is convolved with an
ionospheric impulse response function to obtain a time-domain
representation of the dispersed signal. Application of numerical
approximation techniques to the convolution integral leads to a
characterization of the ionosphere in terms of statistical moments.
It is shown that the dispersed signal envelope is given by the sum
of the undispersed source signal and a series consisting of prod-
ucts of the moments and the corresponding derivatives of the
source envelope function.
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ON QUASI-MONOCHROMATIC SIGNALS
PROPAGATED THROUGH DISPERSIVE CHANNELS

INTRODUCTION

The waveform of a signal may undergo substantial distortion if the refractive
index of the medium through which the signal is propagated is dispersive. Because
the refractive index changes with frequency, the differenf frequency components
making up the composite received signal travel over different paths to the receiver.
These components, therefore, arrive at the receiver at different times so that the
reconstituted signal is a distorted reproduction of the one originally sent. Although
the particular approach described in this paper should be adaptable to a variety of
related propagation phenomena, e.g., seismic or acoustic propagation, the only
subject of concern here is the distortion of an electrdinagnetic signal transmitted
from a source on earth through the ionosphere. As the frequencies of interest in-
crease, the effects of dispersion decrease. However, at decametric wavelengths
(~ 10 m), the spectral region of interest in the present paper, dispersive effects

are still significant.

A number of papers relevant to the subject of disi)ersive distortion have
appeared in the literature. Of these, several merit special attention, for example,
the classical studies of Spmmerfeldl and Brill()-ui_n,2 in wh_ich the basic theoretical
treatment of propagatibn of a rﬁonochromatic signal in dis(;ersixfe media was T
developed. In two papers emphasizing the utility of function theory, Ba\erwald,3
in 1930, cdnsidered signal spreading in very general dispersive systems. More
recent and very comprehensive treatments -of the subject have been published in
treatises by Budden4 and Ginzburg.5 Wait6 has published a noteworthy survey
paper on pulse propagation in dispersive media, while Sollfrey'7 and Inston8 have
both discussed, in different contexts, the effects of ionospheric dispersion. More-
over, at least superficial treatments of the subject of signal modification resulting

from propagation through dispersive channels can be found in most standard refer-

ence works on propagation.



Hatner wnan invert airectly irom' 'iﬁe frequency domain, as in the references
cited above, the convolution theorem is invoked to transform the product of the
source and network-transfer functions to the time domain where tﬁe convolution
integral is amenable to some of the more powerful approximation techniques. In
particular, it is possible to characterize the ionosphere in terms vof certain functions
which are identified as the "ionospheric moments." By using moments, a dispersed
quasi-monochromatic signal can be expressed in the form of a sum of the undispersed
source signal and distortion consisting of a series of derivatives of the envelope
function multiplied by the appropriate moment. .Apparently, useful approximations
of the dispersed signal can be obtained by truncating the series. In addition, it
appears that it might be feasible to provide a measure of "antidispersion filtering' by
operating on the post-detected signal in the time dornain, thereby achieving éome
innovation in dispersed signal processing. This particular approach to signal

processing has not, to the author's knowledge, been described in the literature.

In the analysis which follows, the same simplifying assumptions often used in
ionospheric propagation theory are made. The_ source is assumgd tc.:> be quasi-
monochromatic. Energy absorption resulting frotnr electron collisions in the
ionosphere is not considered, In addition, the ionosphere is considered to be homo-
geneous and isotropic, the ionosphéric phase functioﬁ is represented by a quadratic,
and the amplitude function is regarded as a constant, Considerable simplification
in the analysis (while still retaining most of the salient features of dispersion theory)

is achieved by neglecting the birefringent effect of the geomagnetic field.



