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Abstract

Most satellites in existence to date are inherently resonant structures.
By a resonant structure is meant that the currents and charges induced on it
by an external transient electromagnetic source continue to oscillate without
significant damping long after the external source has been turned off. In this
note, the emphasis is on how important the resonance effects are on the system-
generated EMP and how to calculate them.

The problem chosen for study is that of a thin cylindrical tube or a wire,
which is a resonant structure, excited by a moving charged particle. The
natural-mode method in conjunction with asymptotic expansion enables one to get
an explicit analytical solution for the induced current on the wire. The solution
is split into two parts: one part comnsists of damped sinusoids and the other has
the quasi-static behavior. The analytical solution can be checked against the
quasi-static solution as well as the numerical solution based on a space-time
integral equation for the wire'gurrent. Such a check establishes ranges of
validity and also numerical accuracy. For all practicafhburposes, the analx&ical
solution deduced from the asymptotic natural-mode method is most desirable in
predicting SGEMP for resonant structures.

Extensive graphical results for the time history of the induced wire
‘currents are given. Explicit analytical expressions are obtained for the
resonance frequencies, damping constants, and cbupling coefficients of the %urrent
oscillations excited by a moving charge; these expressions are tabulated or
graphed for ready use..

The results obtained in this note for a single charged particle cam, in
certain cases, be used as the Green's function for the problem of calculating
the currents induced by many photoelectrons if all the nonlinear effects are

neglected.
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I. Introduction

The photons released by an exoatmospheric nuclear detonation can travel
great distances because of the absence of an intervening medium, i.e., the
atmosphere. If a space communication system (for example, a satellite) happens
to be above the atmosphere and along the line-of-sight path from the detonation
point, the system will then be irradiated by a large amount of photons and
consequently electrons will be ejected from the "surface" of the system by the
photoelectric effect. Most electrons will return to the system and some will
escape to infinity (see Fig. 1). Their motions near the system will create a
transient electromagnetic field. Since this transient field is strongly dependent
on the shape and constituents of the system, it has been appropriately referred
to as the system-generated EMP [1,2]. The currents and chargés induced on the
system by this transient field may upset and/or damage the communication equip-
ment inside the system. |

Some past efforts [3,4] have béen devoted to accurate calculations of the
system-generated EMP (SGEMP) in which the system 1s modeled by a perfectly
conducting sphere for reason of analytical tractabiiity. The rigorous solution
of that problem for orbital electron motions has provided invaluable physical
insight and also led to the establishment of validity criteria for the quasi-
static approach. It has been found that the criteria depend on the kinetic
energies of the electrons as well as their distances from the sphere. Unless
the electrons are very close to the sphere (such as less than one tenth the
sphere's radius from the surface) the quasi-static solution is quite accurate
for electron energies up to 2 MeV. The quasi-static appgoach to SGEMP boundary- .
value problems, if valid, is extremely desirable, since the physics involved in
such an approach is less intricate and the mathematics is not as cumbersome as
the corresponding dynamic approach. The success of the quasi-static approach to
the sphere problem can be attributed to the fact that a sphere has large damping
constants for all the exterior resonant modes that can be excited by the ejected
electrons. For slender structures, however, the damping constants of the
resonant modes are quite small and the quasi-static approach would not lead to
accurate SGEMP predictions.

The present note treats one of the salient features of Fig. 1, i.e., the

resonance effects of a slender structure on SGEMP. The simplest possible slender



Photons

Figure 1. Photons impinging on a satellite.



structure is a straight thin wire. The boundary-value problem treated in this
note is that of calculating the induced current on a straight thin wire by a
moving charged particle with arbitrary prescribed trajectory. This problem,
although geometrically quite simple, is not at all straightforward because the
inducing field is quité complicated. By studying this problem in detail one will
gain a thorough underétanding of the resonance effects on the SGEMP-induced
currents on a typical communication satellite. In a future study one may include
other important features such as the solar panels and the module of Fig. 1.

