Theoretical Notes
Note 200
October 1974

 TIME DEPENDENT INTERNAL EMP FOR
SPHERICAL AND CYLINDRICAL SYMMETRY

Captain Theodore C. Salvi .

Air Force Weapons Laboratory
K1rt1and AFB, New Mexico

ABSTRACT

Time varying charge densities and electric fields caused
by the symmetric inward emission of electrons are computed for
the interior of a hollow sphere and cy]indér. The Viasov
equation is dérived in circular and cylindrical coordinates.

A quasi-static assumption is made. ~Electric fields are com-
puted at the end of each time step. )

Several d1fferent methods of obta1n1ng the charge dens1ty
and field at each time step are discussed, all based on trac-

ing characteristic curves of the Vlasov equation. The simplest

of these methods is implemented. The distribution is stored
in a discretized phase space, and particles are redistributed
to phase -points at the end of each time step. A coarse grid 
is used and numerical techniques are designed so as to expend:
minimal computer resources. A Maxwellian input distribution
is assumed and several sample results are presented. '
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List of Symbols

a Radius of the spherical or cylindrical shell
Cq Normalizing constant
e ‘ Charge on electron
s\ Electric field
E Total eﬁergy
f _ Distribution functibn inside vessel
f Spatial disfribution function at a used as
a boundary condition
f; Tnput distribution function (inpuf-per unit
A time) ' :
I Intensity of emissioﬁ from surface (émp/mz)
J{xgz...,xn} Jacqbian reiating volume eiements
AY1s---5¥Yn ’
m Mass: on1y>electron mass used
T Equivalent temperature of the input distribution
v Total velocity
vj Genera;ized vglocity associgted with coordinate
J
v .Potential energy for electrons
. .Vector dot product; scalar muttiplication -
x Vectof cross prodﬁct multiplication
" Note: MKS units are used exclusively in this thesis.
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TIME DEPENDENT INTERWAL ELECTROMAGNETIC

. PULSE FOR SPHERICAL AND CYLINDRICAL SYMMETRY

I. Introduction

Since tﬁe,de#elopment of ballistic missiles and military satellites,
scientists at the Air Force Weapons Laborétory.(AFWL) have been studying
the patential effects of a nuclear burst above the earth’s atmosphere.

Qne effect is the Electromegnetic Pulse (EMP), a strong transient electro-
magnetic wave pro@gcéd by the interaction of gamma rays and x-rays from
the burst. with the top of the atmosphere {Ref 6). A second effect is
thefelectric;potential and space charge p;pduced by the interactioncof

the éamma fays and x-rays directly with a space vehicle itself. This .
Iatter effect is known a System Generated Electromagnetic Pplse (sGeMP) ,

or Internal Electromegnetic Pulse (IEMP).

Background

Work is currently in progress to develop a model which gives an
_esfimate.of'the megnitude of the IEMP effect, and an indication of how

it varies with different paremeters. Recent results include solutions

to- the problem of emission from a flat surface (Refqé),,ogtward emission =

fiom e sphere-(Ref 3), and inward emission from a sphere and cylinder
(Réf 9). A major limitation of these treatments is the Fssumption that
all electrons are emitted normal to the surface.

The most recent development is the inclusion of an angular

distribution in .electron emission. This was done by Dr. Donn G.



Shanklaend of the Air Force Institute of Technology. Shankland addressed
the problem of steady-state symmetric emission from a sphere (Ref 8).

This thesis is a direct offshoot of his work. -

Problem Statement

The problem to be done here is to find the charge density and
electric field caused by inward emission with an anguler velocity dis-
tribution. ﬁoth spherically and cylindrically aymmetric_geométries will
be done for both the steady-state and time-dependent cases. The theo-
retical basis for the.solution and possible methods of attack will be
discussed. Then the simplest method will be used to generate results

to the time-dependent problem.

Theoretical Basis

The electron density is defined by & distribution function in
phase space. The motion of electrons in the phase space is described
by the Vliasov equation, a form of the Boltzman transport equation with
no collisions and only electromagnetic forces presenf. The electro-
magneﬁic fields ere themselves caused by the electron distribution, and
the Vlasov equation must be solved simultaneously witb Maxwell's

Equati .
quations < B -

Assumptions

The complete Vlasov equation is a seven-dimensional, quasi-linear,
first-order partial differential equation which can in principle be

solved by tracing characteristic curves. However, storing a seven-



.dimensional array or integrating over a six-dimensional surface re-

quires enormous computer facilities which are not available for this

project. The following assumptions are made-both to keep therphysics

simple and to reduce the problem to no more than four dimensions.
. (e) The cylinder is infinitely long and both the cylinder and
sphere are perfectly evacuated. |
(v) Tﬁe distribution function, f, is independént of the two
ignorable coordinates; 6 and ¢ in the spherical case and 6 and z in
the cylindrical case. |
(¢) Electrons are produced at the surface of the vessel with a

known velocity spectrum. The velocities are not necessarily radisal

in direction but the velocity spectrum is independent of the ignorsable

coordinates, and symmetric with reépect to the surface normal.

(@) A1l electrons are nonrelativistic.

