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Abstract

This note treats the problem of calculating the electromagnetic field
of photoelectrons emitted from the external surface of a space system. A detailed
study of the canonical problem involving a charged particle orbiting a perfectly
conducting sphere reveals that sufficiently accurate solutions can be obtained by
solving two independent quasi-static boundary-value problems. Validity criteria
are established for the quasi-static solutions in terms of the particle's kinetic
energy and distance from the sphere. These quasi-static solutions can easily be
generalized to arbitrary motions; extemnsive graphical_results are presented for
the induced surface currents and charges on the sphere. An integral-equation
approach to arbitrary-shaped conductors is briefly discussed. Two initial-
boundary-value problems are posed and solved in connecEiPn with the questlon as
to how the positive charges redistribute themselves on a sPhere after the passage
of a short incident photon pulse. The relationship between the findings of this
note and the general problem of calculating the external system-generated EMP is

also discussed.
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I. Introduction

The threat of System—-Generated EMP (SGEMP) to the survivability of space
systems in exoatmospheric regions has been recognized for some time (1,2,3].

Past efforts have been limited to the calculations of photoelectric emission
currents from various materials [4,5]. The backward scattered photoelectrons
give rise to an external electromagnetic pulse, whereas the photoelectrons

that are forward scattered into cavities give rise to an internal electromagnetic
pulse (or, simply, IEMP). Except for an estimate of the final induced voltage
(and hence the final induced net charge) on a space system [6,7], there exist

no detailed calculations on the external electromagnetic pulse due to the

emitted photoelectrons. The present note gives such a calculation for the

case of a space system of spherical shape and discusses some relevant problems
within the realm of classical electrodynamics.

The general problem in the study of external SGEMP is that of calculating
the electromagnetic field outside a space system for a given incident photon
pulse. The self-consistent approach to the general problem involves Maxwell's
equations as well as the equations of motion and, hehce, is untractable without
some approximations. As always, when we are confronted with a problem of such
complexity as this one, we first seek an analytically tractable theoretical model
(or models), the detailed calculations of which will reveal some essential features
of the general problem. We then add more complexities to the model (or models),
so that the modified model (or models) resembles more closely the real system.
Eventually, due to the complexities we will be forced to redinquish. rigorous -
calculations and be content with approximate estimations. But only this line of
approach will create confidence in any conclusions derived from estimations.
Accordingly, in this note we will calculate in detail the time-dependent electro-
magnetic field, especially the induced surface charges and currents, in the
neighborhood of a spherical conductor when the charge and current densities of
all the emitted electrons outside the conductor are prescribed. The solution of
this problem gives what one should expect from Maxwell's equations alone.

In Section II we solve a canonical problem rigorously and quasi-statically.
The canonical problem involves a charged particle orbiting a perfectly conducting

sphere. We then compare numerically the rigorous and quasi-static solutions and




thus establish validity criteria for the quasi-static solution in terms of the
particle's speed and distance from the sphere. We then go on in Section III to
present extensive graphical results for the induced charges and currents for
radial and orbital motions, and hence for arbitrary motion as well because the
superpositionprincipleapplies. Section IV discusses briefly the integral-
equation approach for conductors rather than those of spherical shape. The
integral equations involved can be easily solved with standard numerical methods.
Two initial boundary value problems are posed and solved in Section V in relation
to the question as to how the positive charges redistribute themselves on the
surface of a sphere after the passage of a short incident photon pulse. 1In

the final section, Section VI, we summarize the findings of this note and

discuss their relations to the general problem. We also point out some natural
extensions of the present study that will provide answers to certain aspects of
the general problem. Two appendices are included, one dealing with the applica-
tion of the dyadic Green's function to the problem discussed in this note and the
other treating the quasi-magnetostatic problem from the integral-equation point
of view. At the end of this note we include a comparison list of symbols and
notations for those who are well versed with Baum's work on the problem of a

sphere [8].



II. Charged Particle Orbiting a Sphere

The general problem of calculating the electromagnetic field of a charged
particle of arbitrary motion in the presence of a perfectly conducting sphere is

quite difficult. The canonical problem that can be treated rigorously is the one

involving a point charge orbiting around a sphere. Accordingly, we will first

solve this problem exactly. Then, we will make a non-relativistic approximation

to the exact solutiom in the hope that the non-relativistic solution can be
recognized as the solution to some quasi-static boundary-value problem the
solution of which can easily be generalized to arbitrary motionms. In order to
establish a validity eritierion on the approximate solution as a function of the
particle's velocity and position a numerical comparison will be made between the
approximate solution and the exact one.

To further simplify the geometry of the canonical problem we take the

particle's orbit in the equatorial plane of the sphere (Fig.l).

A. General Solution
The problem depicted in Fig.l can be solved by the standard technique of

Debye's potentials u and v. A more formal method utilizing the dyadic Green's
function is discussed in Appendix A. The potentials u and Vv are related to

the electromagnetic field by [9,10]

- 1l 3u
E VX(I.C ot + rxVv)
%
(L)
- 1w
ZH = -Vx(xxVu r at)
and E, H satisfy the Maxwell equations
- 9
VE = -u gy B
UxH = ¢ = E + J
(2)
V‘E = p/e
V'H=0
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Figure-l. A charged particle orbiting a sphere in the equatorial plane.



The source terms p, J are given by

I

o(r,t) = 53— 8(x-b) §(8- 3) S(4-0t)
r sin ©

(3)

i

3z, =22 6(x-b) (e~ ) 6(-at)$

Q being the angular velocity of the particle and b the radius of the circular

orbit. Substitution of (1) into (2) gives

2
(VZ - —13—8—5)(:)= 0, forr ¢ b (4)
¢ ot

Writing (1) out in components we have

1122w , 12°aw
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8 ~rsin 6 otdd r 0rdb
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o) cr 9otdd r sin 6 0rd¢
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To solve (2) and (3) with the aid of (1) and (4) we first expand

o 9
8(o- 3) §(¢-0t) =sin 6 ] ]
2=0 m=-%

2041 (2-lm|)!
4 (2+|m|)!

lel(O) le!(cos gy eIMLO-L) ¢y

Then, for the incident field we take, in view of (4) and (6),

inc « [} A

= im \ . |m|
me)= L1 3,0 ) hy(kr) By (cos 0) e
v 2=0 m=-% Blm

im(¢-0t) 7

where km = mQ/c, and r<(r>) denotes the smaller (larger) of r and b. Here

and henceforth, hg is the spherical Hankel function of the first kind. To find

Azm and sz'm we apply the following jump conditions at r = b:

[Eg =0, [E]=0, [B1=0, [HJ-=

elE] = ——9— §(6- 3) 8(¢-at), (8)
sin e

[u ol = 3— §(6- —) §(4-Qt).