In Section II, the quasi-static approach is used to find the induced current
on a wire by moving charge. The natural-mode method (which is a part of SEM) is
employed in Section III in order to place in evidence the resonances of the
induced current. The natural frequencies and the associated modes are obtained
explicitly by some suitable asymptotic expansion [5]. It turns out that the |
induced current can be written in an explicit form which can be split into two
parts: one part consists of damped sinusoids and the other has the quasi-static
behavior. Results are compared with those of Section II and, hence, validity
criteria are established for the quasi-static approach. In Section IV, a space-
time integral equation for the wire current is formulated and numerically solved
by themethod of characteristics. The numerical solution obtained here is then
compared with that of the preceding'section. The comparison shows that for a
thin wire with Q 2 10, the asymptotic solution is quite adequate for most
practical purposes. In the fifth and final section reéﬁlts are summarized and
conclusions drawn. Natural and desirable extensions to the present study are

also sugegested.
88 @ —_—



II. Quasi-Static Approach

In the quasi-static approach one first calculates the induced charge
density on the wire surface by solving an appropriate electrostatic boundary-
value problem. Then, by using the continuity equation the induced currents
can be obtained from the induced charges.

Fig. 2 shows a particle with charge q located outside a perfectly
conducting cylindrical tube with length £ and radius a. Let o(z,4¢) be
the induced charge density on the tube. Then, on the surface of the tube the

requirement that the total potential be constant gives

_L 227 c(z',¢')ad¢'dz' +.__L= v (1)
4me Jolo ) ' 4meR o
/Ea -2a” cos(¢-¢")+(z-2")

where VO is a constant (the induced potential on the tﬁbe),
2 _ 2 2 2
R =2a" + Py = 2poa cos(¢ - ¢°) + (z = zo) , and (p0,¢°,z°) denotes the

location of the particle. The constraint on ¢ is that

L2
J J a(z',¢")ad¢'dz' = -q (2)
0’0

implying that the charged particle comes off from the tube. Averaging (1)

with respect to ¢ one gets

2 (% ' ' 27 . ‘
—L-J d¢J (z")dz + =L I de = 4meV:

2 — - 2w
0 0 véaz-—Zaz cos ¢+(z—z')2

0 £2+§‘2)~2p°a ?65 ¢+’(z—zo)2 (3»)“

where the line charge density T 1s defined as

27 -
t(z) = J a(z,¢)ado . '(4)
1)

When the tube is thin (% >> a) (a thin tube will simply be referred to as a
‘wire hereafter), (3) can be solved approximately by using the fact that [Gﬂf
if z # 0,2,



Figure 2. A charge outside a wire



2w R '
_2;1? J I dz'd¢ a2 103(%)5 Q. (5)
070 /5;2-2a2 cos¢+(z-z')2 '

Hence, 1f @ >> 1 the approximate solution of (3) is

t(2) = fme vV - 4 . _ (6)

2 2
Q pd+(z-zo)
By applying the constraint (2) to (6) the constant Vo ig found to be

(2—zo)+/(2-zo)2+p§

vV =--3_|10g -9 )
o 4deld - e—
p§+z(2) _ZO

which gives the voltage induced on the wire by the charge q.
The induced total current Is (where the subscript s reminds one of
the quasi-static approximation) is related to the line charge density t by

the continuity equation

aIs T
3 " Tae ®

in

Integrating (8) with T given by (6) one obtains

3 2
IS(Zst) = = o J T(Z').dzjl B - S _ — .

ot 0
(z-zo)+/(z-z°)z+p§ (z-zo)+/(z-zo)2+p:

42 1, log - z log (9

QL ot > o
v’zz+p2 -z zz+p2 -z
oo o . o o

o]

where z, = zo(t), Py = po(t), i.e., the position of the charge is taken to

be a function of time. It is easy to see from (9) that

I_(0,£) = I_(2,£) = 0 (10)



as they should.
To carry out the time differentiation in (9) it is more expedient to use
the coordinates as shown in Fig. 3. With respect to these coordinates one has,

for example,

/ 2 2
(z—zo) +p0 e %o x(l-cos 8) _

/2.2 I'o(]'-cOEl E,o) r ain2(0 12)
p°+zo -z o o

o]

ro(sin Bolsin 8) sin2(9/2)

cot(9°/2)t'an(6/2).
Thus, (9) can be rewritten as

Is(z,t) = -fz%-g—f {2, log[tap(B/Z)cot(6°/2)] -z log[ta_n(ejl'/Z)cot(Bo/Z)]}

=1 - 5 5 - : 11
e, [(zr z)roe°+mre zrzel] . (11)