(e) There are no collisions inside the cavity,

(f) The only force acting on an electron is the electrostatic
force caused by the charge disfribution of the other electrons.

Assumptions (a) and (b) define the restricted problem thai is
being solveﬁa While no real-world situation will exactly fit this
model, solving this problem gives insight into tﬁe more cogplicated
situation. Assumption (c) states that tbe electron flux at the sur-
face is a known ﬁoundary condition of the problem. To be compatible
' withassumétion (b), this distribution must also be independent of
-6 and ¢ or z. This is not a totally realistic assumption since the
nbst important electron production mechanisms, Compton and photo-

electric emission, strongly favor forward emission (Ref 3139-49).




Most electrons wi;l be créated with a velocity moving away from the
photon source. But collisions in the material will cause much -
randomizat{on ﬁefbfe they are emitted. Assumption (d) ié reasonable
for x-rey produ?ed electrbns. By'assuming:the-electron-velocities
are much less'than the spéed of light, the time of propagation of the
electric field can also be ignored. Assumption (e) i§ Justified.
Assumption (f) is reasonabie for the problem as stated. The symmetry
assuﬁed in thé problem eliminhtes system produced magnetic fields,

and by assumption there are no ‘background eiectric or magnetic fields.

Organization

In Chapter 2, basic equations are derived in both spherical and
cylindrical coordinates. The assqmptions stated above are applied to

reduce the problem to its final form. In Chapter73 the characteristic

curves and various methods of applying them are discussed. The simplest

metﬁoq is used to generate numerical results. The numerical method
and results are examined in Chapter 4 and 5. Conclusions and recom-

mendations are presented in Chapter 6.




II. Basic Equations

As noted in the introduction, two equations must be solved simul-
teneously, one transport equation and one field equation. In this
Chaﬁter, these equations will be derived in both spherical and cylin-
dricel coordinstes. By choosing the proper coordinate system, the
Vlasov transport Equation is identical in form for both spherical and
cylindrical symmetry. The equations for the electric field are easily

derived, but they are different for the two cases.

Vlssov Equation

The Vlasov equation is a special case of the Boltzman transport

equation. The Boltzman equation is.usually written in vector form &s

. > : .
df = a—f- +- f—c v
=tV Vef + =V, f o (1)

The Vlaesov equation is & special case of the Boltzman eéuation where

there are no collisions, therefore %{.H 0, and the only force present
is the Lorentz force, F = q(E + VxB}. .

| The Vlasov équation in this form cen be directly transformed
from rectanguler copr@inatgs to any desired_coordinaté_system, bﬁt

the process is tedidus. A much simpler approach is to expand %I. in

terms of partial derivatives. If f = f(ql,...,qj,vl;....vj,t), then

gf _af {ﬁgsu Cof dyg
ac “act q, at + g v, at 7(2)

10



However, there still remains the difficult problem of relatlng the

Lorentz force to the E?J terms.

Poisson Bracket Notation. -:The most elegant, yet ultimately

the simplest method found for deriving the Vlasov equation in
general coordinate systems is by use of the Poisson bracket notation.
If the Hamiltonian, H, of the system is not time~dependent, the total

derivative of the distribution function can be written as (Ref L4:Ch 8)

af - _ of : B
4L - em + 20 S €

The distribution function, f, is defined in a seven-dlmen51onal space
with cannonlcal coordlnates q ) p', and t.. The Poisson bracket is

defined as

641 = 2( . 5 56 o

and the Hﬂmiltonian in this case equals thg total énergy a partiéle
would have at each point in phase space.

Eq (3) is équivalént to Eq (1) whenever the for®e can be derived
from a time independent potemtial. If the totel energy, |
Eq;s---145sPps..05P)»t), is substituted for H in Eq (3) the two are
equivalent in all stationary coordinaté systems. This method can be
used to derive the Boltzmen equation in any stationary coordinate

Asystem, with the restriction that the coordinate and velocity variables

11
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mast be in associated canonical pairs.

There is one further level of sophistication in this formulation
of transport theory. If time is considered to be one of the normal -
mechanical variables df the systém,‘the momentum associated with time
is the negative of the total energy (Ref 7:133). In this formulation
the phase&épace ié‘eight-dimensional aﬁd the Hamiltonian is identically
zero (Ref 72185). The basic eqﬁation now has the even more simple

form

df ' _ |
E?' = [pr]- (5)

This form is used in the derivation below. The new coordinate, -E,
is not truly independent. It is the sum:bf the kinetic and potential
energieé, both which can be totally specified by the other seven vari-

ables. For the moment, it will be useful to treat it as independent.

Derivation of Viasov Equation, In the cylindrical case the

normal cylindrical coordinates, r,0,.and z, are used.l,The

Lagrangian function in these coordinates is

L = Kinetic Energy - Potential Energy

= 3 (F24r262422) - V(r,0,2,t) « 6 ..

