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I. Introduction

When X rays or Yy rays, originating from a nuclear explosion, strike
the material surface of a space system in exoatmospheric regions
electrons are ejected from the surface. These electrons originate
in several kinds of processes (see for example reference 1) and re-
present a threat to the space system because of the electromagnetic
pulse they generate [2], Depending on whether the electrons are
ejected into cavities or backwards into free space the electromagnetic
pulse is characterized as internal or external respectively. In
‘reference 3 the effect of the external electromagnetic pulse on a
space system has been considered. The space system is modeled

as a perfectly conducting sphere and the emitted electrons have pre-
scribed trajectories. The problem is solved exactly within the realm
of classical electrodynamics and validity criteria for the quasi-static
solution are established in te1;m5. of the particle's speed and distance
froﬁl the sphere. In the quasi-static approximation one can find the
total induced charge density and total induced current density on the
surface of the space system by solving an electrostatic proble.m and
a magnetosté.tic problem separately. The electrostatic solution
gives the total induced charge density o and the ''electrostatic"
current density Ii's (derivable from the continuity equation), whereas
the magnetostatic solution gives the divergence-free '"magnetostatic"

current density ]Ei"s. The total current density is equal to Ii's+1§_”s.

In this note we consider the quasi-static interaction of an electron of
known trajectory with a satellite modeled as a perfectly conducting
hollow sphere having a circular aperture. The electron is assumed
to have been ejected from the outer surface of the sphere and away
from the sphere. The ejection of the electron leaves the sphere
charged positively. (We ignore the effect of the ambient plasma [1],
except for the fact that its presence can make the quasi-static |

approximation more realistic). To evaluate the effect of the aperture



on the field quantities in the interior of the sphere we calculate the
following quantities. The charge Q. on the interior surface of the

sphere as a function of the polar angle § (Figure 2), the total current

L

sponding to a polar angle § (Figure 3) and the total electric field Et :
at the center of the sphere. The knowledge of the above quantities re-

on the interior surface crossing the circumference of a circle corre-

quires the solution of the electrostatic problem only. The reason is
that the "magnetostatic'' current density Ii"s does not contribute to

the current Ii because Ii"s is divergence-free and Ii is defined over a
closed contour. I, is simply given by - (in/dt).

In Section II the electrostatic problem is formulated and solved as dual
series equations for the coefficients of the potential function series
expansion. Then we proceed to calculate Qi(e ) Ii(e) and E—t (r=0)

in terms of an appropriate subset of the expansion coefficients. The
expressions we obtain can be cast in relatively simple forms for
numerical calculations. Plots are presented, in Section III, of

Qi(ﬁ ) Et (xr=0) versus ro/a with the aperture size and angular position
of the electron as parameters, and also Ii(e) versus rO/a with the
aperture size, angular position and velocity components of the electron
as parameters, The radius of the sphere is '"a' and the radial distance

of the electron from the center of the sphere is T



\

I1. Formulation and Solution of the Electrostatic Problem

The geometry of the problem is depicted in Fig. 1. The position of the
electron is defined by the three spherical coordinates Zo, eo, cp'o, a

is the radius of the metallic sphere, and the circular aperture is defined

by the polar angle a.

The electron induces charges on both the inside and outside surfaces of
the hollow sphere and the potential due to these charges (and also the in-

itial charge on the sphere) can be written in the form

Ms ¢
Mz«

3. = D, (c/af Y, (6,9), r=a
1 £=0 ﬁl=-£ im . Lm 7

‘ : 2+1 -

& =) c,_ (alr) Y, (6,9) rza
o 420 m=-4 Lm im

where YL (6,¢) is the usual spherical harmonic. The potential is
continuous across the surface of the metallic sphere and also across the
aperture and, therefore, we can immediately deduce that

sz = D!,m'
To determine Cﬂm we use the boundary conditions for the constancy of
the potential on the metallic surface of the sphere and the continuity,
across the spherical cap subtended by the aperture, of the normal com-

ponent of the total electric field which can be written as

3
e1'-2'11: =T 3r (Qi + Qinc)
bt it g-1
= -2};0 mg-z(z Cpp/a)rfa)l " 7Y, (6,0)- (3%, /dr)
3
er. E01:= "3 (§o+ Qinc)

(1)

(2)

(3)



(l @
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= - 4
z m;_z(u (c, /ity (e0)- (28, far) (@)
where Qinc is the potential due to the electron in free space.

If the potential on the surface of the sphere is denoted by Vo we can write

© 4
Z szYLm(e,cp)+Qinc(r=a)=vo, 0<sfHd=<gqa, O0sos2m (5)
1=0m=-£

and with the aid of (%) and (4), the continuity of the normal component of

‘the electric field gifes.

o L _ : )
2, L (@e+l)c, Y, (8,9)=0, a<§ =T, O0spse2m (6)
£=0 m=-4

since B@inclar is continuous across the aperture.

o~
/

The potential on the sphere Vo can be determined by fixing the total

charge on the sphere. This calculation will be performed later.