After some manipulations we arrive at

ine _ 2 % m(2241) (2~ |m|)

tplnlio) 5,Ghr )
LT g (o4L) (o+[m[)T "2 I Mpt<

hl(kmr>) lel(cos 8) eim(¢_9t)

(9

vinc _ iq0z % % m(22+1)(l—|m|)

lmI
it} 2(2+1)(2+|m|)' (0) jo(k r.)

[k r by (k )] lel(cos 6y im(4-25)



. . s sc .
To find the scattered potentials u € and v we use the outgoing wave
condition at infinity and the boundary condition that the total tangential '
electric field vanishes at the spherical surface r = a . Thus,

==}

. A2 L |
sc _-igf"bu m(2£+1)(£—|m|)! |m|, 3
YT T 4w Qzl mjég 2 (241) (2+{m[)! Py (O

(kma) hg(kmp)
hﬁ(kma)

hy (k) p,!j“'(cos gy oim(4-8L) (10)

[kmgjz(kma)]' [kmbhl(kmb)]'
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© R
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V= T 221 m}_z s aran ! fr O

hg(kmr) PLmI(cos 8) eim(¢-9t)

We now proceed to the calculation of the induced surface charge density

6 and current density K on the sphere. Using (5), (9), and (10) we obtain

G = E(Elnc + ESC)
T r ‘r=a

© 2 '
-4 4.7 73 (24+1) (2~ |m|)! PLml(O)

1
Aﬂaz Awaz 2=1 m=-% (2+|m[).

Ly hy )3
[xmhl(xm)]'

(11)
lel(cos g) eim(=fE)

=

where the first term has been added in so that the total induced charge on the
sphere is -q. Also, x = kma and Yy = kmb. Let us denote by K' the part
of K due to v (TM-field) and by K" the part due to u (TE-field). Using
the definition K = fx(g??c + Eéc)r=a together with (5),(9), and (10) we get

Lyghg 1"
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Equations (11) and (12) show that

30
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]
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V-K' +

V.-!_(-n = 0

Let us now introduce the following normalized functions:
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—2m msine 3¢ o+ 36¢
and we have the relations
<?£m, 'fl.m.> = J ?m ?;.m, sin 6 46 do = 8.,y S
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where VQ is the surface operator on the unit sphere. 'In virtue of (14)

equations (11) and (12) can be written in the following compact form:
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Equation (16) is the exact solutiom of the problem posed in Fig.l.

B. Quasi-Static Sclution

We now make a non-relativistic approximation to (16) and keep terms up to
order B(= Wb/c), where the particle's velocity is equal to &b. After some

straightforward small-argument expansions for the spherical Hankel functions, we

obtain
_ 2
¢ =0, + 0(B7)
K' = K' + 0(8)
= =g
Kn - K‘ll + 0(83)
- =5
where
q a9 o g a, 2+l % o m v
o =~ 5 - z I @7 Y, G0t Y, (8,4) (17a)
4na a 2=1 m=-%
qf § § a, i+l T '
K' = - == §- G KX, ) KR! (8,4) (17b)
—s a " g2y m=-g b m "2 m _ R
Q. o Y an
Rl=-L2 3.7 @) K ,00) K (6,9) (17¢)
=1 m=-%
Note that
90
VR +—==0
—s ot
(18)
v-k" =0
-S
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still hold. In the next section we will identify some appropriate electrostatic

and magnetostatic boundary-value problems that have solutions given by (17).

C. Numerical Comparison

We wish to establish some validity criteria for expressions (17) for
different values of the particle's speed and distance from the sphere, so that
when we later generalize them to arbitrary motions we can estimate the accuracy
of the corresponding quasi-static solutions. In Figs.2-4 we plot the following

relative quantities

lo-o |l Nl lxmx2]

o Il ° IS &l

against B(=v/c), KE (the particle's relativistic kinetic energy), and Qalc
with a/b as a parameter. These quantities are constructed from (16) and (17)

with the following definitions:

.

2 _ %
|| o os|| =] (o os)(o cs) gin 0 d6 d¢
| x"-K! || 2 _ | (K'-K') - (K'-K')* sin 6 46 d¢
= =s = =8’ = -8
7 - - % . -
and a similar expression for ||§ffg;|L where the asterisk denotes complex

conjugation. These figures show the overall accuracy on the quasi-static solution
given by (17).

In Figs.5-6 we plot the exact expressioms (16) at the point (8 = 900,
¢ = Qt) on the sphere against £ and KE with b/a as a parameter. These
figures show the detailed local accuracy on the quasi-static solution (17).

The following physical explanation may be offered regarding the question
as to why the quasi-static solutions agree so well with the exact solutions,
as shown in Figs.2-6. As is well known, a sphere has large damping constants
for all the exterior resonant modes that can exist. Let a denote the damping

constant of a particular mode, i.e., the amplitude of this mode is proportional

14
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to exp(-a ct/a). In a time ¢t = a/(ca), the angular distance A¢ that the

charge has traveled is given by

Ap =

Q|-
ol
|

Since v/c and a/b are never greater than unity, the product (v/c)(a/b) can
be quite small. From Ref.[8] we also know that o2 1 for all the TE-modes,
whereas a = % for all the TM~modes. Hence, any resonances on the sphere will
be damped out before the charged particle has traveled an appreciable distance,

implying that the quasi-static approximation should be quite good.

20



III. Charged Particle With Arbitrary Motion in the Presence of a Sphere

In the preceding section we saw that the quasi-static solution is
sufficiently accurate for b/a = 2 regardless of the value of (. However,
for 1 < b/a < 2 -the accuracy depends strongly on the values of b/a and 8.
In this section we will first identify an appropriate electrostatic problem for
obtaining (17a) and (17b) and an appropriate magnetostatic problem for obtaining
(17¢). Then, we will generalize and solve these two static problems for arbitrary
motions as shown in Fig.7. Finally, explicit numerical results will be presented

for radial as well as orbital motion.