Let the particle's velocity v be decomposed into components parallel and

perpendicular to the axis of the wire, i.e.,

v=ev +ev,
- -2 || P i
Some manipulations of (11) then give ' = -
il 2y si in 8 + 2 gin 6
Is(z,t) = 5;—; [(1 - I)sxn 00 - sin g sin 6,
v, z z ] 12
-5’::[(I—E)coseo-cose+Icosez . (12)

When the charged particle is very close to the wire, the current right beneath

the particle is given by

10
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Figure 3. New coordinates for the moving charge.
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qv, qv 2z
I (z ,t)N-—"—'—L(l——g) (13)
8 0

which has been obtained from (12) by letting 6 = w/2, eo ~ 0, 62 ~ m. Thus,
the current varies in inverse proportion to the distance of the charge from the
wire axis. ‘

When (12) is evaluated at the midpoint of the wire (z = £/2) where one

can expect large currents on physical grounds, one gets

¥y f2 1 1 .
e - S (-1 1)

r r, T,
qv =2z z L=z
- 29" (—° + -2 °) . (14)
Py r r T,

In terms of the dimensionless variables & and n defined as

z p

o vt _ e
g=32=%,  a-g (15)
one can rewrite (14) as
v, v,
1A/, = - T~ L
T =2t Ll ¢16)

hiroee)?  foRet Eea-n?

= 1| 2060 & 1t ]

L n .
S VATV B AR R LY

According to (15) the time origin (t = 0) 1is chosen to be the instant when

the particle is right above one end (z = 0) of the wire. The normalized
current components, 'fu and T;, are plotted in Figs. 4 and 5 from which one
can obtain the induced current at the midpoint of the wire in terms of the

instantaneous position (£,n) of the charged particle.

12
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III. Natural-Mode Method

In the quasi-static approach presented in the last section any resonances
that are inherent in a thin wire are neglected from the outset. In this section
the effect of these resonances on the wire current induced by a moving charged
particle will be examined in detail.

The point of departure is the well-known integro-differential equation

for the current I in the s-domain:

2 2 3 '
.d_z_ - .5_2 j !:_(Z_‘"Ip{s_). e 'SR/C dz' = _ng;nc(z’s) an
dz ¢ /0

where R2 = (z ~ z')2 + az, i.e., the so-called thin-wire approximation has
been used. Here, it should be pointed out that in the asymptotic method
employed in the last as well as this section, one could have used the exact
kernel in (17), and the final result will however be the same as that derived
from the thin-wire approximation.

From the method of singularity expansion (SEM) the solution of (17) can be

written as [5,7]

C
I(z,s) = -es Z l__=n In(z)- (18)
T

s-s_ B
n n

For a thin wire it has been found that [5,8]

= sin 272 o 4[L : : . _ —
In(z) sin = + 0(9)
i . 1
s, = ¢ _%EE._ é% [y + 1n(2n7w) ~ C1i(2nw) % iSl(va)] + 0(;5)

y = 0.577-+++ (Euler's comstant)

2
. i 1
n J031n(é%5) E:nc(z,s)dz + 0(?)

£
dL
N I [(_CTS-) II_JIn(z)dz
0 Sy

s
n

4nc2

(19)

O
fl

=]
1

-Q + 0(1)
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where Q = 2 log(%/a), Ci(x) and Si(x) are respectively the cosine and
sine integrals, and £ denotes the integro-differential operator that operates on
the current I i1im (17). Substitution of (19) in (18) gives, with Zo

denoting the free-space impedance,

2

I(z,s8) = zl:;zcn. Z %T:'_s—; [Josin(nﬂz'lﬂ.)E:nc(z',s)dz'] sin(nmz/L) + O(-;—z) (20)
n .

