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1. INTRODUCTION

This report describes an apprbximate method of calculating
the electromagnetic pulse (EMP) generated by the X-ray output of a
nuclear weapon.

Most of the calculétions of EMP generation made in the past
have used the gamma rays rather than the X rays. This choice was
appropriate for observers located below about 30-km altitude, regard-
less of the burst location. For low-altitude bursts the X Tays are
normally absorbed in the air within a few tens of meters from the
burst, whereas the nore energetic gamma rays proceed outwards to
hundreds of meters and even kilometers from the burst. The high
electrical conductivity induced in the air in the gamma-ray EMP source
region effectively screens more distant observers from electrical
effects produced by the X rays near the burst. The same effect occurs
for high-altitude bursts, as long as the observer is below about
30-km altitude. Although the X rays may produce an EMP in the altitude
range 50 to 100 km where they are normally absorbed, this EMP is
attenuated in the gamma-ray absorption region between 20 and 40 km

altitude, and is replaced by the gamma-ray EMP for lower observers.

On the other hand, if both the burst and the observer are
at altitudes higher than about 50 km, the X-ray induced EMP may be
dominant, for two reasons. First, the gamma rays interact only
weakly with the thin atmosphere at these altitudes, whereas the
X rays are strongly absorbed between S0- and 100-km altitude. Second,

there are so many more X rays than gamma rays (by a factor 10" to 10°).

We do not, however, expett the X-ray induced EMP, in its
domain, to be larger than the gamma-ray induced EMP seen by low-
altitude observers, because of the phenomenon of saturation. The

peak electric field E tends to be determined, approximately, by a

balance between the photon-induced source current and the neutralizing




secondary electron current driven by'ﬁ. The photoelectrons from the

X rays produce a smaller ratio of net current to secondary ionization
than do the higher energy Compton recoil electrons from the gamma
rays, and so should lead to a substantially smaller saturated‘f at
balance. The main possibility of finding a large EMP in the X-ray
domain would therefore appear to come at early times for a fast-rising
X-ray flux, before the secondary electrons have had time to build up.
Consideration of the rate of build up of secondary ionization has led
us to expect that the most significant part of the EMP will occur at
times of the order of 10~° second, or less, after the beginning of the

X-ray flux,

This short expected time scale has influenced the choice of
approximations made in the following sections of this report for the
purpose of simplifying the calculations. For example, in such short
times, the geomagnetic deflection of the photoelectrons is small, so
that the net transverse current is small compared with the net radial
current. As a result, we expect that the dominant part of the EMP
will be simply a radial electric field, Since a radial E field does
not propagate (as do transverse fields), its determination requires
solution of time-dependent equations at only one point in space,
rather than partial differential equations in space and time. This

fact greatly simplifies the calculation.

This approximation, that the radial E'is the only signifi-
cant field, is made in this report. By use of several other simplify-
ing approximations, we derive a set of ordinary differential equations
in time for E, for the photoelectron and secondary electron currents,
and for two other required parameters. In another report we give cal-
culated results for some typical cases, together with a discussion of

the results and of the validity of the approximations in hindsight? .




Of course this non-propagating EMP would be seen only by

observers in the X-ray absorption region,

2. DEVELOPMENT OF THE EQUATIONS

2.1 Maxwell's Equations
In general, the time variations of the electric field E and

the magnetic field E are given by the two Maxwell equations

-3
1 9B >
¢ - VXE )
BE > >
%'§E'= - 4nJ + VX B, (2)

The above equations are written in cgs Gaussian units; thus charge and
electric fields are in esu and currents and magnetic fields are in emu.
The current density J is assumed to include both the primary source
current JP and the secondary current JS.

In our case the source current Jp is approximately radial
(from the burst point) and depends only very slowly on the (spherical
coordinate) angles. Therefore, from Equation 2, E is also radial and
depends only very slowly on angles. Since the curl of such an E is
small, Equation 1 indicates that B will be small, and we shall neglect
B altogether. Thus Equation 2 becomes

JE

1 9E
c ot

= - 4‘[]’[JP + JS] (3)

