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ABSTRACT
.

Electromagnetic pulses typically have a large amplitude over a

very small time interval. As a result, a substantial portion of

their spectra is at high frequencies. Lower frequency contribu-
tions then occur for times several orders of magnitude larger. A
method is presented for calculating the Fourier transform of such
pulses. This procedure may improve the high-frequency representa-
tion in cases where |F(w)| A,uP with n » - 4 at high frequencies.
Limitations are discussed;itogether with those of the usual transform

methods. Two examples are used as illustrations.
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CALCULATION OF SPECTRA FROM EMP-TYPE WAVEFORMS

Introduction

Volumes have been written concerning the interaction of electromagnetic
fields with antennae. In neariy every case, actual calculations are done
in the frequency domain rather than in the time domasin. The recent EMP
Handbookl illustrates severél of the most popular methods. The con-
nection between the two domains is the familiar Fourier transform pair,

-iwt

Flw) = [ f(t) e dt (1)

and

@
(t) = g; £mF(w) eTWE dw - (2)
.
In EMP studies, real causal signals are expected; hence, the £(t)
is real and is zero for t less than the time of signal arrival, ta'
Because of the rapid rise of the leading edge of the EMP, ta is difficult
to dgtermine accurately in many applications. Usually the initial time is
chosen sufficiently early that the F(w) results are not affected (i.e.,
the amplitude £(t) is small enough for t < t, that the integral for
F(w) is not affected). .
Equation (1) appears extremely easy to sclve, especially in this

day of high-speed computers. An approach which comes quickly to mind



is to separate the time axis into intervals, choose a representative
amplitude for each interval, multiply the appropriate factors together,
and sum over all the intervals. As the intervals are made smaller, the
summation should converge to the proper transform. Such a numerical
treatment is unsatisfactory because of discontinuities in £(t). If we
assume that £(t) is an entire function over (- =, =), the artificial
discontinuities in £(t) (introduced by the numerical technique) prevent
accurate representation of F(w) at large w. If the first n-1 derivatives
of £(t) are continuous, then integration by parts (subject to the usual
restrictions that the function and all its derivatives vanish at the
integration limits) gives2

®

Flw) = —— [ £t) e Wb 5 . (3)
(iw)n -

If the specific £(t) had a transform such that

1P(w)] ~ 1/w
o w

at large w, the numerical procedure described earlier could not accurately

represent ]F(w)l for my> 1. )
For high frequencies there is a second difficulty with this simple
approach. With a given time interval size, At, at high frequ®ncies the
phase factor - iwt will change significantly as time proceeds across the
interval. No unique phase factofimay be chosen as representative of the
interval. With a given f£(t), the time intervels may be chosen suffi-

ciently small to overcome this difficulty, i.e., provided the frequencies

of interest are not too large. If constant interval spacing is also



specified, the fast Fourier transform algorithm may be used.3 Consider
a situation where F(w) is desired for w €7 X 107 sec™l. The time

interval necessary is then limited by

t < = -9
A ﬂ/uhax _lO seci

p)

If #(t) is significant for times near 100 psec, then 10” intervals must
be considered if At is to remain constant. Such storage is near the
limit of some modern computers. With lO5 terms, the standard transform
methods also cease to be raéid, especially if a sufficient number of data
poirnts 1is not readily available.

5

Carpenter and Price” have suggested a method which solves the storage
difficulties and the representative phase choice for the intervals. They
approximate £(t) by a series of straight-line segments with sections of
the function having constant at. Thus when the function is rapidly vary-

ing, a small At is used. At later times when £(t) is slowly varying,

larger interval sizes are allowed. This approach solves the storage

problem for meny applications. They also calculate the special transition

terzr_s7

required when the interval size is changed. The choice of straight-
line segments allows them to include the variation of phase across the
interval. However, such a method gives discontinuities in the numerical
representation of the first derivative of £(t). Any |[F(w)| which falls
faster than l/w? cannot be accurate st large w. The numerical procedure
has forced a w—2 dependence at large w.

An additional concern with the fast Fburier transform technique is

the teric assumpfion that the wave is periodic with a period equal to

the Tuie initerval chosen for the integration. Transformation back into



10

the time domain with account taken of response functions often yields a

leading edge to the waveform that corresponds to the "preceding" pulse.
The high-frequency behavior of F(w) is important in many applications

concerning the interaction of an electromagnetic pulse with systems.

Many systems have antennae on the order of one meter long. Assuming

half wavelength resonance, way 37 X 108 sec:-l will couple strongly with

the antenna. In other applications, still higher frequencies may be

important.



