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lAbstract
This note complements an earlier note on the subject in giving ana-
Iytical formulas for calculating the propagated time waveform of EMP
propagation in the ionosphere. Extensive use of the steepest descent in-
tegration and geometrical ray theory of propagation makes numerical
calculations a minimum. However, as in the previous note, we treat

the ionosphere as a linear medium in spite of the powerful pulse involved.



1. Introduction

This note is intended for the simplification of the analysis and nu-
merical computation of a previous note by Messier on "The Ionospher-
ically Propagated Exoatmospheric EMP Environment." (1) In achieving
this, analytical formulas and graphical procedures are described through
the use of the steepest point integration and geometrical ray theory.
However, since it is based on the same physical assumption, the linear-
ity of the medium, they are subject to the same limitations.

In [1] geometrical ray theory is applied to calculate the group de-
lay, the phase shift, and the dispersion; however, it is not applied to the
calculation of the time domain waveform, but relies on the complicated
numerical inversion of the Fourier transform. Although Brau, et a1.[2] gave .
some analysis to the time domain waveform, the application of stationary

phase integration has been limited to where analytical formulas for the

location of the saddle point are available. Therefore, the first task of
this note is to show how ray theory and saddle point integration can be

(3,4, 9] Time

employed to relieve the pains of numerical computation.
domain waveforms for an arbitrary stratified ionospheric model are an-
alyzed in detail.

Since- this study is concerned with the effect on the satellite system,
we neglect the low frequency part of the signal, which is bounced back to
the ground to interfere with the ground station. We elaborate on the high
[ 6]

altitude ringing modes corresponding to the branch points of the local




index of refraction of the electromagnetic wave, since this can be the
dominant phenomenon among all the coupling of energy from EMP to the
satellite system.

We assume that the readers are familiar with elementary theory of
electromagnetic waves in plasmas. Or, they can consult Messier's
note[ 1] and some textbooks on the subject. We also adopt most notations
used in [1].

In Section 2 the problem signal dispersion is described by an in-
verse Fourier integral. This integral is evaluated by the steepest de-
scent integration. The graphical technique used in conjunction with the
steepest descent integration is described. In Section 3 special attention
is paid to the tail of the dispersed signal. Of particular importance is
the phenomenon that the dispersed signal does depart at a certain time,
named as the maximum delay time. This arises from the stratified na-
ture of the index of refraction in the ionosphere. In Section 4 we give the
phase, and the envelope of the dispersed signal at four different attitudes
for nighttime and daytime ionosphere. This complements earlier studies
of Messier. These envelopes are not valid near the wavefront. The
wavefront is described by Sommerfeld's precursor, which we describe in
Section 5.

Other notes on the subjects are on the consideration of spherical
ionosphere [7, 8, 9, 10] and solutions based on expansions around the

[11]

carrier frequency,



2. Analytical Formulas for Time Domain Waveform of a Propagating
Pulse in the Ionosphere

Consider an EMP, g(t), entering into the ionosphere. Let the

spectrum of such an incident pulse be g(w), then
® -iwt
glw) = f glt) e dt : (2.1)
o

Let the ionosphere transmission function be given by

-i¥ j;xn(x', w)dx!
Tw) =e °© (2.2)

Here n(x', w) is the local index of refraction at x'. For isotropic cold

plasmas n is given by

1/2

n(x, w) = [1 - wz(x)/wz] (2.3)
2 N 2
w_ = 4 - 3182.8N = plasma frequency
p m €
e o
-19 .
q = 1.602 x 10 coul = electronic charge
-12 e s
€, = 8 842 x 10 farad/m = permittivity of free space
-31 .
m_ = 9.108 x 10 Kg = electronic mass
N = local electron density




The dispersed time domain waveform at x is given by

1 [ iwt
E{t) = -i;j:oo 2WT(w) e'?