THE DISPERSED QUASI-MONOCHROMA TIC PULSE

After propagation through a dispersive medium characterized by the transfer
function R(w), the field at the receiving antenna, on deleting explicit reference to z

(the space variable), is
1 [ jwt
eR(t) =57 7",[-00 Es(w) R(w) e’ " dw, (1)

where Es(w) is the spectrum of the source field. By definition, a quasi-
monochromatic source is one in which component frequencies of significant ampli-
tude extend through only a short range on each side of a carrier frequency, W In
the time domain,

jwot -
e (ty=1f (t)e s (2)
s m

where fm(t) is the envelope function. The duration of the signal is considered to be
long compared with one period of the carrier wave; therefore, ES is appreciable

only for w = wo. In the vicinity of Woe the transfer function can be approximated by
R(w) =~ IR(UO)l exp [—jd(w)]. (3)

The amplitude function, lR(wo) l, can be assumed to be glowly varying compared ..

with exp [;jd(w)l in the neighborhood of w For convenience, take R(wo) = 1 and

0
expand ¢(w) about Wy truncating the series beyond the term containing the second
derivative,
B0} = Blwy) + (0 - 0 ) g0 ) + 3w - w )2 g ). (4)
0 0 0 2 0 0

The primes denote differentiation with respect to w evaluated at © Deferring, for

o
the moment, a discussion of the significance of these terms, substitution of the

Fourier transform of (2) and (3) into (1) leads to an integral which can be inverted



by means of the standard techniques of complex integration to provide a time-

dependent expression for eR(t), usually in the form of tabulated integral functions.

In order to examine the effect of dispersion on signal duration, it is informa-

tive to convolve the impulse response.

00

h(t) = 2_171'_/; exp [jwt - jg‘(w)l dw , {5)

with the source function es(t) to obtain eR(t) ;

-]

. ~ _ C ' 6
eg(® ./; e (Wh(t - 0 d. o ®

Changing the variable of integration from w to 2, where 2 = (w - wo), and taking the
(5)

limits of the new variable as -« and © because w is restricted to values near wo,
can be written '
wat £ raay - _ .
h(t) = = e Of Jig@r-a o | (1)
. PAig o0 ] . . .
Writing ¢(w) in the form
Jw)x flug) + gL )R + = 11w )0 o : (8)
0 0 2 0
“wn,
and substituting (8) into (7) gives
. )11 2
1 i[wgt-Btwg)| e -Jlg $'"(wy)Q +[¢'(Uo)'t]9} _
h(t) =~ o © f e das?, (9)
-0

which reduces to the simple closed form,

0 2 . o 2 ’
-(ax“+Bx)]j _ m (B~ _ = , .
j;oe dx = /a exp [](4(1 4)],- a>0; (10)

‘r“!\ \
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1-j j’.“’ot"‘““’o)l 7 [9““’ ) - t]
h(t) > 5~ e MOT exp JW . (1D

Substitution of (11) and (2) into (6) gives the expression derived by Ginzburg for the

dispersed quasi~monochromatic pulse:

1-3 J[wot ¢(w0)] J(l t+ )
eR(t)~ ,,(w f £ (7L)e da. (12

Then, on introducing the variable u defined by

(A-t+ ¢')2 -
281: -

(TR
[

(12) can be written in the forms*

jugt-jg(wg)
et = 1(1-7e £ [t- ¢+ @gn2u] exp (ru/2) du. (13)
R 2 e
S -
& 6 11t
See also Wait,” who obtains this form by setting ¢ = 0 in his third-order
approximation.

9-10
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DISPERSION DISTORTION

In order to adapt communication-theory models to dispersion analysis, it will
be convenient to express the received signal as the sum of the source signal and of
a distortion signal which characterizes the dispersion. In a 1963 paper, Prosin®
obtained a series expression for a dispersed UHF signal by taking only the first
two terms of the expansion of the exponential e-j¢(w) but retaining higher order terms
in the expansion of ¢(w). Then, by use of the method of analytical continuation, the
series was inverted term by term to obtain an expression for a received wideband
FM signal in the form of the sum of a source function and distortion terfns which

' In the case of interest here, the desired expres-

were called "'dispersion noise. '
sion can be obtained directly from the expansion of the convolution integral in (12),

i.e., from the integral

= o]

' : ] 2 11
f(t) ='/_; fm(A)exp[J(t -g'-x)%/24 lcu. (14) .

