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ABSTRACT
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slotted hollow sphere when an electron is moving in the vicinity is cal-

culated under the quasistatic approximation,
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SECTION I

INTRODUCTION AND GENERAL APPROCACH

The problem to be studied is shown schematically in Figure 1,
A point charge is moving in the vicinity of a slotted perfectly conducting
sphere. The two sections of the sphere are connected internally by a
known impedance Z. We wish to calculate the current through the impe-
dance, I, when the electron moves slowly enough for the quasistatic
approximation to be valid (This approximation is valid for most of the

electrons ejected externally in a system generated EMP situation).

- We will take an equivalent circuit approach, calculating the
short-circuit current when the impedance Z is equal to zero and the
internal admittance of the generator sending current through Z is zero.
This generator admittance is due to the capacitance between the two sec-
tions of the sphere. When the short-circuit current and capacitance have .
been calculated, we can use the equivalent circuit of.Figure 2 to say

that the current through the load Z is just

I c(w)

I(UJ): 1-imCZ (1)

where a time variation of the form e-lwt has been assumed, If Z is a
‘pure resistance, R, we can transform the above equation into the time

domain as

b -(t-t)
RC
1(c)=f e I (£)ae (2)

If Z is the impedance of a capacitance C equation (1) transforms into

L'
-the time domain in the form




) ?\‘- position of
electron

Figure l: Electron moving around impedance loaded
slotted sphere

R

LR

Figure 2: Equivalent circuit of situation in figure 1



C
L1 @) (3)

It) = ¢, +C sc

Other types of Z lead to more complex forms for 1 in the time domain.

Equations such as (1), (2) or (3).are guite useful in that the effect of the
electron generating the current is entirely within the factor Isc (This factor
also depends somewhat on the position of the slot, as will be seen in Sec-
tion III, ) while most of the effect of the slot is felt within the factor C. In
Section II we will calculate the capacitance C, while in Section III we will

‘compute the short circuit current Isc'




SECTION II

CAPACITANCE

1. GENERAL APPROACH

We can define two pertinent electrostatic problems in the confighra-

tion of Figure 1 (with the electron absent). The two problems are

(a) given that the potential on the top segment of the sphere (T) is
+ Vc> and the potential on the bottom segment of the sphere (B) is - Vo,
what are the total charges on the top and bottom segments of the sphere?

We will call these charges Q_; and QaB respectively.

(b) the same as (a) except that both potentials are +V . In this case
we will denote the charges by Q and Q

If cpa is the potential distribution for problem (a) and cpb is the po-
tential distribution for problem (b) the potential for the capacitance problem
(defined by the condition that the total net charge be zero) can clearly be

written in the form
a b
®=Yp too (4)

where y and 8§ are proportionality constants. If the charges in the capa-
citance problem are denoted by QT and QB, and the potential on T and
B by e and ® g, We must have

_ a b a b, _
QT+QB—Y(QT+QT)+6(QT+QT)—0 ‘ (5)
0 =V (y+8) » (6)
op =~V (y-8) . (7)



Thus

op - g = 2YV, (8)
and
a b a b
C:QT =’YQT+6QT :QT +9.QT ()
c‘)'I‘-'QDB ZYvVo ZV'o Y EVo

which, using equation (5), can be written in the form

2 a a b
c.2r  Srt% O (10}
AT D b 2V :
o QT+ QB o)

or, more symmetrically, as

Qa Qb . Qa Qb .
T ™B B™T 1
C=—3%—3 37 (11)
-Let us solve problem (a) first. That ié, find a potential function o (r, 8) . '

satisfying the boundary conditions of problem (a) and then find the as soc;iated

total charges on the top and bottom segments. In equations:

A - n _
03(r, 8) =3 -cr-x(i) P_(cos 6) r<a a2
' n=0 '
® n+1
=) Cn(%) Pn (cos 8) r=a (13)
n=0 \ '
a_‘;"‘-’—) =Y (2n +1) C_ P _(cos 6) (14)
n=0 :

where we must have

> C P(osB)=V 0<p<a (15)
n=0 nn
=-V B<os (16)