Heré, one may notice that coupling coefficients of "class 2" have been used,
i.e., they are allowed to be functions of s [7]. The reason for such a
choice is that in the low-frequency limit, (20) directly leads to the quasi-
static solution of last section., If one had used coupling coefficients of
"class 1", entire functions would have to be introduced in order to have exact
correspondance with the quasi-static solution. To see how (20) reduces to the
quasi-static solution (9) when s + 0 one lets s, = #innc/2 (n > 0) in (20)

and obtains

2 '
I(z,8) * 8rncs J E:nc(z',s)dz' Z sin({nnz/%)sin(nrz'/%) . (21)

Z QL 2 2
o ‘0 T30 s +(an/L)

The series, after dropping the 32 term, can be summed as [9]

(2 - 2)z'/2, z > z'
Z sin(nrz/2)sin(nnz'/2) _ (22)

D 2. : _
n>0 (nn/2) (2 - z")z/2,, z<z2'.

Thus, (21) becomes

{

4res z inc L inc ‘
I1(z,s) = J z'(1 - z/!Z.)Ez (z',s)dz' + I z{(1 - z'/l!.)li:z (z',s)dz’ (23)
0 z .

whence

I(z,t) ~ 27 4 "o - 2/nERC (2t tyazt + Lz(l - 2 /EPC (2, 0)az|. 24)
! Q dt 0 2 ‘& z z ’ *

16



Using the Coulomb field for E:nc and evaluating the integrals omne gets the

quasi-static expression (9).
There is another interesting thing about expression (21). It is in
fact the solution of the differential equation

2 2
d s 4m inc
(:1-;"- - *-i-) 1=~ e seEz _ (25)

with the boundary conditions I(0,s8) = I(%,8) = 0. This equation can be

solved by use of the Green's function

=2 :E: sin(nwz/ﬂ)sin(nwz'/l)
n>0 8 +(nﬂ/£)

G(z,z")

which satisfies the differential equation

2 2\
(d—-z- - %)G = =§(z - 2z")

dz c

and the boundary conditions G(0,z') = G(2,z') = 0. It has to be emphasized,
however, that (25) together with the zero boundary conditions gives only
undamped oscillations which are exactly the same as those given by (20)
provided that the radiation damping is neglected.

Turning back to (20), taking its inverse Laplace transform, and dropping
the 0(9—2) term one obtains the induced current in the time domain, viz.,

« —
I(z,t)

t
= Ame z : -1—[ dt' eSn(t-t’) I sin(nmz'/2) > Einc( ',t')dz']sin(mrz/i).
z 2% [sn . 0 ot

(26)

L
I(z,t) = 241;:2' Z [—15[ sin{nnrz/L) g inc(z ,t)dz]sin(mrz/?.)

2
4rme § : 1 Jt s (t-t') J ' inc ' o '
+ — -~ dt' e D sin(nrz'/2) (z',t')dz'|sin(nnz/L) .
[ 2] o . ‘0 at'z
27)

17



Since Einc is due to a moving charge, it is clear that each time differentiation

of this :uantity brings in a multiplicative factor v/c. Thus, the continuous
process of integrating (27) by parts amounts to developing a power series in v/c.
Unfortunately, there is no particular advantage of dbing this because it is
difficult to evaluate all the integrals involved-in the coefficients of such

a series. Nevertheless, expression (27) is physically appealing. The first

sum can be shown, by means of (22), to reduce to the quasi-static solution (9)
when damping is neglected. The second sum, of course, represents the transient
oscillations.

Up to now the discussions have been for any general incident field. Here
and in the following, the incident field will be specified as that of a point
charge moving with a constant speed and parallel to the axis of the wire. Even
such a simple motion for the charge would require complicated mathematical
manipulations for the determination of the induced wire current, as will be

seen below. The electric field of a moving charge along the wire axis is

given by [10]

q y(vt-z) :
(28)
e [oiﬁrz (ve-273/2

Einc(z,t) = -

where y = (1 - 32)_%, 8 = v/c, and o is the transverse distance of the
charge from the wire axis (see Fig. 6). As before, t =0 1is defined to be
the instant when the charge is right above one end (z = 0) of the wire.
Since an infinite path is being considered, it is more convenient to talk

about Fourier than Laplace transforms. The Fourier tragsform of (28) gives-[.11] .

inc
Ez (z,w)

-4 r y(vt-2) Jut g
W ) o [o2r (vt 372

iwz/v o
= - _ig_ .._..__e 2 -3,2 .
21 yVvp, JOX(I +x7) sinfp_wx/(yv)]dx
imz/v p W
_dq e o
27e YVpo v KOEDOM/ (YV)]' w>0
n (29)
i(.l.lZ/V p W
_iﬂ- = —9—- Ko[_po(.l-‘/(YV)] » w < 0 .