If we multiply (5) and (6) by e-incp on both sides and integrate from 0
to 27 we obtain
N - .
Eo CynByn Py (cos 8) = G (8), 0s6sa (7)
’ ® n
(2£+1)C£nA£nP (cos 8) =0, a<f<sn (8)

2
£=0 :

where we have used the explicit forms

Yzm(e,cp)=Asz’;1(cos 8) e® (9)

L
T[22+ 172 -m)! ]2
Agm = [ 4T ][(z +m)£] (10)




and

m
Yy o (80)= (1™ Y, (6,0)
t,-m L (cos 8)e ~im®
A _{£+ m)! A
L,-m  (L-m)! Tim
™ o5 8) = (-1)"“-“"—L P (cos 8)
(L +m) %
- : - ) . . ™
G (8)=8_V_ - (1/217)/'@ e 17 4
é = - < [
inc -  4me [r-r
(o] -0 J
r=a&, r =r .
—_ r -0 orx

Before we proceed to solve for C

between CEn and C

in
L,-

-n
C!" -n 'AE, -n P!, {(cos B) = G_n(e)

(22+ 1) C.E., -nAf,, -n

s E["]s

-n
P£ (cos B8) =0

£=0

tl

Next we use (13) and (14) to obtain

>=: Cy . _n(-1)" P} (cos 8) = G__(0)

i::o (22 + 1) C,a,-n('l)n P‘: (cos 8) = 0

If we take the complex conjugate of both sides of the previous equation

we have

, we obtain a simple relationship

We rewrite (7) and (8) by replacing n by -n.

(11)

(1z)

(13)

(14}

(15)



- n n _
EO Cy. _p(-1)" P} (cos &) = G_(8)

Ei) (22 +1) Cj _n(-l)n PI; (cos 8) =0

since an(e) = Gn(e) from (15).

We thus deduce that
*

n
=-1%c,

Cl.n

We now return to (7) and (8), and introduce i defined by

e E.‘

£=k+n

©
n
EBthnJrk(cose):Gn(e), 0s08<a

-]
n
_Zz:l(Zk+2n+1)BknPn+k(cos 8)=0, a<gs ™

where Bkn = C!.n 'A.f,n .
Recalling that Pi_I_n(cos 8)=0 for k+n<n i.e. k20(L=2n)
we can change the summation to k=0,1,2.... Next we use (14) to re-

write (18) and (19) as

2 My Py (08 8) = G (9), 0s6sa

ZO(Zk +2n+1)M,_P" (cos @) = 0, a<@st
k=

B n (k + 2n).
Mkn = (-1) k! Bkn

where
We have cast our original pair of equations (7) and (8) into (21) and (22)
because they represent dual series relations for which an explicit solu-

tion exists. Thus from Ref. 4 (eq. 5.6.1 and 5.6.2) we obtain

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)



-(el/248 ;1-1)(3.1" 1/r:;'-l-l) lA 12 P;'n(cos Bo) P?(cos 8)e

im

The total charge on the spherical cap corresponding to a polar angle 6

(see Fig. 2) is given by
g 2m

- q@ =ff o, (6,0) 2% sin bas a9
(o e

Using (33), (34) gives

.t —— . -

o]

© g e 2 4+1
Qi(e) = 2ﬂe°a£z=:1 3271 [bﬁ.o - R %a. (F—) P.ﬂ {cos 60)]

'[PL -1 (cos 9) - P_g (cos 0)]

+1

where we have used the result

)
. 1
Q[PL(COS ) sin 8 dé = Z_LTT[PI,-I(COS e)-P£+1(cos 8)]

and
bzm = sz Azm

_ 24+ 1
bl,o - C.eo Azo T 4m Czo

When n = o, then from (17) £ = k, and

B, =C, A

ko Lo " Lo
and from (23), (37) we obtain

Pro = Bro = Myo

Equation (24) gives

1
’ 2T 2 r 1
M£° :(%) r—gi—Iﬁ;—) Fo(u) costu P.(% 2, 2) (cos u) du

10
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(33)

(34)

(35)

(36)

(37)

(38)

(39)



and from (31) we obtain

L -1 L
I, =ﬁ%:——:—%—% (1 - cosu) 2 sinu P(s e? a)(COS u) - (40)

From (2.6.17)in ref. 4, we see that

(-3, %) _ _T(n+i) cos(n+i)u '
Py 2% (cos w) = Fu)F @)~ cosfu (41)

and (39) gives (the intermediate steps involve an elementary integration)

T M. =b '_Eﬁ'[sinza +sin(£+1)a]'
g0~ "o W 2 R

+i %Ns[_ain (s-L2)a ; sin (s+2,+1)(1]

“ s - 4 st 4+l (42)

where

s

R Y -

Ns T 4Me r (r ) Ps (cos 90) (43)
oo\ o

and [sin (s-£)a]/(s-£) =a when s =14.

We are now in a position to calculate (8@ ); (notice that it only depends
on r _, eo but not Cpo ). Before we proceed to simplify the expression for
Qi(e) we determine V . We will assume that the electron is ejected
from the surface of the sphere; therefore, the total charge of the sphere
is +e. However, if we consider the ejection of N electrons, the net
charge of the sphere should be corrected to Ne in order to apply super-
position of the results for the interaction of one electron and a sphere of
net charge Ne. For this reason we will assume that the net charge on

the surface (inside plus outside) of the sphere is equal to Q.

The total charge on the sphere is given by
21 @

2 . -
Q= eoff & - (B, - E;) 2" sin 6 dody (44a)
J0

11
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2 .
or Q= eo./:/- e’ Eota sin 6 d8 do (44b)
00

Equation (44b) is derived by applying Gauss's Law over a spherical sur-
face that completely surrounds and touches our sphere (including the

spherical cap around the aperture).

We start with (44a) which, with the aid of (3) and (4), becomes

© .
o - Q_:Zﬂ'aeogo T,b,o (45)

where

T°=1-c030'.