10
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Z(()ni—l)CnPn(COS 8)=20 a<9<8B (17)

We will use the approach to the solution of such problems given in Refer-

ence 1. . Thus setting
Cn = An + Cn | (18)

we must have

[=-3

IEO (A + B_)P (cos 8) = V_ 0<g <q (19)
> (n+1)A_P (cos8)=0 ag<@gs<sm (20)
n=0 : nn

> (2an +1)B P (cos 8)=0 0< 9.<B (21)
n=0 o n )

IEO' (A, +B )P (cos @) =-V_ B<g <m (22)

'W-e can calculate -Q;, and QbT in terms of these constants as follows, using

Equations (14), (20) and (21)

(9)
e

‘_Z (2n + l)AnPn'(cos e) _ (23)

which, using Mehlers integral (Reference 1, equation 2. 6.21), becomes

0 e : L . .
- Z (211 + 1) A 2 gin (Il +3)u (24)
6 m
n=0 5 Vcos f -cosu

[1] Ian N. Sneddon, Mixed Boundary Value Problems in Potential Theory,
North-Holland, 1966, section (6. 5. 2)
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1
_ /2 du d < 1 e
i / \!cos e nz:o A cos(m+z)u .(f---)
8
or, defining
jl(u) = > An cos(n+3)u (26)

n=0 .

we can write

29 1 (8) 242 ; du "
= - = f _]l(u) (27)

€ A qCOS 8 -cosu

and
-
a 2 .
Qp = 2ma f o (8) sin 8d6 (28)
4 .
i, e.
Q. a " it ()
b SEWE f sin 9do f du (29)
5 d 4cos 6 - cos u

but equation (27) has an inverse which can be found, for example, in Ref-

erence 2 and can be written in the form

, _a d sin u. o;r(u) du
he)=57>7% 3% (30)

5 Vcos 6 ~cosu

Thus from equation (20) it is clear that ji (u) is zero for u greater than
a and so the upper limit on the u integration of equation (29) can be writ-
ten as o, We can now interchange the order of integration on equation

(29) and perform the new inner integral to obtain

f2] R.W. Latham and K. S.H. Lee, "Capacitance and equivalent area of a
spherical dipole sensor,' AFWL Sensor and Simulation Note 113, July 1970,
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a+

Qa.
%:-16 f iy (a) sin% du (31)
0

which, after integrating by parts, and invoking the fact that j1 (u) is zero
for u> a, can be written as

Q.
Q
T . u
— =8 f jj(w) cos > du (32)
- 0 . :

In a manner similar to the above, and by defining

-]
jz(u) = zo B_ sin (n +3)u

(33)
n=
we can say that
)
B - f = i () (34)
0 \[cos u - cos 8 _
0
sin u ¢_(u) du
in(8) = —2— .c% f B (35)
2/2 ¢ o Vcos u- cos 8
and
™ .
Qa]_;, . .u '
—= =8 f_]z(u) sin > du (36)
B

To use the formulation of Reference 1 to determine j1 (x) and jz(x) {(which
are still unknown) we must first form the functions

X

(x)—l 4 f Vo sin u du
81\ =72 ax

0 JCOSU-COBX

I

Vv, cos x/2 (37)

13



and

" .
V sinu
(x) = 14 o du
g2 J2 dx

VCos X- COs u
X

= - V_ sin x/2 (38)

Using these functions we can now call on the work in Referencé 1 to write
down a pair of coupled integral equations for j1 (x) and jz(x) in the form
”

C | 1 2 iny/2 .
j () = V_ cos % £ f co§ x/2 sin y/ i, (y) dy
COs x - cos y’

0O<sx=<a (39)
a

. N . 1 2 sin x/2 cos y/2 .
Jpx) ==V, SmX/2+F f COS X - COS Yy jply) dy

0
B<xs<sm (40)
These become more symmetric if we define
;&) jp(m - x)
o o
for in that case
o
_ 2 cos x/2 cos y/2 .
fz(x) = - cos x/2 - = f o8 % T cony fl({) dy (42)
0
™8
_ 2 cos x/2 cos y/2 :
fl (x) = cos x/2 -5 f cos % T cos y fz(y) dy (43)
0

We can simplify these equa.tirons a little by making the further substitutions:

z = tan x/2 (44)
z' =tan y/2 - (45)
coa(x/Z)fl (x) = Fl {x) (46)
COS(y/Z)fz {y) = F,{x) (47)

14




which reduce our coupled pair to

tan(ﬂT-B)
F,.(z') d=z!