" 2me e, YV

18
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Figure 6. A charge moving parallel to a wire with constant velocity.
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It should be noted that the modified Bessel function Ko has to be defined for

negative argument as is indicated in (29), so that the inverse Fourier transform
of Einc(z,m) gives back (28).
When one substitutes (28) in either (26) or (27), it is easy to see that

these two expressions are not particularly suitable for numerical computation.
inc

To this end let the coefficient Cn in (20) be first evaluated with Ez

given by (29). Thus,

2
c_= I Einc(z,m)sin(nnzlz)dz
n 0 2

= - 2L 9 [ w/ (W] an/s 1- (-)“ei‘”"/"], Re w > 0. (30)
2me (2,2 "o""o (mr/!.)z-(w/V)2 [

‘Here, the expression (29) for the incident field has been entended to complex
values of w. For Re w < 0, one simply replaces Kbﬂﬂfyyv) by Ko(-pom/vv)
in (30). Using (30) and setting s = -iw in (20) one obtains

1o
= 29 % [p w/ ()] L nu/% [1 - (-)“ei"’“"]sin(m/z)
9272 oo - zn: wn(m—mn (n1r8/!.)2—(m/c)2 .
7 Rew >0 (31)
and -
9t g (32)

1 =1
I}z,t) = 2 Icléz,w)e

where, as shown in Fig. 7, the contour C 1is above all SEM poles of I(z,w) and
the branch cuts are drawn according to the definition of Kb discussed in
connection with (30). By deforming C appropriately for different time

intervals one can obtain various forms suitable for numerical computation.

(a) t <0

For t < 0 one deforms C into C1 and C_ (Fig. 7 ). It is easily

20
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seen that the integral along C_ vanighes. Thus, (32) becomes, after some

manipulations,

1 1wt
I(z,t) = 7— I(z,w)e d
ﬁ ') =2 JC 2w ¢

27 © 2 1_(_)ne-x XE
= _.9.:,_;. E n sin(nnz/2) I 2x2 52 3 2 Jo(nx/-y)e dx, £ <0 (33)
0 X +r x-+inr .

QLy n>0

where, as in Section II, n = po/l, £ = vt/2. Using, first, partial fractioms
and then the fact that series like

[-+] oD
n sin nx (-)n n sin nx
e e, and
2 2 2 2
n= n +a n= n +a

can be summed in closed form [9] one obtains from (33)

[%inh{(l-z/l)Bx} + ¥ sinh(Bxz/8) _ sinh{(1-z/f)x}
0

= v nh
ﬁfz,t) Q8 sinh Bx sinh Bx sinh x
- h(xz/% '
- Siziﬁﬁzi )]~Jo(nx/Y)eEx dx, £<0. (34)

At the midpoint (z = 2/2) of the wire (34) gives

o -fgix, -|1-x
- _9v 1 qv e te '
I"(E/Z,t) = - f - - . + 208 Io cosh (8xT2) _Jo(nxly)dx —
(n/y) +(£~1/2)
(3%)
z - 2L F(E,n;8), £E<0 (t < 0).