Spline Fitting Technique and Resultant Transform¥

A spline fitting technique can be used to represent the function

h The derivatives f(t) can be represented by continuous functions -

f(t).
oy the choice of an n+l-order spline. A cubic spline, for example, could
represent a continuous f£(t) with continuous first and second derivatives.
Because of the numerical procedure in the frequency domain the discontinu-
ous third derivati%e would force |F(w)| to fall as 1/4™ with n, = b.
Thus. accurate high-frequency representation is possible for larger n,.

A cubic spline representation of f(t) is written

K 3

£(t) = o *+ apt + aat® +aut™+ 3 oy(t-BS), (ha)
J=5

where (x)+ = xh(x) and h(x) is the Heaviside unit step function. The
joinps, SJ, are distributed along the t axis with special attention to
times at extrema of f(t) or where slopes are rapidly changing. The
coefficients aj are then determined by a fitting procedure described
elsevhere. The BJ may be varied to improve the fit.

In order to calculate F{w), the f(t) must be specified for all time.
Because of difficulty in precise determination of, the time of arriva;‘ta,,
the f(t) is represented by |

£(t) = a , exp(a t) (bb)

for t <t . Rather than following f(t) to t = ®, it is represented by
0 N
£(t) = o, exp(-ayt) (ke)

for t > t_. The spline fit is then required in the interval to St €3,

*Private communication with J. N. Wood of Science Applications, Inc.,
Dec. 1972, indicates that the Air Force Weapons Laboratory has been
using a version of spline fitting to transform the t, E(t) data
generated by some of their electromagnetic pulse programs.



The new parameters must be adjusted to keep continuous first and second
derivatives in the interval -« <t < ®., The choices of to and t_ can
be varied to insure that the end functions contribute only a small amount
to the transform. If other informatlion concerning the late time behavior
is available (such as a damped sinusoidal form) the end functions might
be improved for some applications.

In order to insure equality of the function and its first derivative

at the transition points, the following constraints are placed on the

coefficients:
oy +20;, b F30, t2
o4 = 2 )-
o) @1+tho+°bto+0;t2
-t
o, =€ %0 ™0 {g + egtp + aat3 + ahtg} ’
3, & 2 (5)
0 +20, bt 30, Tt Z:53aj( t-B 3 ),
- = J=
e 2 3 X e
oty botay Tt tet D o (te,-B ] )
J=5
O U . K a
Gpop = © {al oty fatd oty t D (7B } .

In order to insure continuity of the second derivative at to and t_,

the second derivative in the spline fit is constrained to be

f(2)(to) = 0[2 f(to) s

of f(t) .

f(E)(tm)

The spline~fitting routine is quite capable of applying constraints to
its fitting parameters; in fact, constraints of this type are easily

included.h The first joint ( 55) is often chosen close to t _, with t_

[
N>



sufficiently early that the amplitude of f(t) is insignificant. Such a
choice has been found helpful in efficient solution for a good fit to tre
data in the examples considered later.

The accuracy of the fit can always be adjusted to fit the needs of 2
specific problem. It can be constrained fo be within some multiple (such
as 1272 or 107®) of .each value of f(t) used to determine the fit. If the
multiple is small, more joints may be required to find a suitable fit.

The transform of Eq. (4) may now be written

-i -(o_+i
o jexpla t -iwt ) a@AGXP[ (o *+iw)t ]

= + -
F(w) ao-iUJ O tly

+ oa[Xtm-XtO] + Q%[Xtmﬁtm— Xtonto]

"o { X‘tm{ti ¥ '1% ”tm} "% {tg ¥ 12_(” ”to}] (6)

o]
3,3 .a_56 - 3, 3.2 _ 6 ]
" Q‘* [Xtcn{t ’ tw ’ wa ntm} Xto{to * 1w ¢ w? nto}

where
L .
Xy = o5 exp(-iut) ,
= L
My = T iw '

The procedure for calculating the transform can be simplified some-
what by use of Eg. (3). Since the mathematical representation of the

function and its first two derivatives are all continuous,

'_.I
(WS
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Flw) = — fm f (3)(1:) et g, (7)
(iLU)a -

Direct substitution gives

wa , explle -tw)t ] ola,, expl-(a,+iw)t,]

Flw) = (iw)a (ao_iw) - (iw)a (am+iw)
6 -igt -1 K 6o, ~igg, Llwt,
* (.::34 (e e O_e uJt_m) + > L (e u‘BJ'e ’ ) (8)
t 3=5

(iw)*

Fluor Function Example

Let us now apply the technique to a function with typical EMP behavior

for which the exact transform can be easily calculated. The fluor function

fi1(t) = e 7Bt (9)

fits these criteria, If B >> g, then at late times f(t) ~ e'°‘t, while
at early times f(t) ~ (B-e)t. The peak occurs at