1 2 2
F. (z2) s——s - = — (48)
1 1 +zz ﬁ/ 1 -z"2'
5 ,
tan a/2
1 2 Fl(z')dz' .
FZ—(Z):-I 2-?[ ——2-—'2— (49)
+ z l-2z"2
0

while it follows easily from equation (32), (36) and (44) to (47) that

a tan a /2
Qd F, (2)
== - =8 ——-—-7-1 — dz (50)

2ae |V (51)

If B is close to T while o is finite we should have Q;,/VO equal to the
capacitance of a spherical bowl, i.e. 4€a.(31n a + a), but this follows at
once from equation (50} if F (z)is (1 + =z ) . Thus we have a check on
our equations, So far we have Q and QB’ but clearly Q and Q; can
be obtained simply be reversing the sign of the free term of equation (49).
- From this fact and our previous expressions for C we can write the ge-

neral solution to the ca[pacitance problem in the form

a b a b.
c _9r 9~ 9897 ' (52)
4¢a b + b

where

15



tan o /2 tan(&@-)
Fi(z) . 2 Fo(z) dz

1+2z 0 l +=z
a a, . .
F, and F2 being determined by
tan(ﬂ-zﬁ) a
t I
1V ETT R ) )
1 +2 1-2z72
B 0
R 1 , tan o /2 FT(z') dz'
Fple)=-—— -3 T 55)
1 +2z . 1-272
0
and where
wnaz an(%9)
b F1 (z) dz b Fz(z)dz
0 l +2z 0. l+2z

F.i) and F]2J being determined by

il

n-8
tan(—T) Fb(z”) do!
Flla(z) __1 2 ]‘ 2

- = (57)
l +2=z

1 -2z"3!
0

tan a /2

1 2 Fl(z') dz'
2 Tm

Fg(z) =
1 +2

(58)
l1-2z"2!

0

If we denote the angle of the center of the slot by 6 s and the slot width by

2A we can write the parameters of the above equations in the form

sin @ - sin A
tana /2 = S

cos A + cos GS - (59)

16




-8 sin e.s - sin A

tan 2 = Cos b+ cos GS (60)
So we can write
c _ o
Tea - 04 0) (61)

. where (0 o' A) can be determined numerically by using equations (52) to

(58).

We note the special, but important, case of 8 6= /2 which we will use to
study the effect of gap width on C. In that case it is clear from equations
(52) to (58) that an = - q% and that qg. = q%. Thus equation (52) and de-

finition (61) give

1-sin A
cos A )
£m/2, ) =2[ Elz)ds 62)
l +2z
0
where
l-sin A
] 1 .
F(z) = 1 +% cos A Flz )dz2 63)
: 1+¢z2 1-z"2'
0

In other words, for 9'5 =m/2 we.,do not have to solve problem (b) and
problem (a) simplifies to a single integral equation. We use this special
case to study the effect of slot width. The numerical values are given in
Table 1 and Figure 3 for values of A up to one-tenth radian. In the next
section we will derive an approximate formula for the capacitance when

A is small and 8 S is arbitrary. This expression agrees with the present

numerical data, when 8 is /2, to within a quarter of a percent if A is

_ less than a tenth. Thus the approximation of the next subsection can be

expected to be accurate enough for all practical purposes.