The Hamiltorien is derived by using Py = %%.and H=1Y plﬁti- L with

_ i .
q =tandp = -E,.
4 4

1 ' '
H = ih(pi* §§+P§) + Vﬁrpe?zst) -E=0 . (7)
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Using Eq (7) in Eq (5) together with the assumptiohs that the
potentia™, V, and the distribution, f, are independent of 6 and z,
the transport equation is

. ) _
’ ﬂ(rlp 2Py P st’E) Ef_P_r ﬁ _al
dt etz “arm ¥t 3p, EE% *or
af o '
HETIMETIET | (8)

Defining‘vI = p;/m and using the assumptions of the Vlasov equation

o=2f,0f L af (VB e af 3V |
0 at‘+ or Ve t vy r m ¥ oE 3t (9)
' . . _ 1 av .
where the electric field, § = % 3r » depends on r and t. The velocity

along the cylinder axis, v,, can be integrated out of distribution

functiqn
".f‘(l",vr,Ve,t,E) = I de f(rtvrsveivzttnE), (10)

Further references td the distribution function iﬁ cylindrical coordi-
ﬁates assume implicitly that this v, integfation hes been done.

In the spheridalvcase:the coordinates éhosen ;§e r,zﬁ, and ¢,
whére 6 is chosen in the direction of a particles movement and ¢
orthogonal to it. ThusAbe is glways zero and the Vlasov equatiop
is identieal in form to Eq (9). : |

The variebles in Eq (9) are not truly independent. One of the
arguments, either r, Vs Vgs t, or E, must be dropped from the dis-

- tribution function. The term of Eq (9) containing the partial

- 13



derivative of f with respect to that variable also vanishes. Ususally,
the'total.energy is dropped as a varieble. ‘That is the method used

in the timé—dependént numérical solution in Chapters 4 and 5. 1In

the ste&dy—statg solution discussed in Chaﬁter_B, however, it is

advantageous to keep E as an independent warisble and drop Vr.

Electric Field Equations
Because of the assumed symmetry of the problem, the -electric
tield-can-be-com?uted-easily.from Gauss's law. In the cylindrical

case

Elr,t) = N(r,t) - (11)

-e
Zneor
‘where N(r,t) ‘is ﬁhe total number of electrons inside a radius T per

unit length in the z direction. In the spherical case
. - - , '
' = : 12
E(r,t) E}EEFQ N(r’t), (12)

vhere N(r,t) is total number of electrons inside r. The potentisl,
V{r,t) is found by integrating efdr. Zero pofential is assumed either
at the origin or at Ehe,surface.

Again due to symmetry, no internally produced magnetic fields
roceur. In the cylihdfical‘case, z and 0 ﬁaénetic'{ﬁieraéiions are
-avoidéd'by requiring that the distribution function is even with re=-

g t tov_ and v_.
ppect to , & ve

14




IIT. Solution by Characteristic Curves

Neglecting the integr&lvnature of the electric field term, the
Vlasov equation is a quasi-linear, first order, partial differentiel
equation. The éblution of this type of equation can be accomplished
by tracing the characteristic curves of fhe equation. If the distrib-
ution funetion is a function of n independent variables, the solution
to the equation is a n-dimenaionel manifold in an n+i-dimensional
space; The characteristic curves are.one—parameter lines in this
manifold which are traced from the boundary conditions. The bduﬁdary.
conditions must be an n-1-dimensional manifold. . The individual char-
acteristic curves are simple to trace, but many curves must be traced
to map out the entire solution..

In this Chapter the application of characteristic curves to the
IEMP problem is diséussed. A shdrt algebraic proof and a three-space
geometrical view ofAcharacteristics is contained in Appendix A to
provide the necessary background for this Chapter. Several methods
of attacking the time-dependént problem are discussed. Shankland's
vork on the steady-state TEMP problem is viewed in relation to the

general time-dependent approach;-
A - ' .

Applicetion to the Symmetric IEMP Problem

Because of symmetry assumptions, the solution space to be consid-
ered is only five-dimensional. 'Thé'spacé consists of the dependent
variable, f, and four independent variables, r, Vi ve, t. The solu-

tion is represented by a four-dimensional hyper-surface in the five-

15 .



dimensional solution space. ‘Thié hyper-surface is found by tracing
one-parameter chcracreristic curves from some giveﬁ three-dimensional
boundary condition. The characteristic curves are octained by comparing
the coefficicntg of Eq (19) of Appendix & to the coefficients of the
Vlesov equation derived in the previous chapter, Eq (9). The result

is |

(13)

df:dt:dr;dvr:dve:dE 3 O:I:vr:!é-gg;o
rem

310
ot
Two conditions of Eq (13). df=0, and dve=0 reduce the computa-
tions nccessary to trace an individual chgracteristic curve., ‘Both
conditions are exfected for physical reasons: the total number of
particles and fhe angular mOmectum of & particle are not changed by

the transport process. Using the velocity coordinafé'ver s derived

!

from Eq (6), we have vs=r26=2/m, where i is the angular momentum.

Since the force is purely radial this remeins constant. But this

does not reduce the number of curves necessary; e sufficient number

~of different characteristic curves must be traced. to represent

traJectories of particiés throughout the angular romentum spectrum.
Special attention must be given to computing the electric field.

The electric ficld‘isvfound by integrating fhe disgribution funetion,

f. A quasi-Btatic case is assumed. Particles are moved for some small

period of time before a new elecfric £ield is found. This forces

time to be the basic independent variablc used to trace the character-

istic curves. To get the total enclosed charge, the distribution

function at thc desired time is found by tracing characteristic curves.