T o208

Expanding (35) in a power series in B one gets

22



- _ Qv ey = - av o 2 | _ 1 _ 1
ﬁfllz.t) 208 F(&,n3B8) 208 //2 - #/2 . J/2 >
L /n7+(E-1/2) n n +(1-£)

v n’ _ _sn%e2e?
208 | [n2ee-1/0 82 snPeD 2

2 2
S5n +2(E-1) 2 qv 4
8ln’+(e-1) 3/ 20t

Here, one notices that the first term is exactly the quasi-static solution given
by (16). By examining the second term, i.e., the correction term, in (36) ‘

one can conclude that the quasi-static solution is good if

2 2 2

2 and n + (§ - 1)2-> B

n + £2 > B

(b) 0 <t < v

During this time interval the charge is moving right above the wire. To

evaluate the inverse Fourier transform integral (32) one deforms C into C1

(Fig. 7) for the exponential factor expliw(2/v - t)], and C into c,

for the exponential factor exp(-iwt). After some lengthy but straightforward

manipulations, one can reduce (32) to

_ av * [ sinh(Bxz/2) _ sinh(xz/z)] -(1-E)x
I&z,t) s JO [ sinh Bx sinh x Jo(nX/Y)e dx
' ' “ _ —

qv sinh{(1-z/2)gx} _ sinh{(1-z /2)x }] —Ex
¥ 2% Jo [ sinh Bx sinh x Jo(nx/y)e =" dx  (37)

- an.z:(Residues), 0<g<cl.

As evident from expression (31), the residues are associated with two different

kinds of poles: the poles w_ of the natural modes and the poles nmv/%

of the particle's field., Summing all these residues one has

23



-2mi 2:(Residues) = %%f K.o[nwn/(YB)]g-a“t sin(onct/2 - Bnt)ain(nnzlz)
n>0 '

- -4% Ko(nﬂﬂ/;Y)Bin(nﬂg) sin(nmz/2) (38)
n>»

where
(o]
@« =-Res =o° [0.577.--. + 1n(2om) - Ci(2nm)]

=<
Bn -Im S, = ot Si(2nm).

Evaluation of (37) at the midpoint (z = 2/2) of the wire gives

Illez’t) - %%c n=12,3.5. .,(‘) (n=1)/2 K Lnmn/(v8)] ™ sin(amet/s - Bat)
- %%g Ko(nnn/Y)[cos ar(§ - 1/2) - cos nw(§ + 1/2)] (39)
n> :

-Ex -(1-8)x -Ex, -(1-&)x
av e * te _e e
+ 204 J: [ cosh(Bx/2) cosh(x/2) ]Jo(nx/Y)dx, .0 <E<1.

The second sum will now be shown to cancel part of the integral in (39).

First, one has

J” e—Ex+e-(1~E)x

cosh(x/2) Jo(nx/Y)dx

0

) r Z (_)n{e-'(n+5+.1/2)x N e—(n-g+3/_2)x}‘]0(£9:c Jy)dx
0 . _

n=0

-22:eﬂ@mnﬂ+(n-a+unﬁ*-£mhf4<n+s+unﬁ*}
n=}

2

+

Jiniv) 2+ (e+112)

24



From Ref. [9] one has

:E: K (nﬂnly){cos[nn(g - 1/2)] - cos[nn(§ + 1/2)]}

n>0

1 _ 1

]
N

Jniv) 2+ e-1/2)% Aty 2(e+1/2)

+3 o s @-sr 20 - tam? s ar ey

n=1

Thus, (39) 1is simplified to

1(5/2 t) = ?%f.n2;;3,5-..(—)(n-1)/2 Kb[nnn/(YB)]e-a“t sin(nmwct/2 - Bnt)
- 5o F(E,n38), | 0<g<l (0<t<2/v) (40)

where F is given by (35).

(c) t > 4/v

During this time interval the particle has passed the wire and continues
to move away from the wire. To evaluate the inverse Fourier transform

integral (32) for t > /v one deforms C dinto C (Fig. 7 ) and obtains

2
I(z,t) = Eﬂﬂ% :E: n sin{nrz/2) f" 7 2 77 1;( ;ngx Jo(nx/y)e-ax dx
I Qy n>0 OB x4nm
- 271 )" (Residues), E> 1, (41)

One can easily observe that the first sum is equal to (33) if one interprets
& in (33) tobe 1 - & 1in (41) and that the residue series is due only to the

poles of the natural modes since t:ae residue at nnv/2 1s zero. Hence, at the
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midpoint (z = 2/2) of the wire (41) is reduced to.