A. Quasi-Electrostatic Problem

By the method of images it can easily be seen that O given by (17a)

is the solution of the following quasi-electrostatic problem:

7V = - p/e
q 8(r-b) §(6- 5) 8(¢-0t)
p = 2
r sin ©
V = constant on S (the spherical surface r=a) (19)

< _ —

oV
_JS ™ ds = -q/e

Here and in the following, the subscript s in Og» Eé, and K; is
omitted. With a knowledge of o one can determine K' from the continuity
equation (18), since XK' is derivable from the surface gradient of the Debye
potential v, 1i.e.,

]
ot Vs(av)

e -1
- C

21
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Figure 7. A charged particle with arbitrary trajectory in the presence
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which follows from (5). Introducing X = va/c we have the relationships

- ' (20)

7
|
<
”
-
<]
>
0

which enables us to determine K' from o. Solving (20) we find K' to be

identical to (17b).

For arbitrary motions as shown in Fig.7 we have

_ q 6(r—ro) G(B—Bo) 6(¢-¢0)

o]
2 .
r sin ©

where r, = ro(t), 60 = eo(t) and ¢° = ¢o(t). Solving (19) and (20) with this

expression for p we immediately get

o=--9 -4

le~18

I 1 _
) (r—) Ty (8,0,) Y, (856)

4ﬂa2 “a” =1l m==% \'0o
(21)
q o ¢ a \* 41 —*
1 = _ e - '* o= 1
X 2 X z (r ) [l K!f,tn(eo’(bo) + Vr L Y,Q.m(eo’d)o):l 5!l,m(e"b)
T 2=1 m=-¢ \ "o )
where v = x_ rand v, =¥er. : S _ ——

Several points are now in order regarding (21). Equations (21) become
simpler in form when they are referred to the instantaneous spherical coordinate
system (8,¢) with the charged particle lying on the polar axis. With respect
to this coordinate system K' has only a O-component. One can also choose
the coordinate system in which the instantaneous position of the particle is
at r, o= b, 90 = n/2, ¢° = 0. In this system the term ngi; reduces exactly
to (16b) obtained previously for the orbiting particle problem. By superposition,

then, one can obtain K' for an arbitrarily moving particle by adding to equation

23



(17b) the term in (21) corresponding to the radial motion.

B. Quasi-Magnetostatic Problem

Before finding the solenoidal part of the current K" for a charged
particle with arbitrary motion we will first show that equation (16c) is the

solution to the following quasi-magnetostatic problem:

VxH = Kot §(r-b)
V'H=20 (22)

n-H 0, for r=a

_ 8(x-b) §(8- 3) 8(p=ar)
J = Eb §(r-b) = q@bd 2
r  sin 6

where Kbt is the solenoidal part of the source surface current density 50, i.e.,

which ensures that

V'[Kot(9,¢) §(r-b)] =0

and, hence, the first equation of (22) is valid everywhere. To find got from

go we make use of the orthonormal vector functions -E;m and obtain

= mn 1]
L K E-2.m>-§9,m' (23)

24



To solve (22) with (23) we first scalarize the problem by writing uWH = VXA and

A = Vx(rW) where W satisfies V2W = 0, r#b. In this connection one can refer
to Smythe [[11]. Actually, W 1is the static limit of u used in Section II. Note
that the boundary condition ﬁfg =0 at r=a 1mplies that W = comstant at

r=a. For definiteness, one can set this constant equal to zerov, since a constant
only introduces an additional Hr component that is independent of 6,¢. But

this isotropic term Hr vanishes everywhere due to the requirement
2
r Hr(r,9,¢) sin © d6 d¢ = O

which follows from -V-E = 0 and ﬁgﬂ =0 for r=a.

With all these remarks in mind one can'easily show that, indeed, equation
(22) has the solution (1l6¢). It is interesting to point out that the series
with m = 0 in (16c) corresponds to the current induced bj a loop around a
sphere.

For an arbitrarily oriented current element we simply replace Qb$ by
v, and the coordinates (b,n/2,0t) of the orbiting charge by its instantaneous

position (ro,eo,¢0) in (22), i.e.,

6(r—ro) §(6-6 ) 6(¢=¢ )

= 7 .
r sin O

Solving (22) with this current source by the above technique we obtain

o g 2-1
n =29 . 2 n* n
-Frel (3 ) KEE,00) K (020) (24)
(8]

o

In Appendix B we use an integral-equation approach to arrive at (24).

C. Numerical Results for Radial and Orbital Motion

In the case where the charged particle is moving radially along the polar
axis 6 =0 at a constant velocity v we have from (21).'and (24), with r,
as the instantaneous radial distance of the charge q from the center of the

sphere,

25



[+ ]

o=-—3---9_ 7§ un(* *1 p (cos 6)
2 2 r L
4ma 4wa” 2=1 o :
(25)
' o 242
g =9 § /a sin 8 P!(cos 6)8
= 2 L T L
4ma” =1 o
K" = 0.
Equations (25) are plotted in Figs.8-9. The induced surface charge and current

densities due to an orbiting charge as given by equations (17) are plotted in
Figs.10-14. By suitably combining the curves for radial and orbital motion
as presented in Figs.8-10 one obtains the instantaneous induced charges and

currents on a sphere due to a charge with arbitrary motion in a plane passing

through the center of the sphere.
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IV. A Moving Charged Particle in the Presence of an

Arbitrarily Shaped Conductor

In this section we will discuss methods to generalize the results in

Section IIT for a sphere to an arbitrarily shaped conductor.

A. Quasi-Electrostatic Problem

Let us first consider the quasi-electrostatic problem. Mathematically,

this problem can be stated as follows:

v2p = - —g 8(z-z ) (26a)
with
¢ = ¢0 = constant on 8 (the surface of the conductor) (26b)
and
J odS = - J e‘%i ds = -q. (26c)
S s 0

Equations (26) can, of course, be reduced to the followingintegral equation
. _ -

6 = ¢ 4 I GodS (26d)
S

and the value of ¢o is determined by (26¢c). To find K' from ¢ we write

K' = st and insert it into the continuity equation

: 3a
K — .
VoK' + 50 =0

to obtain
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vsX -7 oot 27

the particular solution of which will lead to the desired solution. The general
method to solve (27) is yet to be found, but for surfaces which allow separation
of variables for the surface Laplacian, X can be obtained straightforwardly from

(27). Fortunately, one can get the total current directly from the magnetostatic

problem without first finding K'.