Now, f(t) can be expressed as a series in terms of the derivatives of fm(t) and the
11

moments of the exponential term. Thus,
my df k Pk dkfm
f(t)=m0fm(t)-T ?'l‘... +(-1) F " + ..., (15)
. dt
< -
where
o 2 .
k it - 4"
= . 6

Then, on introducing the variable v defined by

('c-gi')2 T 2

g 7

11



(16) cazn be writicit i we LUl

%0 Coak
‘ﬁa—fm (¢' + ‘/W"') exp (j1v>/2) dv . an

The zeroth-order term is given by

B
n

2 |/1r$“ [C(oo) + JS(oc,)] 7@l (1 + J) o (18)

where C(z) and S(z) are the standard Fresnel integrals:

Y i T2 . e K .2
Cl{z) =] cos - v dv; S(z) = sin — v dv.
0 2 0 2

Substitution of (18) and (15) into (12) and taking ¢(w0) = w_.T, where T is the phase

0
delay of the channel, gives .
jwo(t-'r) 1-j ]w (t-1& ) By d f
e ~f_(1) e E( ¥ k, 2 - (19)

2‘/3 k=1

Evidently, except for a linear phase shift, the received signal is equal to the source

signal plus a dispersion distortion, which is

c W (T o m
o 1-3 0 k
eD(t) r——— ¢ kZ_l(—l) —_ (20)

27!'”

Rather than evaluating (16), it is easier to use the characteristic function,

or moment generating function, ¥(n), given by

-0

s = [ ax ™00 = (t - ¢° L
x) dt exp J nt +~'—2a”—_— e (21)

12
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-i{3n%""-ng) |

P(n) = fme'" (1 +])e (22)
The kth moment is given by
dk
m, = % w(n):l . (23)
d(jn) n=0

The series representation of dispersion distortion in terms of derivatives of the

envelope function is obtained by substituting (23) and (22) into (20). Thus,

k 1 2
30 (=T e nkfdf k -j(—n ¢-n¢')
en(t) = e 0 Z (kl,) ;n d T e 2 (24)
k=1 dt d(jn)

n=0

Now let ¢'* approach zero in (24). Then the received signal (19) reduces to

the form

. K
jwglt-7) N gnk df
ep(d = e £+ ‘—kﬁﬂ— —o 0, ' (25)
=1 dt :

where the bracket term is simply the Taylor expansion about t of the function
fm(t - ¢'). That is, (19) reduces to the well-known result for a nondispersive

channel,

jwylt-7)
eplt = f_ [,t -4 (wo)] e , (26)

as it should. The carrier phase is determined by Wy T (7is the phase delay) and

the envelope has not been distorted but has only been delayed by a length of time

13
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With reference to a network representation of the communication channel, the

source signal has undergone distortionless transmission.

The numerical value for the group delay is given by the expression

5% 10 0

2
wo 0

' (wy) = Nds. (MKS) - (27)

The integral represents the integrated electron content along the propagation path.

From (4) it can be inferred that the "dispersion" is given by

i) _ 2 1
#lug) = o #1ug) - (28)

[

14



THE IONOSPHERIC MOMENTS

Before proceeding with a discussion of the evaluation of the "ionospheric
moments'' it is necessary to define the "bandwidth" of a dispersive channel.
. . . 1 R .

According to Papoulis's formulatlon1 of the uncertainty principle, * bandwidth

and signal duration are canonically related by the inequality™

D - D > ‘/w72 . (29)
W t —

. . . t e s .
Examination of the expression for the k b moment, (17), indicates that the time of

establishment of the signal amplitude is determined by the characteristic time

T = Td"' sec. (30)

The channel bandwidth, W, corresponding to To is the value of Dw’ satisfying (29),

i.e.,

W>1/ /267 . (31)

Although the equality applies only if the envelope function is Gaussian, for present

purposes we choose the equality and take W as the bandwidth of the dispersive

channel.