17
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2. NARROW SLOTS

Any slots that can realistically be expected in the physical situation

we are trying to model will be

quite narrow. For narrow slots we can

make a different approach to the capacitance calculation than the general

one given in the previous subsection because for narrow slots we can make

a pretty good guess of the field distribution in the slot. Let us begin by

writing the surface charge density, in accordance with equation (14), in

fhe form

ao

e

Q) . 5 (20 +1) C_P_(cos 6)
n=1

(64)

where the n=0 term has been omitted since, for the capacitance problem,

we wish the total charge on the sphere to be zero.

segment of the sphere can now be written in the form

Qp =

pim

n=1
or using the little calculation

Qa
an(cos ) sin §d6 =
0

o4
. zﬁa?‘f 2. (2n +1) C P (cos 8) sin 8.d8
0

Pn(x) dx
cos a

1

The charge on the upper

(65)

in_l_lf [Py’ 4160~ P bl

cCos Q@

1
“Zn+1 [Pn—l(c05 a)-Pn+].(c05 a)l

- sinza
“am+1)

Pn'(coa a)

sinza

1
—m Pn {cos o)

20

66)




equation (65) can be reduced to

Q o
T _n .2 Z2n + 1 1
yrratay) 2 sin"q - nmED) cnPn {cos a.) (67)

But since the ¢ corresponding to equation (64) can be written at the sur--

face of the sphere as
(-}
= ngl C_ P (cos 8), (68)

we can use the orthogonality theorem for Legendre polynomials to say that

2C
E—%:] Co(e)Pn (cos 6) sin 0 d#8 69)
0

or, integrating by parts, using equation (66) and noting that ® changes

only within the gap

B

2G .2
E 1
2 = a/% P (cos 6) de (70)
/ | _
where
() = - 2240 (71)

is the electric field within the gap.

Now substituting equation (70) into equation (67) we see that if E is

normalized such that

<

/ E(8)de = L. (72)

a

the capacitance can be written as

21



-G

4e 3

Ak

B
fE(e)de
a

@ 2
2n +1 Y | 1 ) 1
{né:l (n(n +_l-}-! sin ¢ Pn (cos a)sin 8 Pn {cos 6)} (73)

Making use of the addition theorem for Legendre polynomials (Reference {31,

p. 239) we can write

1:-"1 (cos o) P1 (cos B) p '
n n - L P (co ) co d (74)
ol + 1) = Zr n'\c°s Y/ cos @ do
iy :
where
COS Y = cos o cos 6 + sin a sin § cos o (75)

Thus equation (73) can be rewritten as

. "
f f E(0) sin §sin acos o doy da
-7 .a

@ 2
{ 3 22 b (cos v)} (76)

n=1

<

4eca

| =~

The sum in this equation can be exhibited in closed form using equations

on page 238 of Reference [3] as follows:

«©

) 2
z féﬁ—:;; Pn(cos v) = z (4 +m)l:’n(cos v )

n=1 n=1

= 4 +1 -2 4n (1 +‘F-_—°2°—S—Y-) (77)
VZ(I-cos Y)

[3] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems
for the Special Functions of Mathermatjcal Physics, Springer-Verlag, New
York, 1966,

22



The constant factor makes no difference because it gives zero when the @

integration of equation (76) is performed, so we can say that

e =4 - L (78)
where
1 * B
11 .-:Ef f E{(6) sin § sina cos ¢ do db (79)
Jr \’2(1 - cOos Y)
T B '
Izzéff E(B)sinesinacosq)!,n(1+ u:Z‘:‘—S—Y)dql)“-'le (80)
-

In integral I, we can, for narrow slots, replace 8§ by a except in E(0)

and, recalling the normalization for E(8§), write it in the form

T_P
L in? in q sin 2
Iz =7 /sm a cos o 4n (1 +s1na.s1n2)dco
ot ] -
n/2 ,
- sinza/  cos2y 4n (1 + sin a sin §) di (81)
0
Integrating by parts we have
n/2n/2
I . . - .
2 ~_ sin2y . . sin 2 sina cos {§
—7— = =3 in(l+singsin ¥) | - 7 " Ttsingsing oV
sin o 0o 0 ;

m/2 3
-sinaf sm'\Lr-tsm\I,rdllI

1

l+sina sin {
0

n/2
sinzﬂ; sin coszc. 1
= s1nc.f e = + 3 (1- T oo 11’) div (82)

sin a sin"q
0

23



Thus ' /2

" 1 m 2 2 i
.2 4 sina 132 cot g -cot ﬂf 14 sing sin & (83)
sin o o

The integral in this equation can be performed using no. 307 of Reference

[4], the final result being

-t
1
|3

sinza - sin Q -I-Tzﬁ- cosza - cos o (/2 - a) (84)