B. Quasi-Magnetostatic Problem

N

The total quasi-static surface current K (=K' + K") can be found by
solving the following well-known integral equation appropriate for the

magnetostatic problem

%E - f X (VOR)S' = K (28)

where
¢ = 1/(4m), R= |r-r'|

in . .
and K ¢ can be obtained from the Biot-Savart formula as

inc inc BF(X%EO)
K = nxH =q , R =r1-r (29)
= == 3 20 =0

- 4an S -

and r, is the position vector of the current element qv.

For an arbitrary-shape body, equation (28) can be solved numerically. In
those cases where vs_génc = 0 (for example, when E?nc is a uniform magnetic
field or is the field due to a magnetic dipole) one can show that VS-K_= 0.

Taking the surface divergence of (28) and calling K by K" one gets

Ly .xv+ ) 2 grggsr=v k€ (30)
2 s — on s — s —
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where we have used

v, [nx f vGxK"dS'] = n-V J vG-K"dS' - n- { vle K"ds'
= [ 28 grgvas
in s — )
The uniqueness of the solution of (30) implies that Vs-gf = 0 when vsog}nc = 0.
Hence one can write
5" = vsx (_be) (31)
Let us see if we can derive from (28) an integral equation for ¥. Post-

multiplying (28) vectorially by n and then substituting (31) in the resulting

equation, we get

1, _ 136G ¢ _ ,inc
inc inc . i
where ExVS¢ = K. In deriving (32) we have made use of the following vector

calculus:

J VGx[V'xE'w(Ef)]dS; YVVX J-{V;xﬂg'Gw(E')]-; V'G&E'$2£')}dS'

I
]

~Vx i v'Gxn'y(x')ds’ f (a'-V)VGy(x')dsS' - {E'VZGw(};')dS'

= -7 2 yr)ds
- vfanl Ip(z)ds

In general, it is not possible to find winc from E}nc. However, for some

special cases where the geometry of the problem has a high degree of symmetry

Cc

one may make a judicious guess to write down ¢1n by inspection. In this
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sense (28) is more fundamental.
Equations (26), (27), (28) and (29) constitute the complete formulation of
the problem involving a moving charge in the presence of an arbitrary-shaped

conductor.
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V. Two Initial-Value Problems

In this section we will pose and solve, within the realm of classical
electrodynamics, two initial-value problems which may relate to the situation
(Fig.15) where a plane-wave pulse of photon flux impinges upon a metallic sphere.
The problems we propose to solve will shed some light on the question as to how
the positive charges redistribute themselves on the surface of the sphere after
the passage of the photon pulse, with the assumption that the electrons outside
the sphere have negligible effect on the redistribution process of the positive
charges. The first step towards solving the problems is to sperify a set of
sufficient initial data on the sphere, so that the problems will beccme mathema-
tically well posed, i.e., the existence of a unique solution of Maxwell's
equations will be guaranteed. Obviously, a specification of the surface charge
density alone at one instant will not guffice. But a unique solution is ensured
if one specifies the tangential electric field on the surface of the sphere for
all times together with the total net charge at one instant (the law of charge
conservation demands the total net charge be constant for all times). Therefore,
we will start with a set of sufficient data on the sphere and see how much
information one can deduce by specifying the initial charge distribution alone.
This charge distribution is readily available from the electron emission function
(or the so-called photoelectric emission current function), since by integrating
this function (multiplied by the electromnic charge) over all electron energies and
the duration and energy spectrum of the photon pulse one will obtain the initial
charge distribution on the sphere [4,5]. : S _ -

Referring to Fig.15 let us take as our first initial-value problem, the
incident photon pulse to be of the form §(t + z/c). The tangential electric field

Et on the surface of the sphére can be described as

= a *
E'_t(e,¢st) = _E_O(e,d’) 5(t + c cos 9) ' (33)

and there is no electromagnetic field before the photon pulse strikes the sphere.

* Tt will lately become evident that the specification of Et by (33) can be
regarded as an artifice if one is interested only in how much information one

can deduce by just specifying the initial charge distribution on the sphere.
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Figure 15.

A sphere struck by a photon pulse.
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Physically, (33) means that the spherical surface S 1is perfectly conducting at
every point except at the instant when the photons strike the point in questionm.
Given E_ on S for all times and the radiation condition at infinity the rield
is uniquely determined everywhere to within a static field which is related to
the total net charge on the sphere. Using the procedure in Section II one can

immediately write down the Debye potentials u and Vv in the frequency domain

A;m(k) hz(kr)

u(r,0,0,0) = 5 Y, (6,4
K gm Vi(D Dk m
(34)
A! (k) h,(kr)
2m 2 —
v(,0,4,0) = a ] FY, (6,4)
vom Ja(ery ke hpka)]’ am
where
Ay (k) = J exp(-ika cos e)[eim K (8,0) + eh _Ig;m(e,(b)] '5;.:1(9"”) sin 8 d6 d¢
(35)
= ¥ s
®om = I§0(9,¢) Ky (8,4) sin & d6 do
and, similarly, for Aj ~and ep . With u and v known the currents K', K"

and the charge density o are directly obtainable by straightforward differentia-
tions. By performing an inverse Fourier transform, or by applying the Singularity

Expansion Method, one gets: - - ' N . -

" w3 h (k, a)
27 n
5(6,0,t) = —= -1 7 ¥ ¥ /2(eA1) B, (t) ;
41Ta2 a oLy ot o mn [kznahl(ana)]
(36)
= _iwlnt a
Yzm(0,¢) e U(t +-E'cos 8)
where w, = ck, s Ky satisfies [kﬁnahl(klna)]' = 0 and
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-1k£na cos ©

- gk a
BZmn(t) = J §0(9,¢) K&m(e’¢) Ut + . ¢cos 8) e sin 6 do d¢.