1
t = Ba in(B/a)

With the end functions introduced earlier, the exact Fourier transform is

found to be

< a exp( qoto-lwto) . oo expl-(o *iw)t ]
-] +1i
Q'O.lw QT LW

Fy (w)

exp[-(o + 1w)t ] - expl-(o + iw)t,]

o+ iw

expl-(B+iu)t,] - expl-(B+in)t ]

B + iw




he following choices were made for the input function parameters:

t = 1. x 10'9,

8]

ty, = 5x 157,

8

o = 8.1103397 x 10 ,
wa= J—l X 1.06,

o =4 x1d ,

B =k x 1# s

wit all variables in cgs-Gaussian units. ZForty-three values of % such

9 9

that 1 x 107 <t < 500 x lO- were chosen in order to obtain a set of
jdata points [ti, fi(ti)] for use in the fitting program. The data points
and the resulting fit are shown in Fig. (1). The fit coefficients (Qi),
Joints (Bi), fit interval (to,tm), plot interval, beginning exponential
parameters (aoA’ Qb), and end exponential parameters (Q&A, o) are given

in Table I. Several derivatives of f(t) are given in Fig. 2. Note the

discontinuities that occur in the third derivative.
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Fig. 1. Spline fit to the fluor function with end
adjustments. Circles indicate data points.
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Fig. 2 Several deri-
vatives of f(t) as a

function of time (sec).

The plotting symbol
P(W) signifies a posi-
tive (negative)
quantity.
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Computer evaluation of the transform from Eq. (8) yields Fig. 3. BEvalua-
tion of the transform from Eq. (6) yields very similar results. At high
frequencies the representation is reasonable. However, at angular frequen-
cies below 2 x 10° sec™ (3 x 10% sec™!) the real (imaginary) part of the
transform differs significantly from the exact solution. Such difficulties
might be expected from computer evaluations of such quantities as exp(-iwﬂi)
- exp (-imt_). When the arguments are small (2 x 10° x t, = 10-1; &% = 1.1)
the exponential functions are near 1. Significant figures are then lost

when differences are taken in the computer.

Treatment at Small W

To overcome the difficulty at small w, Gaussian integration may be used

instead of Eq. (6) when wt, < 2. The equation then becomes

‘ ' t
o, expl{g ~iw)t ] o , expl-( +iw)tm o s
A (o] (o] o A % + f f(t) e 1wt

Fly) = = . + at, (1)
ao - 1W % + iUJ t
0
where
(t) e at =Y w, £(y,) ;
t . =1t ¥ & N
o
tm—to . t -t
Yo7 T2 % z
and XL’ w% are the position and weight functions for the Gaussian integration.

NG is the number of points used in the integration scheme. With NG = 32 and
the £(t) evaluated from the spliné fit, the transform is given in Fig. 4.
The transform coincides well with the exact solution in Fig. 4. The time re-

quired to calculate the 51 transform points in Pig. 4 was less than O.} sec on a
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CDC ©oCC computer, using the FIN compiler. N, = 8 essentially reproduces the

G
results in Fig. 4, and gives agreement with the exact solution within 10%.
A basic difficulty with such transforms at low frequencies has been
pointed out by Higgins.T Tn Eqs. (6) and (8) terms proportional to w
occur, with m varying from 1 to 4. Since F (w = 0) is the finite integral
of I"(t) over time, these UJ-m terms must have zero coefficients. Power

series expansion of Eq. (8) indeed verifies that these terms are zero. In

expansion form, the transform is given by

o 0, (z9)
Fly) = Lf(t)dt + f(to) _E:o_ [1 + Hl(iwto)] + G(ozo,to)
-0, (W
- 2tg) § = [1 4 By (dut)] + 6-a,st,,) (12)

@

K K
- 2 6a; Hs(w,t,) + 6a Hs(w,t ) + 26y Ha(w,B; ),

J=h J=>
where
G( t) = M-.;. H ( ) 2 ( )
&, I 2(w,t) + oHz(w,t) + o°Hy(w,t N
. . . ’ B ﬁ A —na
® . ~-4+1

_ (-lwt)n -1

Hylwt) = n% nl (-t ’ (12)

Qz(z) = 55 20 .

n=14

If o is sufficiently small, then for 4 = 1 the following may be more
convenient;

.w ,“;

04 1 - —
Thus at high frequencies the transform is evaluated by Eq. (8). At low

frequencies, Eg. (11) with Gaussian integration or Eq. (12) may be used.
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The HL series converge quickly for wt € 1.5, hence only ten temms are
sufficient in the series. TFig. 5 gives the transform for the fluor funec-

-1
tion example, evaluated by Eq. (12) below w = 3 x 10° sec .