—f g(w)e

Oll—-

_l; n(x', w)dx]

[1]

dw (2.4)

Messier discussed phase delay, group delay and the dispersion based on

ray theory. Here we steepest descent integrate (2. 4) to justify the use of

ray theory and also to give analytical formulas for the dispersed time

domain waveform. Referring to an elementary discussion of saddle point

integration given in [12] , we have the saddle points of (2. 4) as the solu-

tions to

d x
_ [wf n(x!', w)dx'] = ct
dw o

or

o \
»
o,
s | %
n
0
Lad

(2. 5)

On assuming no two saddle points are close to each other, we have the

formula for the contribution from each saddle point as



1/2 iw t-i S0 (¥, » )dx*
s o s s

—1~(w ) 27i
278 Y 2 X e
*—z[w[ n(x!, w)dx'] (2.8)
dw o)
W=Ww
S
Let us introduce dispersion, D, as follows:
d2 X
D= —3 (.JS[ n(x', ws)dx'
dw o
s
X 2
1 wp
= (—2 - 2)—-—§ dx! 2.7
n nw
o} S
Further, we denote
. .
¢ = wt- f w nlx', v )dx' (2.8)
s o s s

(2]

In the analysis of Brau, etal.” ° of time domain waveforms by method of

stationary phase an expansion is carried out for the index of refraction
with the assumption that wp << w. Such an expansion limits the validity

of the analytical formulas to only sufficiently earlier time. Note also that

(3, 13]

Sommerfeld precursor describes the wavefront. Therefore, the

envelope so obtained is applicable to some small time interval (Fig. 2.1).

[3, 4, 5]

To remedy such a deficiency we use a graphical method, which

avoids the use of expansion of the refractive index.
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Instead of solving (2. 5) to yield the value of saddle point at time t, .

we study inversely the values of t, D and ¢ corresponding to each chosen

ws' Once representative values of ws are obtained, the envelope of the

time domain waveform of a dispersed pulse can be graphed.




3. Analysis of Contribution due to Saddle Points Near Cutoff Fre-
quency: Study of Tails of Dispersed Pulses

Analysis of (2.5) shows that the saddle points near the cutoff fre-
quency contribute to the tails of the dispersive pulses. In order to gain
.more insight into these tails, it is helpful to study some simple profile of
electron density. Since the time delay due to the saddle points near the
cutoff comes mostly near the observation point, we can approximate in
such a small interval by some profiles. An examination of the electron
density profile of the ionosphere (Fig. 2.1) reveals that at an altitude of
100 Km at nighttime and at an altitude of 200 KM in the daytime the pro-
files are linear. Therefore, it is worthwhile to look into a linear profile
for these two situations.

Let us study (2. 5) which gives the time corresponding to the arrival

of the contribution from a saddle point ws

1/2

w2
ct = —di, n = 1-—12} (3.1)

(o] W
S

Thus, the time delay compared to a pulse propagating in free space is

cAt = J;x(-:; - l)dx (3.2)

with cAt measured in m.



. . . . 2
Using a linear profile (Fig. 3.1), we locally approximate wp as

follows:

2
2 _ Ng
©y % e [l - A(xo - x) (3.3)

Let W, be the cutoff angular frequency for n at X then

=1 - Alx - x) ' (3.4)
o

s|e
O NIg N

which leads to n(xo, wc) = 0 as required by the definition of a cutoff angu-
lar frequency.
The time delay for the contribution due to the saddle point W from

x to x 1is
o

xO
_ dx'
At—[ ; 1/2-(x0-x)
X wc wc
- —_— - ]
1 2+ 2A(xo x')
(] (D)
5 5 1/2 9 1/2
wc wc (:Jc
1——2+—2A(x0—x) -1 - —
= 9 | W w = v - (x_ - x (3.5
(0]
wC
_2_A
(3}
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Here

N{x ) - N(x)
o

TN Wz - %)
o' “o
o

(3.6)

1 dN
AN

2|

" which follows from (3.4). Let us give two numerical examples.

1. Nighttime at an altitude of 100 Km

9

2
n

N(x ) = 2 x 10
fo}

9 9
A-2x100 -1x10° 1 -3 -1

2x109x10 20

At W = w s the time delay is maximum. Thus,

10x104m 1 3
cAt = f (?1 - l)dx 18.28 x 10 m

max 4
9x10 ' m

= —M-éusec = 60.9 usec

3 x 10

Let us give a table, which shows the delay time corresponding to the con-

tribution from some typical saddle points.

-12-



wlwc 2.236 1.414 1.195 1.118 1.054 1.
2
(wc/w) 0.2 0.5 0.7 0.8 0.9 1.
- oot 0.84 | 2.712 | 4.771 6.365 | 8.9068 | 18.28
in 10° m
s 2.8 9 15.9 21.216 | 29.68 | 60.9
in usec
Table 3.1

The maximum delay time, which is the delay time corresponding to the

cutoff frequency, is an important quantity for studying pulse propagation

in dispersive media with stratification.