The total net charge on the sphere is demoted by Q in (36). The expressions
for K' and K" can be obtained with the same technique and we will not write
them down here.

Before comcluding this first problem, let us take Et = Eo §(t) which
applies to times larger than the transit time across the sphere. Then, evaluating

(36) at t = 0+ we get without much effort,

«©

%
0(6,¢,0+)=-9——e—° Y1 Va(er1)

2 3 9 meg

Y, (8,4) (37
4ma

T
ezm

Thus, we see that in this case, specification of the intial charge distribution
gives sufficient data for determining the TM fields only, while fields of the
TE-type (e;m) remain undetermined.

We now consider a different initial-value problem where a static charge

distribution co is given on the surface, S, of a sphere .for time ¢t < 0:
0 (8,9) = Ezm o, Yo (6,4) (38)
I

At t = 0 the surface of the sphere is made a perfectlghcondqcting surface. We
wish to find the subsequent current and charge distributions on the sphere with
radius a. In the followingwe will omit the term £ =0, m =0 in (38) from
our consideration, since the static electric field corresponding to this term does
not charge for t > 0.

The general expansion of the tangential electric field gt at r =a can

be written as

E (8,6,t) = [ ey (£) Ky (6,) + ) ep (£) Ky (6,4) (39
L,m 2,m
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for all t. To determine eim(t) and e;m(t) we note that
gt(e,¢) =0, fort>0 (40)
and hence eim(t) = ezm(t) =0, for t > 0, Moreover, we have

gt(e,qa,t) = E (6,¢4), fort < 0 (41)
where

€ E (0,¢) = -V, I G(6,058",4") o (87,4')dS

and G is the static Green's function which, at r = a, 1is given by

. N § 1 3 v* g0
G(B,(b’e"q) ) = a 22_‘_1 Yzm(e’d)) Yzm(e ’¢ )
£,m
so that
im <
J Go_ ds=a ) T Lym(0®)
2,m

and ~ -

E (6,0) = ] e, K (8,¢) (42)

%,m

where

/e ar1) im

em 2841 €
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By performing an inverse Fourier transform we can determine v and hence all
field components for all times and everywhere.

Let us calculate Er and determine its discontinuity across r = a. From

(45) we have

] &, 2D r) T, (0,4), T>a

B = %,m 47)
~ L(+1) . =
ﬁgm By o 3 kr) Y (8,0), T <a

Hence,

. - _ 1 2(841) 1 1 I
E (at,0) - E (aw) = oo sz (2e+D)ka [ka h,(ka)]" [ka j,(ka)]’ “om Tom®0#)

where at(a-) denotes the exterior (interior) side of the spherical surface S.

Performing an inverse Fourier transform we get

e[Er(a+,t) - Er(a—,t)]

2(2+1) 1 1 _ At
¢.m % (22+1)ka [ka hz(ka)]"fia jl(ka)]' %om ng(9,¢) e dk  (48)

I
)
) 3
= |

< _ -

The path of integration is along the real axis with downward indentation at w =
and upward indentation at all other poles on the real axis.
From the small-argument expansions of the spherical Bessel functions one

can see that

2 (4+1) 1 1 1
(22+D)ka [ka hy(ka)]" [ka 3 Gka)]" § ~

1im
ka - O

so that by Cauchy's integral theorem equation (48) gives, with the integration
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This expression can be viewed as the charge density on the interilor side of 5.
We note that expression (51) contains only pure sinusoidal oscillations for
t > 0, since all the zeros of [ka jl(ka)]' are real.

We now continue with the calculation of the currents on 5. On the

exterior part of 8, the surface current density K(a+,t) is

2m
dt

K(at,t) = DxH(at,t) =2 " c ] JE(HD) () K} _(8,4)
2,m

and from (42) and (46) we have

~ Ve (41) 1 '
K(at,0) = a zx 2041 [ka b, k1" i K02 ®) (52)
2
An inverse Fourier transform gives
0, t <0
K(at,t) = ‘
/2, (3+1) 1 | . —1ognt
) ac ] 2941 15 ) Tika h, (ka)l' { “%m Kon(8:9) @ » t>0
2,myn kz A
ext o
- ﬁ -——
and similarly, on the interior side of S5 we have
0, t<0
K(a-,t) = (53)
V2 (241 A 1 , —dwg b
-ac ] T ReS (| [Tka 3.GaT" | Otm K09 © > t2
£,m,n k 2
n
int
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VI. Conclusions and Suggestions

The present note treats certain aspects of the general problem of calcula-
ting the external system—-generated EMP due to photoelectrons emitted from the
surface of a conductor. Specifically, the problem posed and solved in this note
is that of calculating the induced surface currents and charges, and hence the
electromagnetic field, on a perfect conductor with prescribed trajectories of
the photoelectrons. It is found that under certain general conditions on the
electron's speed and distance from the conductor, the solution of a quasi-
electrostatic problem and the solution of a quasi-magnetostatic problem are
sufficiently accurate. Validity criteria on the quasi-static solutions are
established by solving a canonical problem rigorously as well as quasi-statically.
The canonical problem involves an electron orbiting a perfectly conducting sphere.
The rigorous solutions for the induced surface currents and charges on the sphere
are compared numerically with the quasi-static solutions, thus establishing
validity criteria in terms of the electron's kinetic energy and distance from
the sphere. The numerical comparison shows that the accuracy of the quasi-
static solutions is more sensitive to the change in the electron's distance from
the conductor than the electron's speed. When the electron is more than two
radii away from the sphere, the quasi-static solutions are extremely accurate
regardless of the electron's speed.

The quasi~static solutions can be generalized to a charged particle with
arbitrary motion in the presence of a sphere. Extensive Shumerical results are"
presented graphically for the induced currents and charges on the sphere for
radial as well as orbital motion of the charged particle. By superposition,
results for arbitrary motion can then be obtained from these two special motionms.

A discussion based on the integral-equation approach is given for solving
the two quasi-static problems involving arbitrary-shaped conductors. The resul-
ting integral equations can be easily solved on an electronié computer for a
conductor of any given shape.