-
where E is the radial component of E, To solve this equation for the
electric field as a function of time at a given point we need to know
the time histories of both JP and JS’ the primary and secondary current

densities,

2.2 Primary Current Density

The X-ray pulse produced by a nuclear burst interacts with

the nearby air atoms to create "free" Compton and photoelectrons,




These electrons will be ejected with some radial velocity, v The .
current due to a single electron of velocity vf is given by

ie = - %-vr (abamp) . @

To calculate the total current density, JP’ we multiply ie by the num-
ber of eiectrpns per cm® having radial velocity V. and integrate over
all velocities. In other words, what is needed is the velocity dis-
tribution function f(vr, t) describing the number of electrons per cm®
per unit (radial) velocity as a function of time. Then the total

current density, J , is given by

total

e ‘
Teotal = "E,[%(Vr’ v, dv, . )

Note that in the most general case, the velocity distribution function

will include both primary and secondary electrons so that J is the

total
sum of JP and JS. For the present, however, let us focus our attention
on the primary current alone.

The problem with this formulation for J is that, in

genéral, the function f(vr,.t) is difficult to evzﬁzzie. The initial
value of f can be determined from an assumed X-ray flux and the Compton
and photo effect differential cross sections. However, the distribution
function changes from this initial Valﬁe due to several factors. The
electric field built up by the current tends to slow down the electrons.
Ionization along the electron's path implies an effective drag fofce,
also slowing the electron. Electron scattering will, to first order
change only the electron's direction and not the magnitude of its
velocity; but- the radial component, which determines the net current,
will be changed. (One might also consider electron-ion recombination,
but the rate of this process at high altitudes is very slow and can be
ignored in these calculations.) |

One can find this distribution as a function of time by

solving an appropriate form of the Boltzmann equation (see Appendix 1).
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However, since solving the Boltzmann equation is a rather tedious and
complicated task, we have chosen alternatively to make several simplify-

ing assumptions to facilitate a first estimate of the X-ray EMP fields.

We can avoid solving the full Boltzmann equation by making
use of the fact that the X-ray produced electrons '"live' a long time
compared with the duration of the main part of the EMP, which we
expect to be of the order of 10~ ® second. We shall show below that the
slowing-down _time of the photoelectrons is longer than this by a factor
of 10 or more. Thus the photoelectrons may be assﬁmed to have approxi-
mately constant energy over the period 6f interest, and this result

allows a simplified treatment of the primary current, as will be seen
below.

Consider a beam of monoenergetic X rays generated from a
weapon burst very high in the atmosphere as indicated in Figure 1. The

3

 energy deposited per cm® at point P in the atmosphere can be written as

R
-fKTp(R)dR
N = ¢ _pe ° , . (6)
where ¢ is the unattenuated (by air) X-ray intensity, K, is the mass

absorption coefficient (cmZ/gm) of air, p is the air density (gm/cma),

and Kr is the mass attenuation coefficient. The integral quantity
R : : .

L E“ILTp(R)dR .

is simply the number of X-ray mean-free paths between the burst point

and P, If we assume an exponential atmosphere, then.

o(h) = poe /D0, | . Q)

where hg is the scale height (~v7 km). Using Equation 7 in the expres-

sion for L, we find
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Figure 1. Assumed geometry of problem.
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which for H >> hy can be written approximately as

Koho Kohop
_ T -h/hy _ T
L = S Poe < sind® ' (8)

Incorporating Equation 8 into Equation 6, we have

] KThop
N = ¢k _pe sind
a
We can determine the altitude h at which maximum energy deposition .

occurs by requiring dN/dp = 0. Thus we find that the density P which

maximizes N is -




. 0 = sind

m K,[,ho'

By using Equation 7 we can then write the equivalent altitude hm as
K‘Thopo
hm = h°£n< sine) ' (10)

As a specific example, we have taken the dip angle 6 to be
30°, the scale height to be 7.0 km, and po to be 1.43 x 10~° gm/cm’.
We now wish to estimate the lifetime (before stopping) of photoelectrons

)

produced by the X rays. For a given X-ray energy u we first calculate
P from Equation 9 and hm from Equation 10. Assuming the photoelectron
is born at altitude hm with energy u, the electron range r (cm) can
then be computed at the local density P The lifetime of the photo-

electron will be of the order of

At =

<

where v is the initial velocity of the ejected photoelectron. Table 1

lists the results of such calculations for selected X-ray energies.