It is the departure time; for time

greatér than this maximum delay time the disturbance disappears. This

phenomenon does not occur in the case of homogeneous dispersive media,

since the system allows infinite delay time at any observation point.

2, Daytime at an altitude of 200 Km

N = N(x) = 4.7 x 10!
O (o]
A - 3 x 1011 _ 3
4.7 x 1011 x 70 329
3 3
At = 300 x 10 m = 10 usec
max

lLet us also show typical delay time in Table 3. 2.

~13-
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w/wc 2.236 1.414 1.195 1.118 1.054 1
2
(wc/w) 0.2 0.5 0.7 0.8 0.9 1
At
) 3 49, 44 59.7 71. 79.7 93. 6 300
in 10° m
At
) 164.8 199, 236. 6 265. 8 312.1 1000
in usec
Table 3.2

-14-




4. Exoatmospheric Time Waveforms
In this section, we study the dispersed pulse at four different alti-
tudes for two input pulses. They are:

Pulse 1 as shown in Fig. 4.1.

g(t) = Eo[e'Bt - e (4.1)
with
E =1
[s]
o = 4.76 x 10° sec”?!
6 -
B =4 x 10 sec 1

The unit given here and henceforth in all figures is in volt/m.

The transform of pulse 1 is

~ 1 1
glw) = EO[B +iw  a + iw] (4.2)

Pulse 2 as shown in Fig. 4.1 is

d eat
= K
g(t) o Gt (4. 3)
1 + e P
with
E =1
o
= 4.6 x 1077 :
8
o = 4.402 x 10

-15-
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4.4918 x 10°

8

B

t 3.33 x 10

P
The transform for pulse 2 given in the Appendix is

N

atp iwtp
aw)=Ed% e = (4.4)
sinla + iw)E
at i +iwt
wd e pe g P
=B — (4.5)
o B 172
[sinzlr—g costhw + cos2 e si.nhz w_w]
B B B B
where
wn
-tanh (—
¢ = tan (.B ) (4.6)
g tan (ﬂ)
B

We also show ¢g and the phase of pulse 1 in Fig. 4.1,

Note that the spectra (4.2) and (4. 4) introduce poles when applying
the steepest descent integration. However, the residuals due to these
‘ poles are exponentially small and there is no need to calculate them.
Also, there are two saddle points located symmetrically with respect to
the imaginary axis. The late envelope obtained from (2. 8) is

1/2

| (1) (4.7)

E =
| D

B

-17-



Here D is given by (2.7). The phase delay for the propagating medium .

is given by (2. 8).

-18-
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5. The Sommerfeld Precursor

The first signal arrives when t is slightly greater than x/c. How-
ever, the analysis given in the previous sections is not valid for such an
interval of time. Historically, the wavefront of a pulse propagation in
dispersive media was first analyzed by Sommerfeld[13] before Brillouin
applied the steepest descent method as has been done up to now. The
signal near the wavefront is called the "Sommerfeld Precursor. "

Let us focus our attention to study the wavefront of (2.4). To

achieve this, let us expand n to give

X b4 9 9 1/2
f n(x', w)dx' =[ (1 - w xYw’] dx!
o o p

]
»
1
€
e
a
M—o
+
E
o] R
»
€
W
—~—
N—
o
N—|
+

2w o 8w

On using (5.1) in (2.4), we obtain

-27-



0 iw[t—%j;xn(x', w)dx']

21 ~
E{t) = 57 glw) e dw
-00
. Xy 1 px 2 3 r£x 4 3
1 [P~ 1[w(t—g)+§j(; wpdx'/wc-gj; wpdx'/w cte -]
= = glw) e dw
am
% (5.2)
Tet
X 9
f w dx' = N (5.3)
p 2
o)
X 4
f w dx' = N (5.4)
P 4
o
(5.2) reduces
3
1 © ( c’ 2uwc 8 30
E(t) = E—f glw) e el (5.5)
i
-0

For pulse 1 with E(w) given by (4.2) we can expand the last term in the

exponent of (5. 5) to give

1 622

E®) = E® + §E +—2—E + ... (5. 8)

Here

~-28-




-4
5 8¢ °
N
) f':__o oo( 1 ) 1 )elw7+1zcwd
27 B fiv a + iw ©
-0
N
3 1w7+izcw
J. (B+1w_a+1w)(*) dw
N
) E_Q oo( L ] 1 )(L)S e1w7+12cw ;
2 _OOB+im o + iw’ Viw v
with
T = t - E
c

(56.7)

(5.8)

(5.9)

(5.10)

To integrate (5. 8) through (5.10) it is necessary to make use of the iden-

tity[ 3]

J (z) =
v

1 v 2
=z) ) 1 i (t+z—)

=2 f Vet M
2w
-0

-929-
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o0
o_ Cof® 1 lwTHgg
ST w ¢

-
OOB iw

dw

Similarly, denote the second term in (5. 8) by gg.