The total enclosed charge inside radius r 1is then

16




r @ ) )
N(r,t) = { dr~ | dv, [ dvg f(r v _,vg,t) (1k)
0 -0 —00

© Evalueting this integral for all radii and times is the-key
to the symmetric IEMP problem., The quantities of ultimate interest,
charge deﬁsity and potential, are easily calculated from N(r,t).

Several methods of evaluating the integfal of Eq (1k) are possible.

Forward Time Step and Store the Distribution

The most straight-forward method available to evaluate Eq (1k4)
is to store the cuirent distribution. This approach was used by the
author and specific-numerical techniques aﬁd resﬁlts are given in
Chapters b4 anﬁ 5. The method is basicall& e particle simulation.
All partiéles are placed in 'bins' in ryV,.,Vg space and traced along
their characteristic trajeétories. After all bins afe'traced for
-one time-step, the integrations of Eq (1) are done. A new electric
field is computed and the particles are traced for another time-step.

" The simplest method of storing the distribution function, f,

is to store the final ryVe, and vy of each bin of particles. The

re
generalized angular yelocity,vve, remains constantﬁfo it_can be stored
implicitly by the location in storage. The number of particles in

egch bin, f(r,vr,ve), also must be stored. In this type of memory
scheme the totel computer core neécessary for storage of.f.depends

on the number of bins still within the limiting radius of the vessel.

Another method of storing f is to diécretize the phase space it-

self. The phase space is stored as an three-dimensional array. The

o 17



coordinates r, Vs a.hd-ve are defined by position in the array. The
number of pgrticle§ at those coordinates, f(r,vr,ve) is placed in
that storage position. if é trajectory places a bin of particles

- between phase points, the particles in the‘bin ére split up between
adjacent phdsé points. Fig. 1 illustratés the different trajectories
traced using these two different methods of storing f. This author
has used a discretized phase space in the numerical work described

in Chapters 4 and 5.

+phase points +phase points
- - L] L] #_—~ L]
step 2 step 1 ,step 2 step 1
. - .A . ' . ‘-aq_--! .

a. Coordinates stored b. Discretized
' phase space

Fig. 1. Different methods of storing f.

Trace Back to an Input bistribution
An-altogether different method of evaluating the'integral of

. .
terms of the

Eq (1h) is to express the distribution function in
known input distribution at the surface. This is the method used
by Shankland for steady-state conditions (Ref 8).

In the steady-state case no characteristic curves need be traced.

The distribution function is related to the input distribution on the

18




surface through conservation of energy and angular momentum: .

F(r,v (r),vg) = fala,v (a),v,)

Vr(a) ='[-% ( v(r) - V(a)] + v'z_(r) + vg ( %2 - _;_2 ) (15)

vhere f3 is the input distribution Et the surface radius, a. The
potential difference must be consistent with the number of enclosed
electrons, N(r). |

An even ﬁore intuitive approach is possible by using total energy,
E, insfead of therradial velocity as a coordinate in the distfibution
function. In this case two coordinates are constants of the motion

end
f(r,E,vg) - 5;%%%—fa(a,5,ve) ' ' (16)
r .

The factor vr(a)/vr(r) is the Jacobian relating the size of volume
elements in phese space at the two points. The cooresponding Jacobian
in Eq (15) is conveniently equal to one.

The time~dependent case is more complicated. The time a particle

< -

left the surface, its creation time, must be known. Aléog the total
energy of eech particle is not constant. The potential‘energy of a
particle changes as E!i!;ﬁ). The distribution cannot be éimply

related to the input distribution. A characteristic curve must be

traced in time through r, v, Vg,t space to the surface,,r-=a.

19



Two methods of tracing characteristics back to the surface are
worth future investigation. The first is to store the pofential fune-
tion, V(r,t), and use a standard differential equation solver to
trace each curve. The major difficulty with this méthod is excessive
computer processing time. Many Such curves must be traced to do the
triple integration of Eq (lh)p This integratiﬁn must be done at each
time step in order to extend the potential function. If, through
some coordingte transformetion to restrict the range of the coordinates,
the integral can be done with a seven or nine point integration grid
in each coﬁrdinate, approximately 500 characteristic curves will have
to be traced for each time step. Even more curves may be necessary
to pbtain accuracy in the dependence-of N on r.

rThe'second method of traciﬂg fack is to store the endpoints
of selected characteristic curves. In addition to the normal
coordinates r, vr, and vg one additional coordinate, the creation
time, ﬁust be stored. The coordinates of the initial point of a
characteristic line are specified by location in storage. Since the
creation time and vg do not changé, only two words of memory are

necessary, storing r and Vpsy to completely determine both endpoints

of the line. During eech time step, the final poingg of all curves -

are moved in a manner identical fo the forward time step particle
similetion. Velues of r, Ve and vy are then chosen to use in the
integration, and the value of f(r,vr,ve) at each poiﬁt is found by
back interpolation. The intérpolaiion is basically three-demensional,
- as while vp remains constant, the creation fime must be found. Trac-

ing the particle traj}ectories forward for one time step rather than

20




ell the way beck to their creation should reduce -computer time. But
the disordered storage of the final r and v, may make the interpolation
process exceedingly difficult. This méthbq requires approximately

the same computer édre stérage as the methods which store f, and. it

may teke more time than the previously discussed method of tracing

each curve all the way back to the surface.