(46)

T, =P (cosc)}

P £_1(c030.)-P

£+1

If we combine (42) with (45) we can arrive at the following expression for
v *
o

vV = (47)
o

. .
- sin (s-4)a  sin (s+£4+1)a
Y2ae, Eo SEOTLN [ s-2 | s+a+l
&
xT,

[51n Lo . sin (£+l)c.]
£=0

2+1

where T£ is given by (46), Ns by (43), and (sin ka)/k = ¢ when k = 0,
We can simplify (47) as follows.

Consgider the infinite series

e ) i - 2)a i +2+1
S(s) =f§0 [P,e,- j (cos a) - P, (cos OL):l[sms(-s.ﬂ 2 4 sms(:-z+1 )Ot] (48)

First, we rewrite the second bracketted term as

12
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Sins(f ;z)°'+ si:; is£++£1+1) =f [cos (s-4)x + cos (s +4+1)]dx

s .
a
=fz cos (£ +1)x cos (s +3) xdx (49)
J . ,
Thus - a
S(s) =ZZ [P, _ (cos a)-P,  (cos o.)]fcos (L +31)x cos (s +3%) (50)
£4=0 o

. Again ref. 4 can bewseful. This time we use (2.6.33) which has the form

-
(1 +cos a) cos 3x -Z [PI.- 1 {cos a) - PE+1 (cos a)] cos (£+3)x
£=1

V2 sinx H (x-a)

T 0< x,a <™ ‘ (51)
(cos a- cos x)?

where H(u) is the Heaviside function: H(u) =1 for u> 0, H(u) = 0 for

u< 0. Combining (50) with (51) we obtain the simple result

S(s) = 2 [sins(scx,) + sin (s +1)a]

s+1
(52)
S(0) =2 [a + sin a ]
Using (52) in (47) we obtain
[+

sin sg sin (s +1)a

Q/Zaeo- Zs= Ns [ s + s+1 ]
Vo = 2(c +sin a) (53)

If we now start with (44b) we can use (4) to arrive at

Q = 417 _ab
o“ oo

Using (42) in the previous ef;uation, we obtain

A" ) . .
_ o . 1 sin (sa) , sin (s +1)a]
Q/41‘l‘eoa._- T (a+51na)+;)= ﬁNs[ s + s+1

13



which is identical to (53).

We can interpret (53) as follows. Assume that we remove the electron
to infinity and call the potential on the sphere V_. Then it is easy to show

(see also ref. 4, section 8.7) that the potential everywhere is given by

O (580 =V, Y & @/t t[einse, sl (s tlia] p (oo g) (54)
s=0

and (53) becomes

_ Q/Zaeo -(e/Zaeo)cpm (ro, Go)/Vm

Vo™ T Z@ tsina)

Q-eq (r,0)/V,

4a€o (o +sin a) (55)
If we now recall that the capacitance of a charged spherical bowl (with
an aperture defined by a polar angle a) is given by
C-= 4aeo (a + sin a) . (56)
we can rewrite (55) as
- - & '
Vo=V, o) pr(ro. 90) (57)

since V_ = Q/cC.

Equation (57) can be derived using Green's reciprocation theorem (see

Appendix A).

We can now return to (35) in order to cast it into a simpler form with the
aid of ref. 4 once again. In section 7.6 the problem of a spherical bowl
immersed in an axisymmetric field is considered. The induced poten-

tial function V(r, 6) is given by

o
V(r,6)=% Egﬁ sec 3 xdx ' (58)
-a

14



where g(x) will be determined by solving the integral equation

]
V(a.e>=f Elx)secoxdx = ogcgxq (59)
b (2 cos x-2 cos B)?
and
- ' » l
R = [(:r/a.)2 e _ 2 (r/a) cos 8 + e-1x]3 (60)
where

_1,..
r/az1, R:pezw, p20, 0stT<mfor0<x<qg, -1m< 7<0 for .

- -, : : T o€ x<0 (6la)
' 1
p = {[[1 +(r./a.)2'] cosx - 2(r/a)cos 9]2 +[[(r/a.)2 - l]sinx]Z}4 h
cos T = —lé-{ [1 +(r/a)2] cosx - 2 (r/a) cos G}
0

%

cos (1/2) = (1+c+¢) > 61)

Py

sin (1-/2)=(l.-:_‘?;_51)2 0<x< q
1

sin (1/2) = _(.1._-<=2°_”)a mcx<0 )

If we recall (7) and (8) for n = 0 we understand that the forcing function

is GO(O) given by (28)

hd 8
e a ,
G (8) = V, +7ms Z —+1 P.lcos 8)P_(cos 6) (62)
o g=0 ro
Thus
Via, 6) = G (0) (63)

(To understand (63) recall the boundary condition @o(r =a)= - éinc (r=2a) + Vo.
If we integrate from 0 to 2T with respect to ® and divide by 2T we obtain

the axisymmetric part of éo(r = a) which is equal to V(a, 8).)

15



To find g(x) in (59) \._ave make use of Mehler's integral representation for

the Legendre polynomial,

8 .
Py
Pz(cos 8) = V_E.Dl’ cos (4 + 3)x ':Ix1

(cos x - cos 9)3'.