“Some writers refer to this phenomenon as reciprocal spreading but it is really
the uncertainty principle of quantum mechanics. For a complete discussion of the
role of the uncertainty principle in engineering see Brillouin.

.. . 2 .
Duration is defined here by the second moment of lfm(t) , l.e.,

[=e]

2 2 2
D; —'[wt Ifm(t)l dat .

Similarly, bandwidth is defined by the second moment of |Fm(w)|2.

15
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in terms of the moments m, : ‘;
1] j[wot - ¢(w0)] m (-l)k m, dkfm(t)
eR(t)%—z-— e T— fm(t) +... +T T— —k'— + ... ’ (32)
c c dt

where the mk are given by (17). Therefore, it is appropriate to define a new moment,

an ionospheric moment, which takes the form

k
d
™= —— g0

, (33)
dijn) =

n=0

where zﬁi(n) is a function, characteristic of the ionosphere, defined as follows:

y;(n) = (1 +j) exp { :i[glr“”c’z i “TgH. (34)

L

e

Noting that m, = rnk/'rc, in considering the propagation of band-limited

k
signals, it is more convenient to evaluate (17) to obtain the ionospheric moments.

That is, T, is given by

k
V2 K 2
mzk =f (r + 'rcv) exp(jmv" /2) dv, . (35)
V]_ g .
. -—
where the dummy variable v is
t-7 ]
v = £ . (36)
T
c

The integration is straightforward, giving as the zeroth moment, for example,

Va
Vi

(37)

m, = [C(v) +jS(v)]

.
AN

16
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integration. Let T - denote t-he duration of the source signal. The spectral width
of the signal, Dw ~—% , is assumed to be much smaller than wo in order to ensure
the quasi-monchromatic nature of the source signal. Time, 6, measured from the

arrival of the signal at the observation point is usually defineds’ 6 by

+t -7 . (38)

@
n
]

(In the absence of dispersion the signal would arrive at the observation point at

t = - > + 'rg.) Using 6/ Tc as the independent variable, the limits of integration are
- TI-68 - )
Vo T S T
c c

and the real and imaginary parts of the ionospheric moments are, respectively,

T-8
k 'rc
Rsmk = E (1; ) Tgk-r Tcr x' cos g x2 dx , (39)
r=0 _ i-
p
c
T -6
k Rc
hmk = (l;) -rlg{_r-rz x" sin gxz dx. (40)
Zr'=0 _ , _ < —
"R
c

It should be noted that the moments approach zero for 6 >> T by virtue of the

symmetry relations
C-v) = - Cv), S(-v) =- S(v).

If the source signal is indeed quasi-monochromatic, Es(w) is negligible outside

an interval (-, ), and the series expansion for eR(t) given by (32) can be truncated.

17
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Then, denoting the operator u—k by DK, eR(t) can be approximated by
dt
o t-gtug)-n/4] m
1 0 0 k“k _k
e (t) = — e My Dg + - -+ +(-1) = D fm(t). (41)

R V'Z'
Except for introducing a constant phase shift, evidently the effect of the ionosphere

on a propagated quasi-monochromatic source signal can be characterized in the

time domain by a matrix (or row vector) operator ¢, where

m
()z[fmoD0+... +(-1)kk—,k k]. . (42)

By substituting in Eq. (41}, eR(t) can be written

jlw t-g(w )-77/4]
L of_(1) . (43)

e_(t) ~ ——.