Two initial-boundary-value problems are discussed within the realm of
classical electrodynamics. These two problems are related to the question as
to how the positive charges redistribute themselves on the surface of the sphere

after the passage of an incident plane-wave photon pulse, with the assumption
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that the photoelectrons outside the sphere ﬁave negligible effect on the
redistribution process of the positive charges. It is found that in some cases

a specification of the initital charge distribution together with the total net
charge is sufficient for determining the subsequent charge distyibution on a
sphere, while in other cases such a specification does not constitute a sufficent
set of initial data.

So far we have been recapitulating the results of the present study. Let
us now discuss how this work is related to the general problem where a plane-
wave photon pulse strikes a sphere and causes electrons to emit from the sphere.
To be sure, if the thephotoelectron charge density p and current density J
are known outside the sphere, then one can use some of the results in this work
as the Green's function of the problem to compute the field. From equations

(21) and (24) one can immediately write down

a(e,0,t) = - 2L D7 {J o', 0)(2) T T 07,0") cm'dr'} T, (0,0

K'(8,4,8) = -9 {j [ (2)F 36" .0rKjmc0,00) (54)

2,m

B (2)" 1, ot | antort | 0

2 ,m

K"(8,0,t) = =) { J(%.)H It K667 dﬂ'dr'} K! (6,0)

where d9' = sin 6'd9'd¢', the ' on the summation sign denotes omission of the

£ =m=0 term, and the total charge Q 1is
] l2 1 T
Q(t) = I p(x',t) r'dr'de

The domain of integration in the above integrals is, of course, the region outside
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the sphere. Expanding p and J one has

o= D a,(r,t) T, (8,9

L,m

(55)

3= [ Ban (e Kjp(0,0) + cpp (e Ky (0,0) + £ dy (x,0) ?zm(e,@]
L,m .

The expansion coefficients a, , b, , ¢, , and d are of course determined
m 2m fm im
uniquely in terms of p and J due to the orthonormal conditions (15). Substi-

tution of (55) in (54) gives the following rather simple expressions:

T
4ra a

g(8,¢,t) = - QLE% - :E: { J (E})l—l azm(r',t)dr' } ?&m(e,¢)
L,m

' b L
K'(8,6,8) = - { | [bynts®) + By onol(2) dr‘} K (0,4)  (56)
2,m a
K'(6,0,£) = - { J (%.)E_l cm(r',t)dr'} S CH )
2,m a

If the quasi-static approximation is not made, the™toupling coefficients ~
inside the curly brackets of (56) become quite complicated. To illustrate this

point let us write down the rigorous expression for o only:

1 -iwt
0(6,¢,t) = - Q(t) + Z { VQ.(.Q:"’].) _];' J ; . du
Lia 2,m 27 ‘C {ima [ka hl(ka)]'}

(57)

a

J_{[kr ha(l‘cr)_l' Em(r,m) - /2 (D) I (kr) &m(r,m)}rdr} ?z"m(o,q,)
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where Ezm(m) and aﬂm(w) are, respectively, the Fourier transforms of bgm(t)
and dzm(t), and the contour € for the Fourier integral in (57) is chosen to
lie above all singularities of the integrand in the entire w-plare. We leave
the derivations of K' and K" to the interested reader and simply state that
the dyadic Green's function discussed in Appendix A would be very useful in the
derivations. With considerable efforts one can show that equation (57) indeed
reduces to the first equation of (56) under the quasi-static (or low-frequency)
approximation, and again we leave the proof to the interested r=ader. Let us
point out in passing that equation (57) is in a form consistent with the theory
of Singularity Expansion Method applied to a sphere, as has been expourdesd in
La].

Let us return to equations (56) and note that the coupling coefficient for
K' can be expressed in terms of (3/3t) alm(r,t) alone because of the charge
continuity equation. In the case where there is rotational symmetry (i.e., no
¢ variatioms)in the problem under consideration, equatioms (56) reduce to the

following extremely simple form:

o o0 -1
Q(t) a =
g(6,t) = - - Z { J - a (r,t)dr} P, (cos 8)
4wa2 =1 a.(r) o 2
) © 2-=1 d-}.;
' _ A a a L
K'(6,t) = -8 EZ_:I{ LD I (r) él(r,t)dr} T (58)
<. -

]
o

K"(8,t)

where az(r,t) is the expansion coefficient for p(r,6,t), ég = (B/Bt)ag, and

Fl is the normalized Legendre polynomial defined in (14). It is interesting to

note that a knowledge of a, alone completely determines the induced surface

A
charges and currents on the sphere. In general, a, is unknown. What is knowm
in the problem of practical interest is the photoelectric emission current at
the "surface" of the sphere for a given incident photon pulse. This emission
current, which can be taken to be ¢—independent, describes the number of emitted

electrons per unit area, per unit time, per unit electron exit energy, and per
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unit exit angle with respect to the normal at the surface L4,5]. Given the

emission current as the only input datum the determination of ag will involve

a self-consistent approach to the solution of Maxwell's equations and the equations

of motion. Although such an approach is not too straightforward, the importance

of the problem warrants an immediate investigation along this line. Also, one

may think of undertaking a numerical study of o and K' based on (58) by

judiciously choosing different appropriate forms for ag- Another undertaking

is the determination of the complete trajectory of each emitted photoelectron

under the assumption that the only significant force each electron experiences

is the Coulomb force between the electron and the positive charges on the sphere.
Another area for future study directly related to the present note includes

the investigation of the effects of various appendages attached to a sphere on

our present calculations for the induced surface currents and charges and the

investigation of extending the techmiques in this note to conductors of other

shapes. For very slender structures quasi-static calculations may not be accurate

enough and other workable approaches should be explored before one embarks upon

using the full-fledged Maxwell's equations.
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Appendix A

On the Solenoidal and Irrotational Parts

of the Dyadic Green's Function of a Sphere

In finding the time-harmonic electromagnetic field of a distributed current
source density J(x,w) it is customary to first seek the dyadic Green's function
G and then to construct the field by integration. We are interested in finding

a G which satisfies the boundary condition

G =0 (A1)

1%

on the surface of a sphere of radius a, the differential equation

2

VxVxg - kG = I §(xr-r'), rza, r' >a (A2)

and the radiation condition at infinity.

Naturally, one splits G = g? + g?, E?

being the free-space part and g?
the scattered part. Obviously, most of our effort in solving the problem just

posed lies in finding a representation of g? which will be appropriate for the
spherical coordinate system and possesses a correct singularity at r = r'.