With the aid of (64), we can obtain g(x) in the form

: 2V ® 2+1
g(x) sec 3x = 2 cos ix + ——— Z(r ) P, (cos eo) cos (£+3)x
£4=0

o]

. and from (58) -,

' a
[ 2 (r_,0_,0) do = V(r e)-E cos 7 x dx
2n o' o! Yo' '_ o’ = R
-

o4
e = a 4+1 cOSs 1£+—;!x
+ — Z (r_) Pz(cos Go)f R dx
-Q
If we use (2) we understand that
1 | = 2+1
—?f @o (ro, So.tp)dcp = Z bl.o (a/ro) P.E (cos 90)

From section 8,7 in ref. 4 we find the relationship

[--]

a

1 +1[sin £a , sin (L+1)a _1 cos +x dx

;} = (a/rolz [ 7 + 2 ] Pz(cos e = “f —L—R
= Qa

If we combine (66), (67) and (68) we obtain

o
b - o [sinfa , sin(£+l)a e cos (#+1)x 4.
o™ m 2 2+1 4 2 R
™ an gy

Comparing (42) to (69) we arrive at the relationship

16
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(65)

(66)

(67)

(68)

(69)



o

had s+1. .
cos (L +3)x _ ‘a_ sin(s-4)a,sin(s+£+1)a
[ eon gt gy 3 o f et im0 s o

When a =1, (70) assumes the simple form

iy 2+1
1 cos (£ +3)x _{a
L f L+ 2)x gy _(--ro) P, (cos 0_) (71)
P14

With the aid of (69) and (71), (35) can be written as

[--]
_ 2 cos (£ +3)x
Q;(8) = Z"Qoa?.:l 22 +1 [Pz (cos §) - ,e.+1(‘°°’s e)]=4"€ a ™ f —x - dx
— f=] W™

— -a

+E [sinza + sin (4 + 1)0.]
™ £ 4+1 4113 a 1

fcoa (£+3)x dx } (72)

Next we use (60) and (61) to simplify (72).

=%cos% -isinT (73)

and
¢ 1
cos (£+3)x _
f R dx = +[
-o

0 o 0 a
= ffcosT dx+[fcos~dx -if fsinvdx-if fsin<d (74)
—f cos 3 fcszx sin 5 sin 3 dx
-0 0 -
From (61), we understand that

cos 37T (x) = cos %T (-x)

sin 7 (x) = - sin 37 (-x)
p(x) = p(-x)
Therefore (74) reduces to
08 L a
I%le‘_ dx = ZJ.p cos (.(’,+-%)x cos%dx.
-

17



We can now rewrite (72) as

& 2
Qi (8) = Zﬂeoazzl TN [PE- 1 (cos 8) - PE 41 {cos 9)]
. \s
{- = fp cos (£+ %) x cos (1/2)dx + — [Si‘;m + Sinz(f: 1) a]} (75)

2mM €a
o a

In Appendix B we evaluate the infinite series in closed form and (75)

assumes the form
- R SR

Qi (8) = %{ "ZIOCOS (x/2)cos (T/2)dx + ‘V-Z—f
o Q

p sin x cos ('r/zf) dx

(cos 8 - cos x)2

1 1
+sin@ - —— (1 - cos 8) - (1 + cos &)2 (cos 8 - cos a)?

+ 5

4mea V
[o] o
—_—
e

RY
-1 (1 +cosb)cos (2 1’;—22%%-1)]} (76)

where cos”! u is the principal value, 0 < cos™lu s,

The second integral in the angular brackets can be rewritten as

eZ

ﬁ

V5 J‘o sin x cos ('r/zl) dx = zﬁf P cos (T/2)dB (77)
g (cos 8 - cos x)° Bl

1

1 1
where B = (cos 8 - cos :-:)"",B1 = (cos 8 - cos @) 2

B[

and B, = (cos 8 +1)2 (78)

The potential Vois given by (53). Because of (68) it can be rewritten as

/

[0
(z x)
Qf2ae_ -(e/Zaeoﬂ-)! X dx (79)
YV =
o]

2 (a + sin a)

18
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and

4me a Qle - I
e Vo T ETFsinga (80)
where
a
l cos (—x) ,
L= f dx (81)
-a

In ref. 4 section 8.7, Io has been calculated explicitly:

— % (\!5+ Y a/r ) ) o : (82)
where
_a. , _ &8ina -
sin ¥y T, sin Y' = T+ v, (83)
- (rola)z - 2 (r_/a) cos (x - 8) +1 (84)
= (rO/a)Z -2 (r /a) cos (o + 8) +1 (85)

The angle y is such that 0 < y < 1/2 at all points other than those lying
on the segment of the sphere bounded by the surface of the cap and the
plane r cos 6 = a cos « containing its edge; for these points m/z2< y <1,
Further, if S is the sphere through the edge of the cap and the origin

(i. e, the equation of Sis r cos a = a cos 9 ), the angle Y' satisfies

/2 < y! < for those points exterior to the sphere but interior to S for
o< /2 and exterior to S for a > /2. For all other points 0 < y' < w/2.

The first integral in (76) can also be calculated explicitly, i.e.

1 ™

_pr cos (x/2) cos (T/2) dx f&gs_(ilgld fCOSR(XIZ) dx

a =TT

=Y+ 'Y'a/ro - Tl'a/ro ~ (86)

19



In view of (77), (80), (82) and (86), Qi(e) given by (76) can be finally re-

written as

q;(8) = Q,(8)/e = Elﬁ["“o -alr )+ +1(Qle - 10)12] | (87)

where Io is given by (82), I1 by (77) and

2y 1
IZ =1 --&-_;—;'I—nz[% (1 - cos 8)+(1 +cos a)? (cos 6 - cos a)?
1 -1 l +cosa _
o +3 (1 +‘§os 8) cos (2 T Fcos 6 1)] | (88)

From (87) we can obtain the following limiting forms, as ro/a + e

(electron removed to ipfinity),

_9 ml-cosa
Qi(“)’z[l‘z a+sina]<Q/z’ 0<a<m

Notice that Qi('ﬂ') =0, Qi(O) = /2 as expected.