S

The form of (41) suggests polar representation of the moments; that is,

j0
m = k
k rmkl ° o, (49)
where .
Im
-1 'k
= _— . 45
Gk tan g (45)
k
Consider now the magnitudes of the zeroth and first moments expreésed in
dimensionless form:
5 9 1/2
l.m|= [C(T_e)+c(—9-)] +S(T'e)+si)] (46)
(o] TC TC TC ‘l'c

18

37,



ains : e,

2
m T T 2 2
1. _gC(T-o) g C(_e,)+1 sin(z,T-B) _lsin(z_e_)
T T T T T m 2 T m 2 T
c Cc C C c c C
T 2 2 2 12 '
T
+ __g S T___.e_ +_E S _i _l cos E . T-G +_]L coSs Ei . (47)
T T, T T m 2 T T 2T
o4 Cc Cc Cc Cc c

By combining (27) and (28), an estimate of the magnitude of the coefficient of the

Fresnel terms in (47) is obtained:

6 1/2
10 deh
w

o

T
£ 5 (48)
T
c
For transionospheric propagation of decametric signals (10 > X > 1 meter) through the

. -2
range of ionospheres usually encountered, e.g., 5 x 1017 to 5 x 1016 elecirons m
(total electron content, or TEC), it is estimated that 50 > (Tg/-rc) > 5. Clearly, except
for values of 6 in the neighborhood of zero, the trigonometric terms are negligible

compared to the Fresnel terms in (47). Even for small ¢, the error incurred by

deleting the trigonometric terms is not serious, so that, to a first approximation,

‘ml ~ Tgmo . . (49)

Unfortunaterlry, it appears that the series {(41) may converge only very slowly. Therefore,
the utility of the ionospheric moments should be assessed on the basis of the given
source function and the particular ionosphere of interest. However, because the
zeroth-order moment is independent of 'rg/'rc, it is shown in Fig, 1. The magnitude

and phase angle were numerically calculated on a CDC 6600 computer; plots were made

with a Stromberg Carlson Model SC 4020 plotter.

19
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Afvmis point it 1s informative to consider as an illusirative example the dis~
persion of a pulsed sinuscidal source signal with a carrier frequency W, and an envelope
function consisting of a cosine wave of half-period duration, ! wm' as shown in Fig, 2.

The source function is defined by

cosw tcoswt, - <t <
m o

2 2
es(t) = (50)
0, It} > T/2,
where T = n/wm. The spectrum is obtained as
11/2wm
F(w) = f cos w__tcos w.tcos wt dt
m o]
/2w
m
wm
= cos [(w - wo)(n/2wm)] 5
w - (w- wo)
wm
+ cos [(w + wo)(nr/2wm)] 5 . (51)

- (w + )2
wm w wo

For w, > W the second term in the last equation is very small for positive

w. The approximate spectrum of the transmitted signal can then be written as

o _ -
F(x) = 1 1 cosl X , (52)
w 2 2
m 1-x
where
w - wo Aw
X = = = .
w w
m m

22



/ 11/2wm

Fig. 2 Cosine wave of duration n/wm.
The expression for F(x) has zeros where

Aw=(2n+1)wm, n# 0.

From Fig, 3, a plot of Eq. (52), it can be observed thatsnost of the energy - -
is contained in that part of the spectrum from W, - Swm to W, + Swm. This is

indicative of the extent to which the source signal described by (50) can be considered
as monochromatic.

By substituting cos wm)t for fm(A) in (12) and suppressing the carrier term, the

following expression is obtained for the dispersed signal at the receiver:

T T .’i(ﬂ-ﬂ)
1-3) fr-0 e 6 T T "2
C [
(ma _m
(me . n 53)
T-9 Tc 6 . ¢ J(T 2) (
+[F(Tc _?)JrF(T_ch?)]e '

23
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Fig. 3 Spectrum of cosine wave of Fig. 2.
As expected, in the limit as e becomes vanishingly small, eR(t) is given by

lim e (t) ~cos w (t-7). (54) i
R m g

T —~0
C

The envelope, although delayed by Tg’ has undergone distortionless transmission and
is not dispersed,