Table 1. Electron lifetime at altitude of maximum absorption.

u v/c K(u) P hm r(range) | At = r/v
keV cm?/gm gm/cm® km cm sec

5 | .14 | 32.4 | 2.3x10°° | 78 | 3.0x10° | 7.1x10°7
10 .20 4.6 1.6x10°7 65 1.5x10° 2.5x10°7
15 | .24 | 1.6 | 47077 | 57 | 1.1x10° | 1.5x10-7
20 .28 .79 9.4x10°7 51 | 9.0x10?2 1.1x10°7
30 .34 .37 2.0x10°¢ 45 8.8x102 8.6x10-%




We see from the table that the lifetime is indeed long com- .
pared with the expected duration of the pulse. This means that the
density N(t) of active primary electrons is simply the time integral -
of their source, and that their average energy is roughly independent
of time and equal to their average energy at birth. The primary cur-
rent density is

Ip = - %N(t)??r(t) . (11)

" Here V; is the mean radial velocity of the primary electrons at a given
time; V} varies with time due to the action of electric field and slow-

ing down forces and to the continual injection of newly created electrons.

Let us make a small step 8t in time and consider the change
GJP in the primary current density. First, JP will change because new

electrons have been injected, and this change will be
8y = - SNy > (12)
c r !

where <vr> denotes the mean radial velocity of the primary electrons
at birth. Second, JP will change because of a change in the velocity

of the electrons previously injected, and this change will be
e —
8, = - rs N.ar ét . | . (13

where ar is the average acceleration of the electrons as given by

Newton's law. Combining the two changes in J, and dividing by 8t, we

P
find the differential equation
dJP € e, = )
at 0 T ¢ So <__Vr> - chpdy s {14)_

where S¢ is the rate of production of new photoelectrons and E} is
given by Newton's law as

c . : : .

DT . (15)

- eE
8 = = — = —
m m T

r
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. Here C, is defined as a drag coefficient which characterizes the aver-

' age energy loss of the electrons as they pass through the air. The
fact that the electrons are not slowed down very rapidly (i.e., they
have a relatively long lifetime, At - see Table 1) means that CD is
almost constant. In fact, we evaluate CD by averaging over the electron
distribution at birth. It is the fact that the electron distribution
does not change very much during times of interest that makes this a-

reasonable approximation.

Thus, one can rewrite Equation 14 as

dJ _ 2 C
Tg’:‘eest’(t)*%‘ﬂE'TDJp’ (16)
where
_ <vr>
B = C 3 (17)
and £ |
- N(t) =fso(t’)dt’ . . (18)

0

In these calculations, we will consider only photoelectrons
since at photon energies in the X-ray range it is easily shown that

Compton electrons have a negligible effect on the source current.’

Thus, Equation 16 gives us differential equation describing
the time history of one of the current terms on the right hand side
of Equation 3. Before going on to write down equations for the other
term in Equation 3, let us further consider the right-hand side of
Equation 16,

Let us first consider the source rate, So(t). One can write

1
So(t) = G(t}fP(B)dB ’ _ (19)
0 .

‘I'L- ' . ’ "




where

G(t) = T;E—- (e_at - e-bf), | (20)

- a

is a normalized time function used to describe the time history of the
X-ray pulse produced by the nuclear weapon being considered and P(B)
is the velocity spectrum at birth of the photoelectrons summed over
all angles. We have implicitly assumed that the weapon X-ray emission
spectrum is time-independent, The velocity is written in terms of

the dimensionless variable B = v/c. Now,

P(R)dB = Fx(u)KP(u)pdu (21)
where
Fy(u) = the X-ray fluence of the weapon (photons/cm? keV)
Kp(u) = the photo effect absorption coefficient (cm®/gm)
P = the local air density (gm/cm®)

the photon energy (keV) .

In Equation 21 we have ignored the small effect of the electron's binding
energy (a2 few hundred ev compared to tens of keV for the photon energy).
The relation between u (units of keV) and B is then

du = mc*BdB = 511B8dB [keV] (22)
so that
P(B) = S11BpF, (u)kp (u) [ElEEEEEEEJ i (23)
cm

In the region of interest, the photo effect mass absorption coefficient

can be approximated by the equation'

_ 101,287 ‘
<p () = 4.4(17) : (24)
The uncollided X-ray fluence at the calculational point is given by the M
expression A
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Y
Fy(u) = 2,08 x 1017 -53—5}1-)— e MW (25)

R2

where
R = the slant range from the burst point (km)
Yx = X-ray yield of the weapon (kt)

[+.}

X(u) = the normalized energy spectrﬁm of the weapon Q{X(u)du = 1)
and

L{u)

the number of mean free paths between the burst and

point of calculation.