Eq. 87 can be rewritten as
Q
Qi(e) =3 12 + Qi'(ﬂ)

where Qi(e) does not depend on ; it only depends on the electronic charge

since the induced charges are proportional to it.

Calculation of the Current on the Inside Surface

In the previous section we calculated the total charge Q(8) contained on
the inside surface of a spherical cap defined by the polar angle 8§ (Fig. 2).
As the electron moves, the value of Q(8) changes and this gives rise to a
current. We will now prove that the total current crossing the circum-

ference of the § = 6 circle and in the ée direction (Fig. 3) is given by

20



dQ. (6)
L®) = - ——
We start with the Maxwell equation

2D
VxH = =t

(89)

(90)

Consider now a surface S(f) on the inside of the 'spherical cap and almost

touching the inside surface of the cap (Fig. 4) then from (90) we get

Applying Stokes' theorem we obtain

H.df = if
H-d2 = = JD ds

The normal f is the outward normal, equal to 'e\r, and the circle 8 = 6

(91)

(92)

is traversed in the positive sense with respect to f, i. e. in the positive
P p

¢ direction. Thus

2m
fg-dz =f Hy2 sin 0d®
0

The total surface current density on the inside surface (i. e. "'magneto-

static'' + "electrostatic") is given by

K= (-8xH
orTr

Kig = Hp
and

2T
fg-dz =f Kie a sin 6 dy = Ii(e)
0

21



The surface integral on the right-hand side of (92) is equal to -Qi(e)
gince Dn = - (-ér-g). Thus (89) is true. If we apply (91) assuming
that S(0) is a surface on the outside of the spherical cap and almost

touching the outside surface of the cap, we can derive the relationship

dQ_(6)

—3r (93)

IO(B) = -

21
where IO(B) = Ke a sin 0 deo, K9= - Hcp and Qo(e) is the outside charge

= Dn ds. 0

Notice the minus sign in both (89) and (93).

At B=a 0%
Q;la) +Q () = Q (94)
and
d?iit(a) R dQ;t(a) o (95)
. Thus
L{a) + I (a) =0 (96)

i, e. the current at the edge of the aperture is due to the ''spill over" of
the charge over the edge. Consider for example, the case Q = e and the
electron moving along the positive z axis. When T, ? a most of the

charge on the sphere is concentrated on the outside surface near point

P(a, 8= 0). As the electron moves away, charge from the outside starts
spilling over the edge into the aperture, and the inside charge increases.
The inside current flows in the -'e\e dirgction and Ii(a,) < 0, This can also
be seen from (89) because the derivative is negative. The outside current
flows in the ee direction and this is consistent with (93), i.e, the outside
charge decreases with time, To calculate the current, in general, it is

best to use (72), The time dependent quantity is R(ro, 90) and we have

a 1 1 drR _ 1 {ffo _ix .
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where

dr de

-9 — o
vV = . Ve-rD T (98)

are the radial and meridian components of the velocity of the electron
respectively. (The current does not depend on the azimuthal component

ch. ) If we consider the real part of 4 1 ge obtain

dt R
refd L) L fif7e 8 JV_+V, sin g | cos 2T
edtR_'apZ —— cos x-cos § )V _ +Vg sin @ s
To 3T
—— : -, . + —.V_ sinx sin 5 (99)
- a r 2
The final form for Ii(G) can now be easily obtained:
Ii(e)/(eV/a) = Ir(Vr/V) + Ie(Ve/V) (100)
where
VIV + (v IV)E =1 (101)
r d ~
BZ
1.
1
IL.=-% ffl (%, 7 s eo) cos %dx -vZ fl[x(B),ro, Bo]dﬁ _
1
1
a
+ szfl(x.ro, eo) cos% dx (102)
0
m BZ
1
Iy= - ffz (x,x_,8,) cos 5 dx - Y2 £,[x(8),r, 8 ]dB
a 1
Q
+ szfz(x, r,0 ) cos 3 dx (103)
0
r T 7
fl (x, T Go) = p—13 [(?0 COSs X - COS Bo) cos -:;—T- + a_o sin x sin 221 (104)
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L Py
cos X = cos b -Bz, Bl (cos B-cos a)?, Bz = (cos 8.+ 1)2 (105)
fz(x, 90) = -1-3- sin eo cos §2I (106)

P

and o (ro, Go), T (ro, 60) are given by (61), Iz by (88).

From (101), V is not the total speed because ch may or may not be zero.
Our calculation only determines the total current that flows in the e 8
direction. In other words if V Ve are both zero but ch is not, we still
have currents on the sphere even though I, (9) given by (100) is zero. The
- calcula,tlon of the cu;{'ents in the ® d1rect10n requlres the knowledge of
more expansion coefficients and also surface current densities from the

magnetostatic problem.

From (100) we see that if we know L(6) for V_ /v =1, Va /V =0, i.e.
1. (a)/(ev/a =1.) and also for V_ /V = o v /v =1, i.e. I, (e),(ev/a) =1

we can determme L (8) in general, i. e. for any 'V' v (V /V is given

e’

by 101). Notice that 1. (9) does not depend on Q, since current is as-
sociated to the motion of the induced charges that are proportional to the

charge of the moving electron.