If, on the other hand, T > Tos then Eq. (53) reduces to the following form.:

o 1-7 T-98 ] . T8
eR(t)—-— 3 [F( 7 ) +F(?;)] sin - » (55)

(56)

or

1-3 .
eR(t) ~ = mo cos wm (t rg) R

24



i.e., a first approximation to the dispersed signal at the receiver for T > Te is
given by the product of the zeroth-order ionospheric moment and the envelope

function delayed by Tg' From (55), the envelope of the dispersed signal is given by

i o () (i) [C (2 ?) e (L)J

b))

Figure 4 shows a plot of Eq, (57) for (1_1) = 10. A comparison of Figs. 4 and 1

2

e (L&) . L
RTCJE

c
illustrates the simple relationship given by (56),

Figure 4 shows the spreading or "'smearing out" of the signal characteristic
of dispersion. The effect becomes more pronounced as the TEC, and therefore as
T increases. Figure 5 shows a dispersed cutoff sinusoid, i.e., a signal whose

envelope is a rectangular pulse for (T/-rc) = 1.6. The envelope of the signal at the

=)

The particular value of ’I‘/'rc used was selected to emphasize the initial portion of the

receiver is given by

¢ (1)4
R‘rc J2

wavefront. Apparently the cutoff sinusoid the spectral cantent of which is

sin wT
wT (59)

F(w) =

is "less quasi-monochromatic" than that of the sinusoidal pulse (see Eq. (51)) .

25
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In the spectral decomposition of signals of finite duration, frequencies as high
as desired can be found for which the group velocity approaches the velocity of light.
Therefore, some signal energy propagates almost at the speed of light, This portion
of the signal is known as a "precursor" or 'forerunner.' However, that portion of the
signal observed in Fig. 5 (and to a lesser degree in Fig. 4) is not a precursor but,
rather, an apparent breakdown in causality. This occurred because of liberties taken
with the ionospheric transfer function, Eq. (3), in order to simplify the discussion, *
With reference to (3), if a system is to be causal, IR(wO)I and ¢(w) cannot be assigned
values independently of each other, It should be noted that the ionospheric transfer

function should be written

R(w = [R(@| 1% < A &7, | G
with |

-1 ZR(w)
olw) = tan m

A necessary and sufficient condition for a square-integrable function A(w) = 0 to
be the Fourier spectrum of a causal function is that the Paley-Wiener condition be

satisfied, i.e., that the form of A(w) be so specified as to insure that

[ hogA(g)l dw < o :
Lo 14w (60)

The causality requirement was abandoned in order not to obscure relationships

between time responses and the various frequency characteristics.

*Although often used, this artifice usually leads to some confusion. Therefore,
the clarification inserted in the discussion at this point is deemed appropriate,
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AN APPLICATION

The simplicity of the form of Eq. (41) suggests an approach to "antidispersive"
filtering. A detailed discussion of this topic is beyond the scope of the present paper.
However, the derivation of a post-detection filter to obtain a first approximation to

the source envelope is at least conceptually elementary if not realizeable. A simple

example should suffice.

On taking t' = t - Tg and truncating (41) after the first derivative, a first esti-

mate of the envelope f,,(t') of a field component is obtained from

’ _ i I} 61
f(t") ~ [Emofm(t') ™G fm(t )] . (61)

. d ; .
Solving for T fm(t ), one obtains

da n Do N S (62)
I fm(t ) ~ ﬂl fm(’t) “"1 f(t) .

Figure 6 shows one possible analog implementation for 6btaining fm(t') given f(t') as
an input. Unfortunately, the illustrated program is deceptively simple because the
coefficients (1/3]11) and (tmo/'ml) not only vary with time (sqze Fig. 1a) but also with
the TEC (total electron content). However, if the moments M 0’ EDII, ... can be
generated with any degree of confidence, computation of the estimates is quite

straightforward.
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