21



IV. Numerical Methods

The method chosen to evaluate the integral of total enclosed
‘charge was to steﬁ forward ih time and store the distribution func-
tion in a discretized phase space. It is physically intuitive and
is numerically simple to implement; It has the advantage that
physiéal considerationé can be used to make expedieﬁt approximaﬁions,
and ta detect blunders. These advantages made this method the cﬁoice
forva first gttempt in the time dependent IEMP program.

The main conce?n in setting up the numerical system was to keep
computer-core and running time to a minimum. The fiﬁél program used
approximatelyrhOK storage (1K=1000 octal) and 120 seconds of CDC
6600 central pfocessing time for a typical run. Extreme accuracy in
the results was sacrificed to keep the program from becoming exces-—
sively expensive to run. It was designed as a tool to provide coarse
results to the time dependent problem. It will provide a basis for
comparison withAmore sophisticated treatments, such as tracing back
to the input. If the more sophisticated technigues fail, this method
can be refined to produce finer detail in its results. This chapter
contains a discussion of the specific techniques used. The program
contaiped a main program and five subroutines, eachswith a specific

purpose. This chapter is organized in & parallel menner.

Main Program

The mein program set up the grid of the phase space. A linear
grid in 81l variables was chosen and several different sizes were

tried. The final choice was a tradeoff between e fine mesh to give

22
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smooth results, and a rough mesh which would use less cdmﬁuter Te-
sources and give faster turnaround time. The final grid chosen con-
tained 9471 points, with thé internall& scaled integer eoordinates
varying in the-range 0srsho, -lOsvrsIO, and Osve$10; Both core
storage and rumming time varied approximately iinearly with the number
of points in the grid.

As the program goeé'through each time step, a subroutine traces
the trajectory from-egch occupied grid point. Another subroutine
distributes particles that have lended between grid points to the
surrounding grid points. When this has been doné_for a;l grid points,
the v, and Qe integrations of Eq {14) are done as simple sums. The
r integration is done by trapez&dia; rule. New particles are added
into the grid for the start of the next.time step, and a subroutine

is called to compute the potemtial. The entire process is repeated

for each time step.

Tracing and Distributing Particles

Conservation of energy is the basis used to redistribute particles.
The energy of the pérticleb does not change dufing tﬁeir movement.
The trajectory traéiné sub?outine computes the rad::l veiocity of a )
particle at each discrete radius through conservation of energy. The -
fime e particle takes to cross from one radius poinf to the adjacent
one is computed froﬁ the avérage of the velocity at the end points.

This continﬁes until the period of one time step is used up. Separate

loops are provided for perticles stopping, turning around, reflecting

23



off the origin, or doing a combination of these three.

The perticle splitting subroutine also is based on conservation
of energy. Since angular momentum does not change, the splifting is
only two-dimensiopal; And since the energies.associated'with the r
and v. coordinetes are independent, the splitting can be done independ-
ently. Particles need 6nlyibe placed at the two adjacent coordinates
in each varisble to conserve energy. By gpreading the particles to
more points, other properties could be conserved; for example, mean
position,(Réf 2). But further splitting to conserve other prbperties
would consume computer time and would often require placing negative
particles at a point. For these reasons a simple two point split in

each coordinate was chosen.

Obtaining Input Distribution

Two. subroutines detergine the inpu? disfribution. The first is
used once, at the beginning of the main program. It defines a normel-
ized input distribution, and 2ll the scaling parameters. The program
oberates.invinternally defined units. A Maxwellian type of input

distribution was used exclusively

f;.(vr.uei =c | do J{dez} exp {-%m (V24 v§ + %) / .T} (a7) -

V9|¢

where Eh is & normalization factor, T is the equivalent temperature
in KeV, and J{!!A%Z} is the Jacobian which transforms the units of
v
e’
the distribution function from Vy and v, to vg and ¢. In the cylin~

drical case Vg = revy and ¢ = v,. In the spherical case
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Vg = r-/rz_l-cg_and ¢ =‘arctan.(vz/vy). Tﬁe ¢ integration yields
a constant in both cases and is absorbed in a new normalization factor.
All integrationé w;re done numerically as =a mafter of convenience.

Tt must be noted that by inf;oducing fhis distribution into the
system per unit time-does not produce a Maxweiliﬁn distribution per
unit volume in space. Tﬁe fa;t perticles tend to leave the volume
first, so the Spatial distribution is more heavily weighted with slow
partic;es; A Maxwllian space distribution could have been produced
by multiplyiﬁg the given input by the total velocity, v.

The velocity scale was hand-fit to this distribution. With the
limits of both internal velocities fixed af 10, the v velocity séale
was set sugh that a particle with radial velocity 1 has an associated
kinetic energy,gé-T. The r-scale %as set at a*v,.-scale. The length
of & time step is then computed as r-scale/vr—scale. Thus & particle
-with velocity 1 travels a distance 1 in 1 time step.