A Second Example

Note that at large w the F,(w) in Eq. (10) falls; as 1/w. Hence the
fluor function is not an optimum choice for illustration that the spline-
fitting procedure has advantages at large w over methods where the first
derivative of f(t) is treated as discontinuous. As a better test consider

the function

o (t) = t*exp[-xg]

fam

4
for to <t <t where fém = e-4(%). Including the earlier end terms gives

the transform

o, explo -iw)t] o, expl-(o *+iw)t]
Flw) = o, - 1w * O * 1w

§4(tw) -'54(t0) + bE5(t,) - ga(to)]

+

(15)

+

12VRLE5 (k) - Ea(t,)] + 2WPTE (5) - 8a(t )]

+

2hv4[§°(tw) - go(to)] :

where

- .0 expl-(y + iw)t]
gn(t) =% "fam ('Y + iUJ) ]

- 1

T oytiy
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The following choices were made for input parameters:

b= 1. x 1077 ,
t, =5 x 1077,
o = 3.96 107,
o = 320 x 107
y =h.00x 107,

The coefficients o and g are calculated from the value of y and the
derivatives of fo(t). Additional input used in the fitting routine were:
1. TForty-three data points giving fa(t) for b St <t
2. Reliability of each f,(t) value (% 4 percent).
3. Constraint on the continuity of fz and its first two derivatives
at to and t_.
L. Constraint on the first derivative of fp(t) to be positive at
2, 3, 4, and 6 x 10 ® seconds.
Table II gives the problem parameters, wﬁile the fit is illustrated in

Fig. 6. Several derivatives are shown in Fig. T.



TABLE II. Example 2 problem parameters

COEFFICIENTS

3.8711724143472€-105 -1.00‘!‘.’\25.9155??50‘3! 1.116566412%94110€C+14
°3-ll507°69;7‘31285022 4.023&569870861E+22 -%.93329729917317FE+71
=3.0807422R827093E+21 6.905422376691T7TE«21 ~2.1084045€6670015F +21
1.6469043553563472F0+21 =1.%0430A16393587E+21 1.5071311255902E+20

2.-1116773383479E+19

JOUNTS
1.19980000000000€E-09 1.8000000000000E-08 3.OaOaaaaaaa0NNF-ar
72-000000000000NE-08 9.9000000000000E~-08 1.100000000030NE=-07
1.720000900000000E~-07 2.80000900000U0E-07 4. 00600000 0NANOF =072
FI1T INTERvVaAL TC'\O= 1.9000000000000F-09 TIN= 1. 0000000000000F -7
PLOTYT INTERVAL TR= 9. TF= 10039900000 0N%E -N6
BEGINNING EXPONENTI AL PARAMETERS 1.00N2294R853722R€6E-04A JL9ENINNANNNANNE LG
ENC EXPONENTI AL PARAMETERS 5.9359N18430240F+02 3.200000909NN0NAOF e 7
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F1 PRIME

F1 PP

ExamMe F NopuwaE ., -

Fig. 7. Several deri-
vatives of the spline
fit to fz(t).
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Success of the method is illustrated in Fig. 8 where the exact trans-
form (from Eq.(195) is compared with the transform calculated from the
spline fit via Eq. (12) at low frequencies, and via the simpler Eg. (8)
at high frequencies. Evaluation of F(w) via Eq. (11) at low frequencies
gives results in agreement with the Eq. (12) illustrated in Fig. 8 within
1%.

Figures 9 and 10 are included to indicate the |F(w)| and its phase.
Note that at high frequencies the l/uJ4 variation is reasonably represented.
Improvements in the agreement between thc exact transform and that eval-

uated from the spline fit require improved fitting parameters. The relia-

bility of the fa(t) data points could be increased; more joints could be

added. Further constraints could be added. However, in applications of
the method to EMP data where an exact transform is unknown, it is seldom
that a sufficient number cf data points (with sufficient accuracy) is
available to determine the high-frequency content unambiguously. The
mevhoc presented here well represents the low-frequency content of the
data; it can only ectimate the content at very large frequencies by a
smooth fit to the given data points. Tﬁe method does havé&ethe advantage
that constraints may be easily used to smooth out fluctuations that are
to be ignored in the data. Such fluctuations may be caused by numerical
noise in computer simulations or by electrical noise in experimental
measurements. A different set of constraints would retain all fluctuations
present in the data and perhaps add additional ones 1f care is not taken.
Note that in Fig. 9, discontinuitles in £'(t) would have forced a w ~

behavior of lF(w)l at large frequency.
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