We have not included the effects of scattered X rays. However, those

X rays which are scattered into the calculational point at rather large
angles will be sufficiently time delayed to be unimportant. Small
angle (Rayleigh) scattering does not significantly alter the X-ray
energy or direction and thus can be neglected. We can simply delete

the .coherent scattering cross section from KT(u). Thus, one can write

R
L) = k@ fgi% dr | (26)
0
where
o = the air density
8 = the dip angle measured from the burst point
and
KT(u) = the total mass attenuation coefficient including

Compton and photoelectric processes.

For X rays, KT(u) can be described by the fit'®°

2.87 2 -
k() = 4,4(22)7 4 0.2 L I (27)
T u 3 gm

1+ 3.52 x 10-%u

13




Assuming the exponential atmosphere

pCh) = 1.43 x 10‘3e'h/7'°[—g£3J ’ (28)
cm
then one can write
Ko (W)
L(u) = —g== [M(h) - M(hy)] (29)
where
M(h) = 1.0 x 10%e /7® [-ﬂz] ' (30)
Cn

h, = height of burst [km]
h = height of point of calculation [km]
and

8 = the dip angle from burst to point of observation.

Thus, given the point of burst, the point of observation, and
the characteristics of the weapon (i.e., X-ray yield, X-ray time history,
and energy spectrum) the above equations can be used to calculate the
velocity distribution P(B) from Equation 23 and thereby calculate the

source term Sp(t) by numerical integration (Equation 19).

Now let us consider how one goes about calculating the B
term in Equation 16. To calculate B one needs to know the average
radial velocity of the photoelectrons at birth. The radial component

of velocity of an electron of velocity v is just (see Figure 2)

Vr = v . (31

where

U = cosb . (32) N




X-RAY

Y radial
Figure 2. Electron production geometry.

The velocity distribution P(B) was defined as the number of electrons
of velocity B per unit volume summed over all angles so that the
angular distribution was just integrated out. To include the angular

distribution we define a differential velocity distribution

Pp(s, W) = P(R)®(B, W) (33)

where the angular distribution ®(B, H) is normalized so that
1

ﬁ’(B. Wdu =1 . (34)

-1

For the photo effect (Reference 1)

.2 2
o8, We—3nL . 1o ¥ - (35)
(1 - BeosB)* (1 - BW)"
Using the normalization requirement of Equation 34,
' 242 2
28, uy = 3L - BT W) (36)

4(1 - Bu)*

" Thus, one can write £ as

1 1
- of-[Pu(B’ W uBdudp
1 1
f fPu(B', W)dudB
0 -1

which becomes

15




1 1 ®
[ o] fo ]
_ [_[P()d]jl-u@(ﬁ W)du

B = 1 . (37)

JFP(B)dB

The angular integral can be analytically evaluated as
1

I;(B) =fu<1>(8, H)du

-1

L g fL+ B\ _2(3-58%) |30 -8%)?2
_{B“ 2n<1 - B) o (L 62)2} 7 . (38)

The integrals over B must be carried out numerically since P(B) depends

on the energy spectrum of the specific weapon being considered.

Now consider the second term on the right hand side of
Equation 16. N(t) is simply the total number of electrons produced

(since losses due to recombination are assumed to be zero). Thus
t

N(t) =fso(t‘)dt’
0

1

t
fc(t’)dt‘ fP(B)dB

0 0

1

L fp(s)ds . @)

a
0

n
[
+

Note that this ignores transport effects where different numbers of
electrons leave the vicinity of their birth than enter it. Ignoring
such effects is a valid approximation since vr/c is small compared to ¢

1. (See Reference 8).

16 @




. Now let us return to the drag term of Equation 16. As noted,

. we expect the drag coefficient, CD’ to vary only slightly as a function
of time over times of interest. The fact that the electrons live a
long time indicates that the whole drag term is probably fairly small

compared to ther terms in Equation 16.

- To evaluate the drag coefficient we first need to find the
effective drag force. This can be found from the relation between

extreme range and energy. The range curve is fit fairly well by the

expression
L 2.4 X 107" [w\¥o2
R= 22210 (TcT) [cm] (40)
where
w = the electron energy in keVv

and

p = the air density in gm/cm3.