Calculation of the Electric Field at the Center of the Sphere

The total electric field at the center of the sphere is given by

= - P, + (107)

E . )l
—t 1ncr=0

First we calculate E =- chil . From (1) and (2) we find
: r=20

. 0. 3. 3¢,
_ . i A 1 i A 1 ia
Ei ( € _+r e6+rsin6 F=[%s) etp)

r=20

T 2
& 2
_ L _£-1 imeo A
= -z: z: sz{——zr AZm 2 M (cos B) e et
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1 .
;-(r/a.)’t.A‘zm e Y P.G (cos 8) €q

(108)

?s_iln"ﬁ (r/a)EAEm (im) ei™® P (cos 6) ecp}

r=0

From (108) we see that only the £ =0 (m =0)and £ =1 (m = 0, *1) terms

contribute. Thus

b

o Pu 1‘~( 98 +2 P tog 1 ip! 0) &
- = cos 39 {cos B)e s 1 (cos B8) cp]
b
1, -1 -ie[o-1 3 -1 1.
- L=t o 0fp] (cos €18, 435 P (cos 08y ¥ g (P (com @) 8] (109

where bl,m = szAEm( eq.(37)).

From (16) we recall that C11 = -CT -1 and from (13) Al 1 - ZA“, i. e.

N P
byy = -3b] (110)
It is easy to show that
1 . -1 1 .
P (cos 6) = - 8in 6, P1 (cos 8) = 3 sin 8
P (cosB)—-s1n0 P (cos 8) = ~cos 8, iP-l(cos 8) =% cos © (111)
39 ! BQ 20 71 2
Using (110), (111) and the relationships
f -0 sinBcos®+® sinB sin®+8€ cos 8
T x y z
_ A . .
ée—éx cos § cos ®+8 cos § sin ¢ - @z sin 6 (112)
ecp= - éxsinCp+QY cos

(109) can be rewritten as
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or
E(r-O)—-—bl 6 +L b +v° )2 +L b, -bl )8
E@=0=-—=2C +2Pn""11) %72 11" "11) 5y

(113)

We can always choose the position of the electron in the xz plane in

which case @_=0 and b, = b’;l. Thus
SR s o

z inc

[
[
]
a

(r--'0)=§b s -10a _ys,
b

41T€ T 4me r
o o oo

(We have assumed that X, > 0.)

{2 e . A e 10
"(a. bll +—————Z sin 60) e +(———-—-——z cos 90 sl

(114)

)ez (115)

Next we calculate bll' From {17) we understand that k = 0 and from

(20) and (37)

11 7
Thus ( eq.(23))

01

o

11 7
and from (24)

1 a
2 *
Pi1 = %(%) 1“?3(732))_[1‘“1(“) (cos fu)’ Pil/z'BIZ) (cos u) du
0
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4 j.‘ (tan 19) sin & G, (6)de

F (u) = T (118)
duo (cos § - cos u)?
and from (28)
e 1 a.‘E IZ 1 1
G,(0)= — | A P, (cos §_) P, (cos 8) (119)
1 €o 121 21’.+1 rﬁ+l 41 % o’ " 4 A
1
(P£=0 for £ = 0)
Combining (31), (118) and (119) we obtain
T = 4
F-3 —i = 2 1
Fl‘u)‘e Ezf,+1 1IA | ™ Py (cos &)
£=1 To
(-3 )V’—ru' +2) (1 -cos u)%: sinu P (1/2 3/2) (cos u) (120)
2 T +3) £-1
~ We will calculate Pil_/f’ 3/2) (cos u) with the aid of ref. 4 . From the
equation right below (2.6.23) we see that
(1/2,3/2) _ T(4+3) 1 d cos (£+3)u :
P.Z 1 = -2 TZ+2)T (%) sinu du cos (u/2) (121)
A simple calculation yields
d cos (£+3z)u _ 1 4sin (i’.+1)u+(£+1)51n Lu (122)
= -3 -
du cos (u/2) (u/2)
and (121) gives (T(&) =VT)
p1/2,3/2) 1 T(4+3) Lsin (4+1)u+ (4+1) sin Lu (123)
.€.- 1 ‘\f- T(+2) . 2 :
[ sin u cos” (u/2)
and
1
(1/2 3/2) 1 (i)f - (sin 2u + 2sinu) = 1 (124)
'\/T-l" sin u cos’ (u/2)
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This result is not surprising since P(a’ B =1 for any a and B. Recalling

from (10) that

A2 2841 (R-1) 281
21 Z74m (2+1) Tama(e +1)

we can rewrite (117) as

Zbll 2 i: L+ 1 1
= = (cos 8 )j‘ sinu (£ sin (£ +1)u+ (£+1) sin fu]du
a ATTe a 11'2:1( ) L +1) L
e .Lf: a1 Pl(cos 6 ) K (125)
ime a2 T r,) 2(L+1) "2 o) 1
4=1
Where
K, = 20+ sin - sin 20 - +3a (126)
L+1 . . . .
K, = sin (£ - 1)a +sin £a - sin (4 + 1l)a - sin (£ + 2)a

2 +2

Thus the x-component of the total electric field at the center of the sphere

is given by
2+1
1

o0
2, 1 ' 1
=E, (=0)/(e/anea®) = > (:—0) FETT) Paleos &) K,

Ctx
£=1

2

+ (aTo) sin 8 (127)

(r= o) does not depend on Q. That is easy to understand.

Notice that Eiy
(r = o) is zero and consequently

When the electron is removed to infinity, E
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Etx(z = 0) in general is due to induced charges that are proportional

to the charge of the ekectron.