It is well known that [9], with G = exp(ik|r-r'|)/(4n|e-z'[), -
(o] 'y 1 1 1
& (x,r') = @ -5 W) 6xrh) (A3)

satisfies (A2) and the radiation condition at infinity. Making use of the
result [12,13]

YT [l 3 1 3
Loy =ik [ ] [M ()M _ () +N (t) N ()
=1 m=-2 > ’ o :
1
+ Lim(&) Lz,_m(_r_>)] + Lo_o(&) Lzo(£>) (A4)
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and

1 "z" E 1 3
—= W' G(r,r') = ik L (x) L, _(r) (A5)
k2 2=0 m=-2 Am =< %,mm'=>
one obtains from (A3)
o O 3 1 3
S o =ik ) ) [M ()M () +N )N _ ()] (a6)

=1 m=-%

— " —_ - 1
Here, r =1, r(_r_:_< = r<r) and r>(r<) denotes the larger (smaller) of r,r'.

The vector spherical wave functions in (A4)-(A6) are defined as [8,18]

— . _ z, (kr) _
L@ = Wz, (k) T, (0,001 = £ 25 0e) T, (0,6) + RO ——Kp (6,0)

l —
M, (r) = —— Vx[xr z (kr) Y, (8,¢)] = -z (kr) Ki (©,¢) (A7)
2m m £ m 2 2m
1 . z, (kr) _ 1.
N (@) =L VM (o) =1 VR (8+1) o Yo (8:9) t 3 [kr z, (k)] Ky (6,¢)

.

where z, 1is equal to jz or hz according as the superscript is 1 or 3.

The reprisentation (A6) of g? in terms of M and N has also been given by
Jones [14]. His method of obtaining g? is conventional in that he finds the
electromagnetic field of an electric dipole by matching the field quantities
across the spherical surface containing the point dipole. It is interesting to
note that the L function does not enter into the representation (A6). From the
series representation (A6) one can show that V-gf = k2 Vé6(x-r') which is in
agreement with the differential equation (A2).

To find gf one simply invokes the boundary condition (Al) to obtain, in

view of (A6),
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o 8 | j (ka)
s L 3 3
G (r,r') = -ik M, (x) M (x")
— lzl s [hz(ka) 2m 2, -m

N
N~
(o]

A/

[ka jz(ka)]' 3 3 '
[k b, (k)] " San® By, 2D)] -

An observation of the coefficients in the series expansion for g? reveals that
M is associated with fields of TE-type and N with fields of TM-type.
We have just succeeded in obtaining a representation of the dyadic Green's

function G for a sphere. We now go on to investigate how to use G to get the

field of a distributed J outside the sphere. Since G behaves as |£_-_£'|-3
when r' + r, the integral
Ig(g,z')g{(_')dv'
has to be interpreted in a principal~value sense. To this end we start from
first principles and apply Green's theorem to
2
VxYXE - kK"E = iwpJ
(A9)
2 '
S UXUxG - kK6 =0, r#r S, -
and obtain
J [-G+(n'xV'xE) + (V'xg)-(gng)]ds' = fwp J G-Jdv . (A10)
S+SE+Sm v

where the volume V is bounded by the spherical surfaces S + SE + S (see
Figure Al). Using the radiation condition at infimity on S_ and the boundary
conditions on S one can discard the integrals over S and S. The integral

over SE in the limit as e + 0 gives [15]
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Figure Al.

Domains of integration for Green's theorem.
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Lim J - g (E'XV'X_E_)dS' = %_E_(_)
e>0) ‘S
. 1 L} l 1 1 T/
Lim (V'xG) » (Exn')dS' = — VxVxE = 7 E(r) - 57— J( )
= == 2 = 3= 3ine —'=
ge+0 ’85 3k

[

Inserting these limiting values in (Al0) one obtains

E(r) = iwn jg(g,_lg'

J
)+ J(x")dv' + Tine (A11)

The principal-value integral is a well defined function of r when J is a

continuous function.

Let us now verify that (All) implies
Taking the divergence of (All) and noting that the part due to the

density.

scattered dyadic Green's function has

iwuV. J

iwuVv:* }

V-E

Using [16]
j[(k%;ﬂv'xﬂ-ggv'

= J VxVx (GJ)dv’

one can immediately see from (Al2) and (Al3) that

value integral in the last expression
as an ordinary integral.
We now proceed to the splitting

part g%

following, this splitting is advantageous because gi and gt

and its irrotational (transverse) part G, .
(™

V-E = p/e, p beingthe volume charge

zero divergence one has

6°-Jdv' + p/3¢e

(A12)
L I- i%-vv'cj-ggv' +p/3¢
k
= —f (;yzc-vvc)-gﬁv',
(a13)

.
B

wiro

= VxVx f GJav' -

V-E = p/e. The principal-
of (Al3) can, of course, be interpreted
of G into its solenoidal (longitudinal)
As we will see in the

have distinct

features from both physical and mathematical viewpoints.
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The governing equations for gz and _gt are given by

L Tt
VxG, = 0, outside S | (Alda)
Vg, = V-G = ;-]2—' v8(r-r'), outside S (Al4b)
nxg, =0, on$ (Al4e)
VG = VxG, outside S (Al5a)
V-6 =0, outside S (A15b)
nxG, = 0, on S (-A15c)

together with appropriate conditions at infinity. Equation (Al4b) follows from
the differential equation (A2) for G. - : 1
To solve (Al4) for G, we set, with G_ = Chmlz-2l]) -

¢ =--Lygye (A16)

which is in compliance with (Al4a) and the reciprocity condition with respect to

r and r'. Then, -one can easily see from (Al4b,c) and (Al6) that

VUG, = -8(x-r'), outside S

(A17) |

57



the solution of which is

N = 1 - 1 A
Gs(-E"£ ) hrjr-r'|  4m|r-r"| (A18)
where
aZ
ll= ]
r r'2'£ .
It should be noted that the boundary condition GS = constant on S also

satisfies (Al4c), and the value of this constant is dictated through E by the

total net charge on the sphere.