From Equation 40

0.82

dw =|—22 | ar : (413
W

where
A= 1.52 x 105 .,

The term inside the brackets is just the effective drag force acting
on the electron. [The term in brackets must be multiplied by

1.6 x 10~? to get the force in dynes.] Thus we can write the vector
drag force, -}’?'D, as

..).
¥ =-1.6x10‘9i1. : (42)
D w082 v

The drag force is directed opposite to the direction of motion of the
electron. The effect of the drag force on the radial component of

. the velocity is then described by

17




Y\ 1.6x10°% ap 1
dt D m w82 Vv Vr (43)

To define the drag coefficient we will average the above equation over

the initial velocity distribution with the result that

av; 1 -
T = e - C v (44)
D m D r
h 1
where 1.6 % 10'9Ap.[‘P{B)dB
511)9'32 2.64
3 = c B
. - [1.6 x 10 Ap] AN SR , (45)
D 0.82
W o2y fP(B)dB

0

where we have written the kinetic energy, w, in terms of the dimensioniess
velocity variable, B8 = v/c, and averaged over the distribution P(B)

given in Equation 23. This reduces to

1

fs-““ P(8)dB
C. = 8.6 x 1077p L — , (46)

’ f P(B)d8

0

where CD has the units of dynes/cm/sec for p in gm/cma. The integral
for CD in Equation 46 is evaluated numerically. It is readily seen
that CD is a function of velocity and that the averaging over the
initial velocity distribution is only valid if this velocity is not

changed very much by the drag force.

This completes our discussion of the differential equation

for the primary current density.

18




2.3 Secondary Current Density

The other term in Maxwell's equation that must be evaluated
in order to calculate the electric field is the secondary current
density, JS' The secondary current term appears because the photo-
electrons ionize the air as they pass through, creating numerous low-
energy (few ev range) secondary electrons. These low-energy electrons
will be acted on by the existing electric field to move with some
average drift velocity, Vg along the electric field lines. As a re-

sult one can write

=. &
J. = cNevd, (47)

=
It

the number per unit volume of low energy electrons.

Both Ne and v. are functions of time which must be determined.

To do this we will use gn electron swarm theory treatment to deal with
low energy electrons. Swarm theory assigns a mean temperature to

the electrons and relates their drift velocity to the electric field
and various collision frequencies. We find that the behavior of the

swarm can be characterized by three equations.

The first of these equations is written as

dN

= 81+ QN . (48)

This equation simply states that the rate of change of number density
is equal to the electron source rates (i.e., number conservation). As
written here, S, is the rate at which low-energy electrons are produced
by the photoelectrons and ClNe is the rate at which the low-energy
electrons produce further electrons by cascading. [Ci is just the
Townsend coefficient times the drift velocity and is thus a function

of the energy of the swarm. ]

19




The second swarm equation is

1 d(NeU) 2 1 1
'I\ET=-'3_evdE_vw[U'U°] + Sz , {49)
where
U = characteristic electron energy = kTe where k is the Boltz-
mann constant and Ty is the effective electron temperature
v, = energy transfer collision frequency

Up = ambient air temperature (kTair)

and

Sa

net rate that energy is added to the swarm.

This equation is just an expression for energy conservation. The 2/3
factor in the first term on the right-hand side of the equation just

" converts from kinetic energy SkTe/Z to characteristic energy units

(kTe}.
The third equation used to describe the electron swarm is
written as
d[N v.]
1 ed _ e
Fi; It =- - E VoVg s (50}

where Vo is the momentum transfer collision frequency. This equation
is just Newton's law relating rate of change of momentum to the applied
force.

Both Equation 49 and 50 can be rewritten with all the Ne
terms on the right hand side. Thus

dN

U e
ﬁ; e (51) -

du 2
= - = gv

T 7 eV4E - vw[U - Ug] + S5 -

and

20 .




dv v., dN
4. _8&¢._ _.d_¢e
3 - " mE " Vg N @ (52)

Therefore, we have written down three coupled differential equations
(48, 51, and 52) for the parameters Ne’ U, and ST tEquation 48 is
coupled to the other two because C; is a function of U.] Since these
swarm parameters depend on the electric field we have a set of five
coupled differential equations (3, 16, 48, 50, and 51) to be solved

simultaneously.