We now return to the evaluation of ]1, defined by cquation (79). The o in-
tegral can be performed in termns of elliptic integrals, but we prefer to
directly go to the case of small 2 in the following manner. We assume
there is an € such that A << ¢ << # and perform the @ integral for

lo|> ¢ by setting 6 = o and obtain

I’ _ VBE(B)sinza cos w dp
l_fZ sin ¢ sin &/ 2
o
= sin c;_{zn cot {(¢/4) - 2 cos (¢ /2)} (85)

We can perform the porlion of the 11 integral for |o|< e by noting that
\)2(1 - cos v ) is the distance between the point 0, and the point o, 0. We

assume the sphere to be flat over the sinall domain of the integrand and

thus reduce the small @ portion of 11 to

e 2A ,
11” _ 5111 sin a f'[ i) (a +y) dy dx (86)
-g 0 x -I-

I we set

E( +y) = —= | : | (87)
Ty y(ELs-y)

which has the correct normalization and has the well-known form for the

E field in narrow slots we obtain easily

[4] B.O. Peirce, A Short Table of Iutegrals, Ginn & Co., Boston, 1956,
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Il = gina £n (4€/A) (88)

Combining this value with I'1 from equation (85) gives us I1 in the form

.Il = sin a{ﬂn(mﬁz)- 2 cos E} (89)

Since € is small this integral becomes independent of ¢ (to second order)

as the following limit

I, =sing (4n 16/ - 2) (90)

Combining this value with I's from equation (84) we obtain from equation
(78)

C

4ea sin o =f(@) - 4n 8 (91)

where

fla) = (4n 16-1)-%( (92)

i
2 (__ )
1 +cosa +2 @ jcos a
_ sina sin a

The effect of the slot width is entirely contained in the second factor
of equation (91) while the effect of slot position is entirely in the first fac-
tor (except for the fact that we are now normalizing C to 4€a sin a rather

than just 4c¢a). The function f(a) is rather slowly varying. Itis mono-

tonic and

£(0) = tn 16-2 = . 772 (93)
while

£(7/2) = gn 16 -1~ (1/4) = . 9872 (94)

"If @ is W2 equation (91) agrees with the exact results of the previous
subsection within 4% for A less than 1/10. The accuracy for other val-
ues of a should be comparable. A table of values of f{n) is given as

Table 2 and it is graphed in Figure 4.
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o (degrees)

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44

f(a ) for position effect of slot capacitance

f{a)

. 77259
. 77299
. 77415
. 77602
. 77856
. 78172
. 78545
. 78971
. 719444
. 79968
.80519
.81111
. 81734
. 82384
. 83057
. 83749
. 84457
.85177

. 85905

. 86637
.87371

. 88103

. 88830

Table 2
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o (degrees

46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
.18
80
82
84
86
88
90

fla)

. 89549
. 90257
. 90951
. 91629
. 92288
. 92925
. 93539
. 94126
. 94686
. 95215
. 95713
. 96177
. 96606
. 96999

. 97354
. 97670
. 97945
. 98180
, 98373
. 98524
. 98632
. 98697
. 98719
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SECTION III
SHORT CIRCUIT CURRENT
1. GENERAL APPROACH

In this subsection we will indicate a general approach to the calcula-
tion of the short-circuit current induced across the circumferential gap in
the sphere. Since any realistic gaps can be expected to be quite narrow,
and since we have seen in the previous section that narrow gap approxima-
tions can be extremely accurate, the present subsection can be considered
to be included mainly for purposes of completeness. Any required results

can be obtained from the work of the following subsection on narrow gaps.

The 'short circuit current across the gap is equal to the time deriva-
tive of the charge on one of the segments of the sphere (the negative time
derivative if we consider the charge on the top segment and the current
convention of Figure 1) when both segments are at the same potential. The

charge is induced by a point charge traveling in the vicinity of the sphere.