When 90 =0or ®, P; (cos e°)=0 and sin 90 = 0 resulting in a zero
x-component as it should. Another special case is of interest:
a =T i.e. where there is no aperture. We can see from (126) that

K1=Zﬂ‘andK£=0 L4411 e,

2 2

2 [l(a) 1 1 (a) . ]_
E =——% == = P; (cos 8 )2m+| = sinf =0
tx 411'603.2 n rO 2 1 ° rc) o/
since Pl(c059)=7 sin g .
1 (e} (]

Next we calculate Etz' From (115) and (69) we see that

a
v
o 1 e lf c05(R3x/2_)dx (128)
-

Byo=7 (sinaty sin2a)ltimea m

In section (8.7.2) of ref, 4 the integral on the right-hand side of
(128) has been evaluated in closed form. It is given by (8.7.14)

«
_1 [ cos(3x/2), _1
A=rrf R dx =5
-Q
2

r T
O (o)
— Ycos Go + {cosa- S €os 90) tany

2
T
(e fere)nd

where Yy and y' have been defined 'by (83), (84) and (85).

Thus : (130)

2
- - 2y _fa {9 _ sina+(7§-)sin2a_
€, Etz (1—0)/(e/4TT€°a ) -(1_ ) cos Go (e Io) ot sing A

o]
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where I_ is given by (82) and A by (129).

When g =T then y=0, y'=m, A = (% ) cos Bo and Etz= 0 as it should.
o

Also when the electron is removed to infinity we can show that A-0, 10-50 and

- 0)= - 0 sing + (£) sin2a
Et (r.— 0)= a+ sina (ro-’w) (131)

~and from (37)

B (£=0)=0 | : (132)

Eq. (131) gives the electric field at the center of a charged spherical
bowl. Notice that (130) can be written as |

Q sina + (%) sin2a '
E, (r=0)=- . +E' (x=0) 132)
tz 47 €°a2 a + sinq z

where -E;;z(-{: 0) does not depend on Q. Ei':z(_r_= 0) is due to the induced
charges on the sphere (proportional to the electronic charge), and the

electron itself,
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IIL. Description of the Plots

As a measure of the effect of the moving electron on the field quantities
in the interior of the sphere through the aperture, we considered and

plotted the following quantities:

1) The normalized charge qi(e )=Qi(9 )/ e where Qi(B) is the charge

on the interior surface at the spherical bowl defined by the polar angle 8

(Fig. 2) given by eq. (88), and -e is the electronic charge. This charge

q; {0)is plotted versus the normalized distance r /a where T, is the
‘radial distance of the electron from the center of the sphere and ''a"

the radius of the sphere. We have considered the cases 8 =90° yo; a=1 35°,

150°, 160°, 170°, 175° and eo=o°, 45°, 90°, 135°, a, 180°, where a

is the polar angle defining the aperture (Fig. 1) and 80 defines the

angular position of the electron (Fig. 1).

2) The normalized currents Ir and Ie. These currents are related

to the total current Ii(G) (Fig. 3) through eq. (100). If the velocity of

the electron in a plane passing through the z-axis is V then the radial
velocity component Vr and azimuthal velocity component Ve are related
to V through eq. (101). Thus I_is the normalized current L (@ )/ (eV/a)
wh_en Vr/V=1 and I9 is the normalized current Ii(e }/(eV/a) when Ve/Vzl.
For an arbitrary velocity V we can calculate the ratios Vr/V and V, /v
and the total current is given by eq. (100)., We have plotted Ir and Ie
versus r_/a with §=90°, a; a=135° 150°, 160°, 170°, 175° and

90 o, 45 . 90 , 135° s O, 180°, Notice that when 9 =0 or 180
normalized current I9 is zero even though V’e =V#£0,

3) The normalized electric field component e, ~E; /(e/4ﬁe o )
given by eq. (130) and e _=E, /(e/4ﬁ‘€ a ) given by eq. (127). Et is
the total electric field at the center of the sphere, the electron lies in
, €

the xz plane and e are plotted versus ro/a, for a =1 350, 1500,

tz tx
160°, 165°, 170° and 8_=0, 45°, 90°, 135°, «, 180°, Notice that when

31



9°=0 or 180°, etx=0 because the induced charge on the surface of the

sphere is ¢ -independent.
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Appendix A

In this appendix we derive eq. (57) with the aid of Green's reciprocation

theorem.

Consider the situation depicted in figs. 5a and 5b. In fig. 5a the
electron is placed at a point P characterized by the position vector T
whereas in fig. 5b the electron has been removed to infinity. The total

charge on the sphere, in both situations, is equal to Q and V_ is the

_ _potential on the sphere with the electron at infinity. If we denote the

potential functions by ®_ and @, we can write

<
S
I

(e/eo)é(g- 10) (A-1)
2 .
v cpb =0 (A-2)
We multiply (A-1) by Dy (A-2) by ®, and subtract to obtain
0. v20 - vip = (e/e )o(r -1 ) (A-3)
b a a (pb b o - o
. . . 2 2 _
Next we use the simple identity cpbv ®, - cpav Py = V-(cpbvcoa - coavcpb)

and integrate (A-3) throughout the entire space. Applying Gauss' theorem

we obtain

f acpa Bcob ’
P a—nl -9, a—n‘; ds' = (e/e ) &y (z.) (A-4)
Si+so

where S;» So are the inside and outside surfaces of the sphere respectively,
ﬁl is equal to -ér on S_ and + ér on S, and the surface integral at infinity

can be shown to vanish.