Now let us discuss the various source terms in the swarm
equations. To begin with consider S;, the rate at which low-energy
electrons are produced due to ionization by the photoelectrons. We

can calculate this rate from the range versus energy relationship

R = (40)

2.4 x 107% fy \182
(10)

5 -
The rate of energy loss of the photoelectron is then

dw _ 1.52 x 10% dR

R dt w082 dt

5
- 1.52 x 10 Pc Bo.eu , (53)

where we have used the fact that
—=v=cB. ‘ (54)

'Equation 53 is the rate of energy loss of a photoelectron of veiocity
B. The total rate of energy loss, I, is just the sum over the velocity
distribution P(B): i.e.,
1
I1=14.84x 1o“p_[e°-5"1>(s)ds . (55)

0

21




Now, it is well known that a high energy electron produces
about one ionization electron for every 34 ev of energy loss when
averaged over the entire range. However, some of these ionization
electrons are produced from further ionization of the high energy
secondaries rather than directly from the primaries. At early times,
before the secondaries can produce further ionization, about one
electron is produced for every 80 ev lost by the photoelectron (see
Reference 2). Therefore, let us define wy as the amount of primary
energy lost in the production of an ionization electron, where
34 = w, = 80 ev, Then the rate of production of swarm electrons due

to photoelectron ionization is just

W w

1
13
g, = 4 - 4:.84 x 10 pf3°-°'*p(s)de (56)
I ) :

where Si has units of [electrons/cmasec], Wy is thus a parameter that can

be varied to see its effect on functions being calculated.

The second source term to consider is Sz, the rate at which

energy is added to the swarm. One can approximate S; by the equation

Sp = %(;’—e S - wcC1') (57)

where w is the average energy of the ionization electrons produced by
the photoelectrons and LR is the average energy lost whenever cascad-
ing produces electrons (wc = 14 ev the ionization potential of air).
The 2/3 factor converts the kinetic energy to temperature units. Note
that S; has the units of ev/sec.

The value of w is not known with any high degree of accuracy
and is thus left as a parameter that can be varied. However, if one
uses a wy = 80 ev, the value of w can be estimated at about 50 ev. If
the primary loses about 80 ev to create a secondary, about 14 ev will

be used up for ionization and another 16 ev may typically end up as

various inelastic excitations, leaving the secondary with about 50 ev .
22




kinetic energy. (Note that these energies are just estimates.)

Another way of estimating w is by use of the approximate energy

distribution of the secondaries (as discussed in Reference 2) where

dn = %-—2—1—--2-— dw (58)
(wo + w')
where
dn = differential number density of secondary electrons
w = secondary kinetic energy (ev) y
and

wo = 8 ev.

Then ‘
W/2
'-.F:fwdn (59)
0
2
= %0_ n (1 *+ W_z)
4WQ

where W is the energy of the most energetic electron being considered.
For W = 100 keV it is found that w = 44,5 ev. Thus the value of
W to be used in Equation 57 is somewhere around 40 to 50 ev for w

I
values of about 80 ev.

Now let us discuss some of the other terms beginning with C;.
C: is the rate at which swarm electrons are produced by cascading, i.e.,
the rate at which energetic swarm electrons create further electrons
by ionization. For average swarm energies less than the ionization
potential, cascading occurs due to the few electrons in the tail of
the distribution that have high enough energy to strip electrons from
neighboring atoms. Values of C; in this low-energy regime” come from

measurements of the Townsend coefficient and the drift velocity. When

the average electron energy exceeds the ionization potential one can
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just use the total ionization cross sections to find the cascading rate,.

Figure 3 is a plot of the cascading rate as a function of -

swarm electron temperature, U. The curve shown is a plot of the fit

14 ,.8.7
¥ - e + 3,26 x 107 7e="*08/V

5.5 -3 ;3.2
(1 +5.870%%)(1 + 1.29 x 10-° y*2) (60)

where N is the number density of air molecules. The data points shown
up to 3 ev are from measurements made by Phelps (Reference 3) while
those data points above 20 ev are calculated from total ionization
cross sections (Reference 4). No data could be found in the 3 to 12 ev
range and the accuracy of the fit might be questioned in this region,
The above function is simply a smooth fit connecting the low and
high-energy data. The fit is not accurate for U greater than about

67 ev.