If we set the total charge on the sphere equal to zero (which is ade-
quate as far as final current answers are concerned, the time derivative
of any constant net charge on the spherical segments will be zero), the
potential of the charges on the sphere must, outside the sphere, be of the

form
© Pn(cos 8)
@ (rl e) = Z Cn T-l—

n=1 b

+ X %ﬁ‘— (cos 8) cos m (@ - o) (95)

me=

where symmetry about o = . is assumed (cp0 being the ¢ coordinate of

the point charge).
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The potential & plus the position varying part of the incident potential
{i. e. the potential of the point charge) must bea constant on the metallic
portion of the spherical surface. Expanding the incident potential in Legendre

functions we can therefore say that, on the metallic portions of the spherical

surface,

(-]

$(a,0,0)= ZF‘T'-:(L?* 2 {(a/ro)n P_({cos 8) P_(cos 8,)
o o n=1

+ 2m2=:1 (a./:r:o)n P:ln(cos e)an(cc:s eo)cos(cp-cpo)} (96)

while & must be continuous and have a continuous radial derivative through -

the gap.

Since we are only interested in the total charge on (say) the top seg-
ment, we can neglect the ¢ dependent terms in equation (96) since they
give, on integration, zero charge contributions. Thus we are led directly
back to a variation of the problem treated in Section II-1. In fact, we can

say immediately from equations (32), (37), (38), (39) and (40) that

o) a
;.g—zsf jl(u) cos-‘zidu (97)
0
- where
4]
. 1 2 i .
Jl(x) = gl(x) -’T'I‘f c(;ossxx-{zcossu;Y/Z JZ(Y) dy (98)
B .
. o
. ) 1 2 si 2 co: 2 .
st = gy 5 f B oS MIE 5 () ay 99)
0
where

n
P, (cos 8 ) Py(cosu)alr,)” 0

X
_ .1 d 9 =
gl‘x"'ﬁdxf4-rrer %
0

o o n=l Vcoax-coau



" © Pn(cos 90) Pn(cos u)(a/l'o)n

_ 1 d 9
gz(X)— *72- dxf'-i'ﬁo_r— 2. du (101)
x

o n=1 COs X - COs u

The integrals defining gl(x) and gz(x) can be performed to give

g, (x) = EEST 2 (a/ro)n P_(cos 6 ) cos [@+5)x] (102)
. "o on=l
g, (x) = -Z—ﬁ—‘eLoTo n§1 @/ )" P_(cos 8 ) sin [(m+5)x] (103)

We can therefore use the transformation leading to equations (42) and (43)

to say that

Q @ :

T _ 2 n+l ,

< - -ﬁ-ngl @/r,) P_(cos 8 ) x/ (104)

where .
Q
_ (n) u
x = ffl (u) cos = du (105)
0

and fz(ln)(u) is determined by the couplea integral equations

-8
n),__ 2 cos x/2 cos y/2 _.(n)
f (x) = cos [(n +3)x] - f <05 X T o5 ¥ f (y) dy (106)
0
a
fén)(x) = (-)" cos [(n +3)x] %f °°20"5/i j"jo’s’/f ‘n)( ) dy (107)
0

or making the substitutions (44) through (47)

tan o /2
(n)( )

*n :f ——2- dz (108)
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where
pl®) (y) - o8 [@nr 1)tan™' 4]
1 +z2
F(Zn)(z) - ()" cos [(2n +1) tan
2
1 +2

Thus the x depend only on ¢ and # (or es

-8
tan( ) (n)(z )
Ef 1 é
"ﬂ. 1———2——2' dz (1 9)
0 -z z
"lz] ) tan a/2 Fin)(z')
-F ——-2-'72 dZ| (110)
0 l1-z 2z

and A) and need be cal-

culated only once for a given slotted sphere.