I“(.Q./Z,t) = F(E,n B)

292

+_:3£_%:_;_ E (_)(n-l)/z Ko[n-n-n/(-ys)]sin{[n‘n'(.l'i'B)/(ZB)] - e /(28)}
n=1,3,5¢ - ‘

-8nE/8 cos[nﬂF/B - an(1+8)/(28) - (ZE-I)En/(2B)], E>1(t>2e/v)
(42)

where, again, F 1s given by (35), Sﬁ = zan/c, and e, = zﬁnlc.

It is worthwhile to summarize the results in (a), (b) and (c) for the
three different time intervals. At the midpoint (z = L/2) of the wire it is
found that the induced current is given by

I"(R.IZ,t:)

= - 57 F(E,n;B), E<O (t < 0) (35)

= zm. Fag F(Esm:8) + 'zgrzyi % n==12’2’5.“(-) (o-1)/2 K [nmn/ (v8)] e8n8/8 gyl (nm-e )E/8]
0 <g < 1. (0 <t <2fv) (40)

= 292 F(E,n,B) - - ' “ _ -

N _2% 186 Z (- (=1)/2 K [nn/ (vB)]sin{(nn(1+8)-c 1/(28)}
n<1,3,5+ = A '

-8,E/8 cos[nmE/B — nm(1+8)/(28) - (zg_l)en/(zs)], E>1 (£ > e/v)
(42)

where § = % /c, e =28 /c, E=vt/, n=p [t B=v/c and
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F(E,n;B) 2 I Il |-l J (nx/y)d (35)
,M3B) = - nx/y)dx
Joip2re-1/)? 0 cosh(Bx/n) e

2 1 1

/524(5-1/2)2 /nZ+g? Jf_+(a-

+ 0(8D). (36)

The correction term 0(82) in (36) is negligible except when the particle is
close to the end points of the wire.

In Table I the damping constant Gn and the phase shift e are given
for each mode in expressions (40) and (42). Figures 8a through 8e give the

Table I
n an : Qen
1 2.4209 1.4164
3 3.4993 1.5199
5 4.0088 1.5431
7 4.3456 1.5541
9 4.5977 1.5608
11 4.7995 1.5654

variation of K [nﬂn/(YB)] with B for each n and iﬁ. These figures
together with Table I show the relative importance of the resonant modes
excited by a moving charged particle.

In Figs. 9a through 9e the time history of the induced current at the
midpoint of the wire as given by (35), (40) and (42) is plotted with B and
n as parameters. Note that the time coordinate is expressed in terms of the
normalized variable £ (avt/%), and that the instant t = 0 means that the
‘charged particle just reaches a point right above one end of the wire. It is
seen that oscillations are being excited when the charge is moving above the
wire and continue to sustain themselves with small dampings long after the charge

has passed. Superimposed on these figures is the corresponding quasi-static
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result given by (16), so that validity criteria for the qﬁasi—static abproach

can be read off by direct observations. The general conclusion is that the

larger the quan;ity n becomes in comparison .to B8y, the better the quasi-
static solution is. From thé viewpoint of system vulnerability the important
conclusion is that resonances of a structure not only introduce rapid oscillations
in the induced currents that will last long after the transient source has
disappeared but also may significantly increase the peak values of the induced
currents. Before concluding it should be pointed out that the parameter n must
satisfy the inequality n > exp(-2/2), so that the charged particle is outside
the wire; for @ = 10, n > 0.027.
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IV. Space-Time Integral Formulation

In the preceding section the method of natural modes together with an
asymptotic expansion was used to solve the differential-integral equation that
governs the induced current bn the wire. By treating £ as a large expansion
parameter it was possible to write the induced current into two parts: one
part consists of damped sinusoids and the other part has the quasi-static
behavior. In this section, the analytical solution for the induced current
obtained in the last section will be checked against the numerical solution of
an exact formulation without an asymptotic expansion in large €. The reason to
do this is that the method presented in the last sectiom not only has many
attractive features but also can be extended to other more elaborate models
of a satellite; therefore, it 1s highly desirable to establish the domain of
its validity.