The last two input parameters of interest are the energy
transfer and momentum transfer collision frequencies. These collision
frequencies are based on experimental data and are functions of the
swarm internal energy U. The experimental data can be fitted fairly
well by the expressions

e o s AL M
(1 + AU°"7) (1 + BU™"™)
where
Ay = 2,43 x 1078
Ay = 2.59 % 107
B; = 4.13 x 1071
By = .072
No = number density of air molecules
U = internal energy (temperature) in ev . -

24 9




10-7 -

«élg 10-°
Qlwn
S l

Sl2 :

]

[V ]

E  10-1°

=

=

o
) A

(7]

S qp-12

Lo 3.3x10"14y®?
PN (g4, 87x10"U5 5) (1+1 29x10'3u”)
]0-19 + 3 26x‘|0—7 -'-H-l OBfU
X i= Data: Referience i3
O = Data: Reference 4
10-12 - —
10 20 30 40 50 60

ELECTRON TEMPERATURE U (ev)

Figure 3. Cascading rate, C,, as a function
- of temperature U.




and ' ,

<

“mo_ 1,25 x 10-7y®3° 62) )
No (1 + 1.26U167y-373 )

The fits for both v, and v, are based on measurements by Phelps
(References 3 and 5) for U less than 3 ev. For U greater than 3 ev

the fits are based on cross-section data (References 3 and 6). No data
was found for U greater than about 67 ev, Vo, and v are plotted as a

function of U in Figures 4 and S.

Thus we now have expressions for the source terms S; and Sa2
and the energy dependent parameters Ci, vw, and Vo The differential
equations for Ne’ U, and Vv, can now be written as difference equations

and solved numerically.

2.4 Differential Equations to be Solved

' In the previous sections we have developed five first-order
coupled differential equations that must be solved in order to evaluate
the X-ray produced EMP fields seen at high altitudes. We rewrite the

equations here as a group.

dE €
a-.'E- = - 41c [JP - 'ENeVd] N (3)
dJ 2 C
P_ _ = eNit) . _ D
- - eBSo(t) + ~——=E - —J, , (16)
dNe
F = 8;(t) + Oy W) Ne ’ (48)
dN
dU 2 e U
—_—=-—————v.E-v (UU - Ug] + S2(t) - » (51)
dt 3 1.6 % 10-12 d w N dt
and
dv dN
_d__¢eg._ - _d_
dt  m E vm(U)vd N, dat ° (52) .
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where

e = the magnitude of the electron's charge
m = the electron's mass
¢ = the velocity of light

and all units are in the cgs Gaussian system except U which has the

energy dimension of electron volts.,

3. SUMMARY

In this report we have discussed a means of calculating the
X-ray produced EMP fields seen by an observer inside the source region
of a high-altitude burst. The electric field is assumed to be primarily
radial; thus, the time rate of change of this radial field is directly
proportional to the total current density. The current density is then
broken into two parts, the primary current and the secondary current,
. which are calculated separately. The primary current is produced by
the relatively high-energy photoelectrons created by the X-ray flux
of the weapon. An average radial velocity and number density are cal-
culated for these electrons. The time rate of change of the primary
current is then expressed in terms of changes in these quantities. The
secondary current is due to low-energy ionization electrons drifting
in the electric field. A swarm theory treatment is used to deal with
these electrons., This treatment involves writing down three differential
equations relating the average electron energy, number density, and
drift velocity. The secondary current is then just proportional to
the product of the electron density and drift velocity. As a result
of all this we obtain five coupled differential equations which must

be solved to find the electric field.
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APPENDIX I

BOLTZMANN EQUATION APPROACH TO FINDING THE
ELECTRON DISTRIBUTION FUNCTION

The X-ray produced electrons can be described by the phase

- » - - + + - - *
space distribution function, f(r, v, t). Continuity requires that

%% + Vg + Jg = Sources - Sinks , (I1-1)
where
Js = fve . (1-2)

Je is essentially just a six-dimensional current vector. The com-

ponents of vg and Vg can be written as (Reference 7)

Ve = (Vx} Vy9 VZ’ ax: ay) az): (1'3)
_{ 9 ) ] 9 9 9
VS"(H:rysggsav ' Yy’ v )- (1_4)
X y z
Now
Ve * Jg = Vg * (fve) = ve * (Vef) + £(Vg * vs) (I-5)
and
> .
Ve * ve =V - a, (I-6)
where .
V. = the gradient in velocity space, i.e., V= ( 9 4 9
v PRy Ty ov._?3dv ’ov
X y z
‘and
Z = the acceleration vector (ax; a, az).




_).
Note that the quantity Vv + a is zero if the acceleration is not a
function of velocity. However, if we include an effective drag force

which depends on velocity, the term cannot be dropped.