" Equation (A-4) can be rewritten as

v_(Q/e ) - VO(Q/eO) = (e/e ) o, (x.)
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or

Vv =V_- (A-5)

e
o @ 6 (pb(z-o)

Equation (A-5) is identical to (57) because ch(ro' 90) = Cpb(go).
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Appendix B

The purpose of this appendix is to calculate the series

= 2
S1 =1,21 22+ 1 [P,e- 1 {cos 8) - Pz+1 (cos e)] cos (L+3)x (B-1)
and 7
- = L - M sin £a | sin (£ + 1)a
s, _Z:l 55T [PA_I(cos 8) - B, (cos e)][ S+ ST ] (B-2)
I £= - -, . - ) .

in closed form. From (75) we see that @ £ x < T and we also know that
8 <a. However, we will evaluate S, and S2 in general for reasons

that will become apparent later.

We start by noting that

2 _Ll__l_
24+1 7 2 22+17}°

Thus we will evaluate the following infinite sums

[=<]
Siy = Z R, cos (L+3)x (B-3)
2=1
= 1
Sy2= D 3741 Rycos (4+2)x (B-4)
£=1
RS sin fa ., sin (L+1)a
521'!‘21%[ Tt a+1 ] (B-5)
= 1 in o , sin (£ +1)a
_ S s
Sp2 = FET1 Rz[ 5 T 2+l ] (B-6)
2=1
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where

R, = 3 [Pl, 1 (cos 8) - y 41 (co8 © )] {B~7)
From eq. (2. 6. 33)in ref. we can find immediately that
Sll =%(1 +cos @) cos -al-x- sin x H(x - ) , 0< x, 6< 1 (B-8)

Y2(cos 0 - cos x)
where
Hx-0)=1, x> 8
R : ‘_, ) = 0, x<-8

To evaluate S|, we employ eq. (2. 6. 34) of ref.

. @
F; (1 +cos 0) szin%:n:1 -—1—-2 2R sin (E+,_)x

V2 £2=1

sin Xy H(G-xl)
= V2 sin ix; - : , 0< x,0<m (B-9)
Ycos X ~-cos P

If we integrate (B-9) from x to T we obtain

cos (E+%)x1 ﬂ
—(1+cos 8) sin 2x dx, ZZR 71T
2
iy - sinx) H(0 - x))
= ﬁf sin %xldx1 -f dx1 (B-10)
3 . Ycos X, - cos ]
Eq. (B-10) can be rewritten as
8 sin 3]
2V2 Slz='\r2-cos%_-x(1—cose)-f dxl x> 8
: Ycos X, - €Os 8 (B-11)
= 2 cos 3x (1l - cos 8) x< 8
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Noting that

i L
d (cos X - cOs 8)2 = - 3 (cos x| - cos Br ¢ sin X dxl
we finally arrive at the expression
1 L
Sy = 1 cos ix (1 ~cos @) - — (cos x-cos §)2 H(f-x). (B-12)

V2

The evaluation of 821 can be performed with the aid of (B-8). We mul-
tiply both sides by cos i+x and integrate from 0 to q.
-,

- . . » |
ZR‘,‘f cos (4+1)x cos (x/2) dx
£=1

0

. . |
=f L1 + cos 8) cos® (x/2) dx - siax cos % dx (B-13)
2 Y2(cos 0 -cos x)

For 8 > a the second integral is zero, whereas for § < a it is non-

“zero and can be calculated explicitly

S,y = zla+ sin a) (1 + cos 6) )
@ - co (1)%-' (1 +cos a}% + 3(1 +cos 8) cos™! [2 licosa 8 < a > (B-14)
- y(cos o8 2 1l +cos 8
=3(l +cos 8) (a+ sin o) e>c.J

where cos-ly is the principal value and ranges from 0 to ™. Notice that
at @ =a both expressions give 3(l +cos a) (o + sin a). To evaluate the
last sum we employ (B-12). We multiply both sides by cos +x and inte-

grate from 0 to a. The resultis

S,, = (1 - cos 8) (@ + sina) - 3T(L - cos 6) 0< a
= 3(1 - cos B) (@ + sinaq) (B-15)
1 _ _ i
_{(1 - cosa)? (cosa - cos 9)+—§-(1 - cos @) [ﬂ‘ - cOs 1 (2 i_—gg—i—% -1)]} > q .
- J
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Notice that at € = o both expressions yield 3(1 - cos 8) (a + sin a) - £1(1 - cos ).

Returning to our original sums we find that

sin x

S, = cos 3% - x2 0 (B-16)
Y2(cos B - cos x)
Sz=a+sina-%(1 - cos B)

L 'y -1 1+
- (cose-COSa)a(1+c050)3+{.-(1+cose) cos [2-1-—_;—2%-—:(9!-1]f 0sa (B-17)
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/ Aperture

Figure l: Geometry depicting the zperture and the relevant
parameters of the problem.
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(-e)
(l'op eO’ fﬂo)

Figure 2: Geometry for the calculation of the charge Q.i( 8)
on the interior surface of the (shaded) spherical
bowl defined by the polar angle 6.
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Figure 3:

Geometry for the calculation of Ii(e )s the current
crossing the rim of the interior surface of the
spherical bowl defined by the polar angle §. Kie
is the total current density = K'ie + K'ie = ''electro-
static'" + "magnetostatic'. L (8 )=fK. dl :fK'. dl =
21 i i6 i
fK'igasinB dep, It is also given by (-dQ-i/dt).
o
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