The input distribution above is applicable to é generating medium
where no collisions ocecur. Since the wail thickness is génerally much
greater than the free electron range, it is more reasonsble to
assume that collisions do occur. If a particle isq§energted at a -
given distance in the materiai, it is more likely to escape without
a collision when it passes through the minimﬁm amount of m&ferial.
Thus electrons are more likely to be emitted normal to the surface.
This effect produces a cosine dependence identical to the familiar A
one of optiecs. In the case of uncharge particles, the cosine depend-~

ence will prdduce a constant number density throughout the cavity,
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Just as with photon emission. This property provides a check of the
numericel procedures.

Other methods of inputting the partic;es will prodﬁce different
distributions. -If ﬁ Maxwellian space-distribution ié assumed outside
the shell, the distribution of particles crossing the surface per unit
time is the Maxwellian times V- Since ﬁhe cosine diﬁcussed iﬁ the
paragreph above‘is eqﬁal to vr/v, this method of input combines both
tﬁe cosine and multiplying by v (i.e., v, = (vr/v)'v }. This then is
the input distribution which for uncharge particles will produce &
uniform Mexwellian space-distribution in the vessel.

A second subroutine is necessary to determine the number of
particles emitted per time step. Tyo such subroutine were used.

The steady-state subroutine keeps tbe current emitted constant. The
program runs uhtil the distribution reaches equilibrium.r The pulsed

subroutine inputs a triangular time pulse, with a linear rise and fall.

Integratiné}for Potential

Separate subroutines are necessary to compute,fhe potential in
épherical and-cylindrical coordinates. A trapezodial rule numerical
integration is done on Eq (11) or Eq (12), with zeraiPotential assumed
at the origin. The units of this potential is made fo coﬁform to the .
program's units; A potential of 1 corresponds to an electron with
velocity 1. Recomputing the electric potential at each time step has

the effect of changing the total energy of the individual electrons.
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V. Numerieal Results

Many runs of ihe program were mede. lFoi eaﬁh run, -several
specific paresmeters were input. A vessel radius of 1 meter was chosen
in all cases. In time dependent runs, the triangular pulse'éhape was -
given a 25 nsec. rise timé and 25 nsec, fall time. Most runs wvere
made with the cosine input distribution. AEléctron ﬁeﬁperatures, T,
ranged from 1 KeV to 25 Kevi and electron émission,tl, ranged from 1
amp/m? to 3500 amp/m? .

The quantities selected -for plotting are charge density in
coulomb/mz, and potential in volts (eV f&r electrons). The charge
density is the mést widly varying quantipy available. Its value is
both aé a physiéally interesting result and as gréphipal display
of the coarse grid used. Sample results are given below for several
temperatures and emission intensities. All results are for cosine

input distribution, unless stated otherwise.

Test Cases

To test the program, the trajectories were computed without the
effect of the electric field. Steady-state runs wéee made with
electron temperature 1 KeV and emission 1 amp/m?. Fig. 2 is & run
for the spﬁere. The tﬁeoretical solution ié the straight deshed line
‘of charge density 0.024 1075 coulomb/m® in the upper chart. Fig. 3
isrthe aame.test for the cylinder. N ‘

In both cases, the charge density has a large spike near the

origin. The spikes are the result of assigning a large number of
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particles zero éngular momentuﬁ.' 211 these particles can go right
through the origin. In reﬁlity, these particies have an angular
‘momentum spread fr;m approximately -%.to +%.angular momentum units.
' The large chgrge density does not, howevér; greatly affect the po-
tential. The volume is so small ne;r the origin, the total enclosed

charge does not appreciably change the computed potential functions.

Both poteﬂtial curves stay close to the theoretical r2 dependency, and

the surface values are within 10% of the thédretical surface values
of 4.6 and 6.6 KeV.

The size of the velocity grid limits the possible energy of the
particles. The maximum energy of zero angular momentum particles in
the grid used here is 3.125 KeV. For steady-state and non-interacting
perticles, thé only quentity which éctually changes is the number of
electrons emiited per time step. Thus cases with constant I/V/T will
have the same results. When the electric force is included, cases with
equal I/VT-yill not all behave the same, since the electric potential

will be computed in different internally defined units.

Low Temperature and Emission Intensity

The lowest temperature and emission intensity used are the same
as in the test cases.aﬁove£¥T=l Kev, I=1 Aﬁp/mz. F{EZ L shows the
éteady—state sphere. The numerically induced épike near the origin
is again insignificant in computing thé gotential. The total potent-
ial ié 1.25 KeV, which éauses the charge density to be higher near

~ the edge.
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Fig. 5 shows the sphere with a pulsed input. The 1 emp/m? is
now the emission.at the peak of the triangular pulse. The totai charge
emitted is the emission integrated over the 25 nsec. rise and 25 nsec.
fall: 25~10_9°I. The total potential and total enclosed charge reaches
its maximm at 45 nsec. after the start of the.pulse. |

Similar results occurred for the cylinder. Fig. 6 shows both
the steady—staie run and the 45 nsec. maximum of the pulsed run.