The starting point is the inverse Laplace transform of (17), i.e.,

2 2\ (2 N
(2___ _li 3 ;) I(z',t=|z-2"]/c) dz' = —e O ginc, (43)
c

2 - ot z
3t /70 4w/az+(z-z')2

3z
To solve this equation one can invoke the one-dimensional retarded Green's

function

G(z,t3z',t") = -‘23 Ut - t' - |z - z'|7¢) _ (44)

which, of course, satisfies the_differential equation

2 2

] 1 3

._.___..G=_6(z— Z')(S(t- t'). (45)
(322 c2 at;)

In (44), U is the unit-step function. Now, one can immediately write down

the solution to (43) as

L ' Y
_l_J 1(z ,t—[z—z I/C) dz' = fl(ct -z) + fz(ct + z)

4T %
° az+(z—z')2 inc '
' 1 Ly OE, '
+-EE; IOJ_Q'EET—— Ut - t' - |z - z'l/c)dt'dz'
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where Zo is the free-space wave impedance. Carrying out the t' dintegration

one finally gets

L v ' 7
1 J I(z ,t*lZ—Z |/C) dz' = fl(ct -z) + fz(ct + z)

4
0 faz+(z-z')2

i L ine
+ — J Ez (z',t - |z - z'|/c)dz' (46)
0

where f1 and f2 are arbitrary functions which will be determined by the end
conditions that I(%,t) = I(0,t) = 0. Equation (46) has been derived before
and numerically solved for some simple incident electric fields [12]. 1In the
Present case, Einc is due to a moving charge with an infinite patﬁ; that is
to say, there are no zero initial conditions which are, however, implicit in’
(46). This difficulty can be remedied by shifting the time origin sufficiently
into the past so that the initial conditions with respect to the new time origin
are almost zero. With this modification (46) was solved on an electronic
computer and the numerical results are presented in Figs. 10a through 12b for
some selective values of 8 and n together with the corresﬁonding results
obtained in the last section. As expected, the larger the value @ becomes
the more closely the asymptdtic solution agrees with the numerical solution of '
(46). 1t is observed that the two solutioné give almost the same wave shapes.
For the smallest  value in these figures, i.e., & = 10, the asymptotic
solution is smaller than the numerical solution of (46) by a factor less than
two. It has to be pointed out that for small values of n and/or B, an
inordinate amount of computer time would be required to<get a satisfactory - -
numerical solution. Hence, one may conclude that for Q = 10 the asymptotic
solution is adequate for the prediction of SGEMP induced currents. Before
concluding this section, it should be emphasized again that the method of
solution presented in Section III, which leads to the asymptotic solution, is
preferrable to a brute-force numerical method, since the former is not only

much simpler computationally but also provides solutions that can be physically

interpreted.
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V. Summary and Conclusion

The time history of the current on a wire induced by a moving charged
particle is obtained by three different approaches: (1) quasi-static
approach, (2) natural-mode approach, and (3) space-time-integral-equation
approach. By comparing the results deduced from the three approaches the
accuracy of the results and the ranges of validity can be established for each
method of solution.

It is found that
(a) for n< 0.1 and B = 0.1 (about 2.6 Kev for electrons) the quasi-static

solution is quite good and the transient solution oscillates about the
quasi-static solution (see Figs.9a-9¢);

(b) for n > 0.1 the peak value of the induced current obtained by the quasi-
static approach agrees very well with that calculated by the natural-mode
approach;

(¢) the larger the value of B 1is, the larger the oscillations will be in the
induced current waveform, especially after the particle has passed (or
"disappeared'") the wire; |

(d) the natural—modevapproach gives an accurate time variation of the induced
current; the peak current value calculated from this approach agrees more
closely with the "true" value as & is increased; for Q = 10 or so the
peak value is within a factor less than two (the € value of a typical
satellite is about 15 or s0);

(e) the space-time-integral-equation approach, although exact, is entirely
numerical and applieé dnly to thin wires. - = : =

it is concluded that the most promising method for calculating SGEMP
induced currents on resonant structures appears to be the natural-mode approach
in conjunction with the method of asymptotic expansion. This approach enables
one to get an explicit analytic solution which can be interpreted physically
with great ease. When other features of a communications satellite, such as the
solar panels and the impedance loading the center of the boom (Fig.l), are added
to the thin wire considered in this note, the natural-mode approach seems to be

the most appealing one because these added features are expected to enhance the

resonance effects.
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