We have just shown how G, can be constructed from the solution of

Poisson's equation (Al7). To find G, we simply subtract G, from G

which has been given in (A6) and (A8). There are two points worth mentioning

regarding gt : (1) gt is indeed divergenceless, since from (A3) and (Al4b)

V-G, =96 -V-G =VG -L (RZVG + 98) +—1— vé = 0,
=t = =% 2 2
k k
1 1 -1 v -3
and (2) as © »> lgtl-v [x-x'| whereas IQQI'V lt-r |7”; therefore, the

highest singular term in G has been separated out and giﬁin to- gi which cam -
easily be handled by solving an electrostatic problem.

In concluding, we wish to point out that although an explicit series
representation of the time-harmonic dyadic Green's function has been obtained
for a perfectly conducting sphere, it is difficult to use it to derive
quantitatively useful information on the time-dependent problem discussed in
the text in which the moving electrons emitted from the surface are the source

functions of the fields.
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Appendix B
Magnetostatic Problem of a Sphere - An Integral Equation Approach

We will solve the magnetostatic problem posed in Section I1I using an
integral equation approach. The reason for doing this is twofold: (1) the
decomposition of the current-source term into solenoidal and irrotational parts
becomes unnecessary in this approach; and (2) this approach brings into play the
general method of solving an integral equation from the solution of the
associated eigenvalue problem.

We begin with the integral equation

FE- f nx(VGxR)dS' = K (1)
S

Expanding K in terms of Lgim} and {EEm} and substituting

- ' ' " "
k Xm (akm-Eim + aﬂm-Elm) (2)

into (Bl) we get

vt ' n o n " - j;nc
lzm g 2 B ¥ X 24 Kp) = K
k4

where o . : S _ _— .

L+l

%
1 _—
A = 2041

— o "
Py TS B

In the following we only show how to evaluate azm explicitly, since the

evaluation of aim follows identically the same line. We have

28+1 inc .
n _ £XTo R
ap L J K -Eﬂm sin 6 d6 d¢. (B3)
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To evaluate the integral in (B3) we note that

. G
ine uk _ (¥ = g ¥ . rhy 4 . vk B4
K —K-.Qm ¥ (Eﬂ.mxvc ) X Ell,m or + Vs @ lr-xl(-!l.m) Gy st-lgﬂ,m (B4)

where G(x,r') = (4w|£7£f|)_l. Formulas in Weatherburn [17] give with aVs = VQ

Kll

<]
X

o]
I

Q —m Al
(B5)
11 —
VK =0
and
. %3 . = - ok B6
J v Ulyxglm) sin 6 d6 d¢ 2 I Gyv'Ky sin 8 de de. (B6)

Equations (B4) and (B5) enable us to get the following expression for the integral
in (B3):

inc 3(xG) &
JTNE . = eye " .
I KC-R)* sin 0 do d¢ = -v J —57— Ky sin 0 40 d¢
. _ < (B7)
2"+1 rz'_l ., - o ) -—
- - JNE ] d
Rl' ' 22‘_‘_1 2-"*‘1 Yﬂ,'m' (60’¢0) I!_Igzm(e’q)) Yglml (e’¢) sin e de ¢
s 1'0

We now evaluate the integral in (B7) for three different current orientations.

(i) Radial Orientation

Without loss of generality we choose v =vZ at 0O = 0. For this special

case we get, for (B7),
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v pnk v .
Yoo (0s0) J voKpT(8,9) Yo 4(0,0) sin 6 46 d¢

_ -imv__ <= ok el . -
= D Yﬂ,'m'(o’(po) JYlm(Gﬂb) Yﬁumv(esd’) sin 6 do d¢ 0, (B8)

since ?@m(0,¢o)‘= 0 for 1< ms< %&. Thus, a radially oriented current element

will not give rise to a solenoidal surface current density on the sphere.

(ii) ¢-Orientation

We choose v = v&, 90 =-%, ¢0 = Q0 and get, for (B7),

ETay w n v .
Yo (50) IX'EP.;(G"”) Y,,1(0,¢) sin 6 d6 dé

= —2— 3% ,(,0)
o 2

aY’,zm oYy \ _
I sin 6 cos ¢ g~ ©os 8 sin ¢ 30 Yz,m,(9,¢) sin 6 d6 d¢

8
_ v JOmm) () [ ) ) 0 =
=% V() Gem '’ La1,mr ~ DG m) Gmﬂ.,m'] el Y, 1 (550)
- v a—ﬂ,'m' (_1_[ 0) & 5 — .Kll* (17_ 0) P (}39)
O ) St T ¥Rt 1207 Osk! om! AB2)

Using this result in (B2), (B3) and (B7) one then obtains an expression for K

identical to the one in (17c¢).

(iii) 6-Orientation

From symmetry considerations one can obtain the solution for this case
directly from (ii) by a rotation of the coordinate axes.
Combining the results in (i), (ii) and (iii) one arrives at the result

(24) in Section ITI.
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Symbols and Notations

In the following we summarize the different notations and symbols used

in this note and those used in IN88 [8]. These differences are only formal

and are due to the fact that (1) Laplace transform notations are used in IN88,

whereas Fourier transform notations are used in this note, and (2) the normali-

zations of the spherical harmonics differ in the two notes.

This note IN88
-iw s
-ik = -iw/e vy = s/c
L £(-ik) e *tq, L £(y) e%ds
27 c 27i
CS

UV

(Cw parallel to the real (CS parallel to the imaginary

axis in the complex w-plane) axis in the complex s-plane)

9 s}
-2 - ‘ ’ ‘"‘
7%, (kr) 1,0m)
g 472 hg(kr) kn(Yr)
; n%m ?Rm(e’¢) —fn:mao(e,d))
V5 (2+1) n, Eim(e.‘#) an,m o(e’¢)
V2 (2+1) n, g}:m(ef,cb) i‘)n m o(e’¢)
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(This note) (IN88)

> >
Mom L&m(z) Ln,m,o(yr)
—e e ' > >
%(2+1) nlm H&m(z) Mn,m,U(Yr)
-5
/8. (2+41) n, N, () ﬁn,m’c(wr)
(0= L, 2sms &) (0<n, 0Sm< n, 0 = e,0)
The normalization factor nﬁm is defined as
| 4v(@+]Im[)?

V(21+1) (2-|m|)!

For those who are familiar with Baum's work simply replace the symbols of this

note in the left column by the corresponding ones in the right column.
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