A distufbihg pﬁenomenon occurred at 5ery'late times (300 to
1000 nsec.). A small number of ﬁarticles were apparently trapped in
tﬁe interiof. The last inward-moving electrons are slowed and stopped
by the potential caused by other electrons. But when the last group
of eleétrons get near the center, all othérs have 1eft. The last
group loses its ehergy to the electric field going in, but there is
very little field left to push the last groﬁp out. Fig. T shows the
.effect at 500 nsec. The 18 eV potentigl is two orders of magnitude
below the earlier values and produces minimal accelerafion. The
phenomenon is greatly enhanced by essigning many particles zero angular
momentum: the %3; centrifugal force would generally be much greater

than the electric force from 18 Volts. - i

High Temperature and Emission

The other extrme uéed was T=25 KeV and I=3500 émp/mz. The
temperature is as high an energy to which this nonrelativistic treat--
ment should be spplied. Even at a 25 KeV temperature, the highest
veloci£y particles accounted for are at 7§ KgV, well into the rela-

tivistic range. The quasi-static assumption also breaks down at
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high temperature. The basic time step at 25 KeV is 1.5 nsec., less
time than it takes light to cross the 1 meter sphere. The energy of
the maximum velocity partieles places & 1limit on the totel potential

that can be produced by the»frogram.

The results for = steadj-state sphere are shown in Fig. 8. Most -

of the electrons stay neer the surface. Only the most energetic can
penétratg»the strong potential. Pulsed emission gave fesults nearly
idential to the steady-state case. Tot;l potential remained between
65 and 75 KeV fhrough almost all of the pulse, allowing only the moét
energetic electrons to reach the center. Most electrons were-driven
out of the vessel with very little penetrgtion, and the change in the
emission intensity over the pulse mede little difference. In thia
case, the steady-state charge density with no electric field would

be 0.17 10” 3coulomb/m3.

Intermediate Temperature and Emission

Several dézen runs were made with intermediate temperature and
emissions. In general,'the results for the pulsealinput at the ptlse
peak were very close to the steady-state results. As ﬁhe temperature
and emission intensity are increased, these résults‘afcomg closer.
The total potential in the pulsed case occasionally became greater
then the steady-state case for brief periods of time. Fig. 9

illustrates a pulsed case where this occurs.

Isotropic Distribution

A few runs were made with isotropic input distributions. TFig. 10
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is a steady-staté isotropic inputrfor a sphere with the same input
parameters as the coéine.input in Fig. 4. As expected ﬁhe,charge
densities are very similar near the Sufface, but.in fhe isotropic
case ﬁhe charge:density near the center is reduced. In additibn, the

total potentiel is lower in the isotropic case.
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VI. Conclusions and Recommendations

The primery céﬁclusion of thié-thesis is that the time-dependent
symmetric IEMP problem can be done as a particle simulation without.
expending large-amounts of computer resources. The method worked
reasonably well with somé limitatibps. The bhasic limiting features
vere:

(a) - The coarseness inherent in discretizing the phase space.

The upper gréph in Figs. 2 throﬁgh 10 show lgrge point to point
fluctuations. The function plotted, charge density, was chosen partly
because it shows the fluctuation clearly.

(b) A sizable number of ﬁarticle were gi#en.exactly zero angular
momentum. These particles caused inflated chargé'densities near r=0.
The in%lated-charge density did not have a significant effect §n the
electric potentiai. While this problem could have been eliminated by
special handling of these particles near r=0, it would not have been
worth thé #dditional computer core and running time. Another unreal-
istic result caused by zero angular momentum particles was théir pro-
longed lingerihg in the cavity long after the input pulse had ended.

(e}  The cutt'ing off of the high energy tailq'g‘f the distribution
caused by the limiting.numﬁer of the velocity grid points. This cut-,
off limits the total potential drop from surface to center. New
electrons cannét get in to replace old electrons if their input energy
is below the potentiel gap they must cross, Iﬁ a true Maxwellian |
distribution, abproximately 1% of the particles would have velocities

greater than the maximum veloc¢ity accounted for here. If the input



emission intensity were high enoﬁgh, this 1% would cause high enough
fields to-significantly affect the other 99% of the particles. 1In
& real input eﬁergy spectra, howeve;, there will be a cutoff energy,
sbove which there are no particles. TIf the input distribution were
an empiricelly defined curve with & high eneréy cutdff, the numerical
cutoff would not be a significant limitationm.

The next step in the devéiopment of tﬁis problem should be an
attempt to do the time dependent problem by relating back ?o the input

distribution. Two methods of attempting this are discussed in Chapter

3. It is still not known what the computer time and core requirements -

of either methods will be,

If the problem cannot be efficiently solved by relating back to
the input distributioﬁ, further development of this particle éimulation
can be made. The results could be immediately improved by expanding .
the number of points in the discretized phase space. A nonlinear
grid or change of variable for one or more of the phase coordinates
might improve the representation of the distribution. In particuler,

e finer mesh could be used for particles with near zero angularrmomen-

 tum.

42

/
—t

e




Biblbgraphx

Courant R. and Hibert D. Methods of Matematical Physics, |
Vol II. New York: Interscience Publishers, 1962..