Then, one can show that

-t d , 0 B71y _ -a7 d
e _d_'r(gl e ') = e Ef-(gz e

(N2 )1/2
N Eo 27cC J1

o
E" is then given by

o _ O_ 0

Similarly,

with

S’
1
1
R
-
Q.
—
R
)

o aT

)

2N27

(

-30-
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1/2]

(5.12)

(5.13)

(5. 14)

(5.15)

(5.16)




2.2 .52 (5.17)

with
-Br d , 2 BT ~aT1 d ;, 2 aT
& Gr\& ¢ ) = E(gz e)
pon3/2 /2Ny 1/2
= -E (—ci) J ( (5.18)
o N2 5 c

Snbatitution of (5.14), (5.15), and (5.17) into (5. 6) gives the Sommerfeld

Precursor for pulse 1.

Figures 5.1 through 5. 4 give the Sommerfeld Precursors for pulse 1

at four altitudes for daytime and nighttime ionospheres. Note that the os- .

cillation near the wavefront follows that of JI(X)’ with x = (2N2'r/c)1/2.

Thus, the higher the altitude the larger N2, which results in fast oscilla-
tions. This is confirmed by the increase in oscillations from a scale of
108 sec to 10710 sec from an altitude of 100 Km to 1000 Km.

For pulse 2, we make the following observations. At 100 Km, the
Bt

contribution to the wavefront for pulse 1 comes essentially from E0 e

of the original signal. One can expand the undispersed pulse 2 to obtain

-1
ato - (B-a)(t-to)[ -B(t—to)]

E de e
(0]

1 + e

H

g(t)

Bt

= E de
o

oe—(B-a)t o (5.19)
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Again the fast rising input gives a negligible contribution to the Sommer-
feld Precursors. Therefore, both pulses have almost identical wave-
fronts. Note e, given for pulses 1 and 2 are different.

At 200 Km, 300 Km, and 1000 Km, the magnitudes of the initial
wavefront are so small that we do not give them. This can be seen from
the spectrum of pulse 2 given in Fig. 4.1. In brief, the initial oscillation
of pulse 1 gives us the lower limit of the high frequency contribution to the
wavefront. At 200 Km, this lower limit can be estimated from Fig. 5.2
to be 109. Referring to the spectrum of pulse 2 given in Fig. 4.1, we see
that the spectrum above 109 is essentially zero. This leads to the result

that the wavefront is small.
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6. Concluding Remarks

In this note methods for calculating important features of dispersed
EMP in the ionosphere are described. Sommerfeld Precursors are em-
ployed to obtain the immediate wavefront of the dispersed signal. Subse-
quently, the envelope and phase are calculated by the steepest descent
integration and these should be valid to great accuracy after a few oscil-
lations of the initial dispersed pulse. The calculations are carried out

for nighttime and daytime ionospheres at four different altitudes.
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Appendix

In this appendix, the transform of pulse 2 is derived by the residue

technique. The time domain waveform of pulse 2 is given by

E deat

_ O
g(t) - B(t‘t ) El
1 + e P

(4. 3)

By definition, its Fourier transform can be obtained as follows:

[+ o] .
f gt) et at
—~00

aft-t JHiw(t-t )
p

g(w)

“E de

- Bttty dte
P

at +tiwt
p

-0 1 + e

27iE d i(a+iw)(2n+1)= (a'+iw)tp

B

= -—— D e e

Y ¢ .
2riE d ile+iw )B- (a+iw)t
o e e

B i(a+iw)%7-r-
1 -e

- d (a+Hiw )tp

o e
= (4-4)
B sinle + iw%

~-38-



.
o

at_ ig+iwt
P o

1rEod e e
= (4.5)
B 172
[sin2 e cosh2 LR + cos2 ™ sinh2 f.‘*.i]
B B B B8
with
t::m"}g—7r
tan¢g = I (4. 6)
tanh ——

In the derivation, the integration has been evaluated by the summation of
the residue contributions due to all simple poles, and the subsequent geo-

metric series is summed to give a simple formula, (4.4).
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