The short circuit current, by differentiating equation (104), can be

written in the form

cc =quFr(ro.eo) +quFe(ro,eo) (111)
where
\ ___2 - n+l -
F (r»0,)= A n§1 (m+1)@/r )" P, (cos 8 )%, (112)
Fe(ro’ 90) = - 'Z (a / P' (cos 6 ) sin 8 x . (113)
o n=1

If an electron is ejected along a radius and travels with uniform velocity

V to infinity we have

) P (cos 8 )x

o] Il

(t

n+1)

n=1 L+ vt/a)

U(t) (114)

n+2

and thus, from equations (2) the current through a resistive load R when

the gap capacitance is C would be

2eV

I(t) =
n=1

Z( +1)P_(cos 6 )x_ G_(t)

(115)
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where

b t') |
(t) —fz ( (1 +Vvt'/a) (n+2) at! (116) .

2. NARROW SLOTS

For narrow slots we can proceed somewhat differently from the work
of the previous subsection just as in the previous section the narrow slot

approximation to capacitance was obtained by looking at the problem anew.

If the slot is extremely narrow we may just as well close it altogether
and calculate the total current crossing an azimuthal line on a closed sphere

by a charge moving in the vicinity.

The current across an azimuthal slot can be obtained by computing
the time derivative of the charge on one segment of the sphere (only the
electrostatic problem is involved since we are interested in total currents .

across lines, not current densities).

By solving Laplace's equation one can show easily that the charge
density on a closed sphere with zero net charge (which is an adequate as-
sumption from the discussion in the previous subsection) when a point

charge q is at position (ro, Go.cpo) is given by

«© n
0(9,¢)‘=-j4';1? 2. (;a__) (2n +1)
: o) [o]

n=1

_.{Pn(cos 0) Pn(c03 eo_) +2 P;n(cos 8) P;n(cos eo) cos m{ep -9, )} (117)

m=l

and thus the total charge on the top segment (a < § < a) is given by

= )=: (2n+1)(a/r0)n P (cos Bo)an(cos 8)sin 8 do (118)
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or, using equation (66)

o n+l
__g 2n+l)}fa . 2 .
QT T2 nzl nn+l)\r sin @ pn(“;03 eo)Pn (cos a)

(119)

Thus, taking derivatives, we can again write the short-circuit current in

the form
Isc = -quFr(ro’ 90) + qveFe (ro, eo) (120)
where now
(121)

1 2 1 a n+l 2
- — —— — * ¥
Fr(ro, eo) = T n§1 (1+35= (r ) sin a Pn(cos a) Pn(cos 00)

+1
1 (2n+1) . . \ . 2 :
]5‘e (ro, 8 o) = r—o 21 oo eyl ( ) P;l(cos 90) sin eo Pn(c03 c.)_ sin“a  (122)

and we can identify the X of the previous subsection, for narrow slots,

to be
(gntl) sinzcr. Pl'l(cos a) (123)

_n
X "2 nm+1)

This explicit form for ]‘{n can be therefore used in any of the current cal-
culations of the previous subsection, provided the slot is narrow enough

As a simple explicit example, suppose the electron is ejected radi-

ally along the Gn axis. Then from equation (119) we have

- L n+1
- +9 2 - -
Q= +2 na(r ) [P, (cos a) - B, _(cos a)] (124)
oL
:% 1 - & -(1+a— cosa) (125)
) J 2 a 2 Yo |
1-%2 cosa +—
T T
(o] o]
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orif a =nw/2

2
1 - (a/ro) :

VI + (a/ro)2

giving a short-circuit current, in this case, of

,tivr (a/ro)z _ 1 - (a./ro)2
L S

c  2r
° - © d 1+ (a/ro)2 1+ (a/ro)

or if v, is constant (= V)

3 2
_aqv __f @) 3 +f

2a g
Vi e
where
1
f(t) = —
14 123
Thus
v
1 (0) =31~
sc \’-z-a
and

L.t Py (3 +f2(t))
T 10) = )
sc 20 + e\ HE )

or, measuring t in units of a/V

I.(7) 1 1 .3 +1)8 41

Isc(o)_\g[(l+,r)2+1] 1 +1)° Q+1)2+1
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(127)a.

(127)b

(128) .

(129)

(130)

(131)




which is plotted in Figure 5, since this is a typical short-circuit current
forcing function. The effect of such a short-circuit current on the current
through an impedance load can be easily determined from equations such

as (2) and (3} of Section I.
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