Putting (I-1) and (I-5) together, one obtains

f T VE+n V4V .
ot : v v

2 = Sources - Sinks. (I-7)

Now, let us assume that the distribution function
f(;, 3, t) is a function of the velocity vector and the retarded time
only; i.e., £ = f(z, T) where T = t - rv/c. (¢ is the velocity of
light.) Further, note that the acceleration, Z, is just the net force
divided by the electron's mass, m. Then one can use Equation I-7

to write down the modified Boltzmann equation

af > e 1 x

—— . - — - — lF — -

etV vE - E va * = Vv ( Df) So + Sc (I-8)
where

E = electric field (in radial direction)

ﬁb = mean drag force due to ionization (in —; direction)

-e = electron charge
So = source - sinks(if any)

S = scattering term with mean energy loss subtracted (mean

energy loss included in ﬁb)-

If £ is a function of 3 and T only, then

of = _ Vr | of }

st v VE=(0- )57, 7 (1-9)
where

v, = radial component of ;.

. > . .
Since E is radial,
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BE.V =F.0
v Es (I-10)

- + - - - - +
and since FD i1s in direction of -v

C Fof = _1..EL( 2 ) _
v, (pf) = = Ff). , (I-11)

1f we use the velocity variables

+
v = |v|, (1-12)
[TI= v = cosb , (I-13)

where

8 = the angle the velocity vector makes with respect to the
radial direction

then
3 _ .3 ,1-u* 3
. E—UW+ v a—u‘. (1-14)
Thus the Boltzmann equation becomes
[}
- Yu) af _.EE( af 1 -4? Bﬁ) A2 e
(1 c)B_T L TV A A S
mv
= Sp + Sc , (I-15)

where the differential number of electrons per cubic centimeter, dn,
is given by
dn = 2mfvidvdu . (I-16)

The radial current density, Jtotal’ is then given by

__ZTTe 2 .
Jtotal = —E;L[)rUVf(u, v, t)vidvdu . | (I-17)

If we include in our source term both the high-energy

electrons (Compton and photo-effect sources) and the low energy conduction
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electrons (from ionization) then J can be substituted directly '

total
in Maxwell's equation
1 9E _
T 4‘rrJtotal . (1-18)

Writing a source term for the low-energy electrons is rather difficult.
Thus another possibility is to treat only the high-energy source electrons
with the Boltzmann equation and use swarm theory to describe the low-
energy conduction electrons. In this case, only Compton and photo-

effect sources would be included in Equation I-15.

As an example of a source term, let us consider the photo-
effect electrons. Let the photoelectric source density of electrons

of velocity v equal P (V) electrons/ (cm®-sec-cm/sec) summed over all

angles
P(v) = K-‘)'(—“—’TO_—9 pkpF (I-19)

where h
p = the air density : '
Kp = the absorption coefficient
E = the incident X-ray flux.

Let ¢ (u} be the normallzed angular distribution of the
photoelectrons at birth; i.e., f@(u)du 1. Then the photoelectric

source function, SoP’ is just

Syp = == PTG (1-20)

2mv

Similarly, one can work out a Compton electron source function and

an ionization electron source function.
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The other term in Equation I-15 which must be considered is
the scattering term, Sc' The average energy loss of the electron as

- - - 3 - +
it moves through the air is included in the drag force, F The term

Sc’ then, describes the variations from this average. Nog, to first
order, scattering will change only the direction of the electron's
velocity vector and not its magnitude. Because the scattering angle
per collision is predominately very small, the scattering can be

treated by the diffusion approximation, with

2
S, = OVpf , (1-21)

2 . - . .

where Ve is the angular part of the Laplacian operator in velocity
space, and the diffusion coefficient a is one fourth of the mean square
scattering angle per unit time. (See Reference 2 for a further discus-

sion of this treatment of scattering.) Equation I-21 can also be

written
13 ... f
S¢ = % 3in6 36 (51ne 38)
- g _ w2y -
= - agn ((1 2y au)' (1-22)

Combining all these terms the Boltzmann equation becomes a
rather complicated partial differential equation describing the
distribution function, f(v, M, t). A solution of this equation would
be required for a more complete treatment of the X-ray EMP problem

than was discussed in the main body of this report.

The primary difference between the use of the Boltzmann
_equation and the average velocity approach used in the main section of
this report is based on the treatment of the effective drag force used
to describe energy loss due to ionization along the electron's path.
In the Boltzmann equation, the drag force, FD’ can in general be a
function of both velocity and time and the assumption that the photo-

electrons live a relatively long time is not necessary.
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