Denavit, J: Numericel Simulastion of Plasmas With Periodic
Smoothing in Phase Space: NRL Memorandum report 2256, Naval
Research Laboratory, Washington, D.C., 1971.

Gardner, Robert L. The Electromagnetic Fields Due to Radial
Currents Near a Perfectly Conducting Sphere. Unpublished Thesis.
Wright-Patterson Air Force Base, Ohio: Air Force Institute of
Technology, 1973. DDC #AD75366L. -

Goldstein, H. Clessical Mechanics. Reading, Mass: Addisoﬁ- -
Wesley Publishing Co., Ine., 1950.

' Hale, Clovis R. Electric Fields Produced by an Electronic

Current Emitted Perpendiculer to a Surface. EMP Theoretical note
115, Kirtiand Air Force Base, N.M.: Air Force Weapons
Laboratory, 1971. ,

Kinsley, Otho V. Introduction to the Electromagnetic Pulse.
Unpublished Thesis, Wright-Patterson Air Force Base, Ohio: Air
Force Institute of Technology, 1971. DDC #ADT35654.

Lanczos, C. The Variational Principles of Mechanics (Second
Edition). Toronto: University of Toronto Press, 1962.

Shaenkland, D. Spherically Symmetric IEMP Charge and Field
Distributions. Unpublished Paper, Wirght-Patterson Air Force
Base, Ohio: Air Force Institute of Technology, 1973.

Skeam, Marcus R. Electric Fields Generated by Symmetric Inward
Emission of Electrons from Cylindrical and Spherical Shells.
Unpublished Thesis. -Wright-Patterson Air Forae Base, Ohio: Air ..
Force Institute of Technology, 1972. .DDC #ADTS5301k.

43



APPENDIX A

Characteristic Curves

Two general views of characteristics are presented here, one
algebraib;&nd.ohe geometrical. These are. not intehded as. & rigourous
development of the topic. Many texts on partial differential equa-

tions. affer extensive discussions of the subject (Ref 1:62)..

- Algebraic View, If u is a function of h variables X],Xp...,X,,

the: general. quasi-linear first order partial differential equation
can be wriﬁten as.

. _n . 'A .
ab(x],xz...,xn,u)-==I'ai(x],xz...,xh,”) %i} (18)
where the‘coefficients.a‘ are known functions. We compare this to

the: total. differential. of .u

n ”y .
du = J dx; = . (19)
1 X
If we know the value of u and aIl,the-%%JSfat some. point, Eq (19)
: i

provides g.simple- means: of calculating the value of U in some neighbor-
hood:of,the=point‘where;tﬁesp&rtial derivatives remsgn essentially
constant. This is true regardless of the relative magnitude of the
's are small enough to be in the linear region.

1
~ Unfortunately, in*probleﬁs such as solving the Vlasov equation, the

de:B as long as- the dx

. partial derivatives are not known. But Eq (18) is known to be true.

By'combaring:Ed (18) with Eq (19) we see that if the dxj's are chosen
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equal to the ai'é, then'duvwill equal a, The dx;'s can be kept small
enough to be in the linear region by dividing Eq (18) by an appropiate
constent. Thus by knowﬁing the solution at one point, we can find

. it at another nearby point and continue the'process tb trace out a

line which is called a characteristic curve.

Geometrical View. To visualize the method geometrically and use
ordinary three-space vector analysis, let u be & function of just two
variable, x and y. The solution, u(x,y), is and ordinary two dimen-

"sional surface, and the basic differential equation can be written
a(x,y,u)-p + blx,y,u) :q = c(x,y,u) (20)

whe?e p= %%.and q= %su If a point, (Xg1YorUg) s is known to be on
the solution surface, then at that point a, b, and ¢ are fixed. Eq
~(20)'is now 8 linesr relation between p and q. At th;t point any
solution surface is tangent to be a plane whose orientation can be
specified by a vector (p,q,—l) which is normal to the plane. A vector
in the line of intersection of any two such planes can be found by
taking the cross product of their ferpgndicular vectors. Doing this
and using Eq (20) foveliﬁiﬁate the q's = ' T
(p sa,-1) x (p_,q -1) = (E%(Z)-P-Z) (ag,bo.,,) (21)

.

Only the magnitude of this vector dependa'on the particular planes
chosen. The orientation of the vector does not depend on the part-
icular p's and q's chosen but only on the coefficients of Eq (20) at

the‘point. Thus all possible tangent planes to solution surfaces of
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-Eq (20) will have one line in common. This line defines the character-
istic direction and is tangent to a characteristic curve.

To map out the entire solution surface for this case of two
independent variables, & one parameter curve must be specified as a
boundary condition or initial value. This curve must not be a
characteristic curve or allrpoints on it woﬁld generate theAaéme
characteristic curve, the originel one. The curve also must be res-
tricted so'as not to produce multiple values of u at eny point. These
'restrictions are not violated in the IEMP problem stated here, and a
‘mathematical discussion of them will be left to the literature.

This geometrical view can be expanded to higher dimensional
spaces. The basic Vlasov equation has seven independent variables.
Thus its solution is represented by a séven—dimensional ;urface in an
eight-dimensional solution space. To map this surfaée with character-

istic curves, the curves must originate from a six-dimensional boundary

condition.
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