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Abstract .

From a rigorous integral-equation formulation a simplified integro-
differential equation is derived for the induced current on the boom of a
FLTSATCOM satellite with the solar panels and the central cylinder replaced
by some appropriate localized generators and lumped impedances driving and
loading the boom. The induced currents result partly rrom (1) the motion
of the photoelectrons near the satellite and partly from (2) the redistri-
bution of the positive charges left behind by the ejected electrons. The
simplified equation for the case of one moving electron is solved by the
method of asymptotic expansion; explicit quasi-static asgwell as dynamic -
results are found both in time and frequemcy domain. It is found that the
lowest resonance mode together with the quasi-static solution is sufficiently
accurate for the photoelectron-induced currents on the FLTSATCOM satellite.
The quasi-static solution for one electron is also utilized to obtain the
low-fluence result for a given incident photon pulse, a given yield function
(electrons per photon), and a given angular and energy distribution of the
ejected electrons. Throughout the repork, the results computed from explicit

analytical solutions are graphically presented and physically interpreted.
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SECTION I

INTRODUCTION

The physical process in the creation of the system generated electro-
magnetic pulse (SGEMP) is rather involved. Among other things, it dinvolves
the geometry and composition of the system (e.g. a satellite). The importance
of these two factors of the system can be understood if one can find a theore-
tical model which contains all the essential electromagnetic features of the
system and yet is amenable to a reasonbly simple analytical treatment.

Many satellites can be modeled by simple nonresonant structures. A
nonresonant structure is characterized by the large radiation damping possessed
by the SGEMP induced currents and charges. One such simple nonresonant
structure is a sphere,a detailed analysis of which has shown that a quasi-
static (quasi-~electrostatic and quasi-magnetostatic) approach is adequate for
nonresonant structures for electron energies up to 2 MeV (reference 1). This
result is quite valuable because the quasi-static approach has many computa-
tional advantages.

Other types of satellites are inherently resonant structures. A reso-
nant structure is characterized by the continued osciilations of the SGEMP
induced currents and charées without significant damping even long after the
photon pulse has passed. One such resonant structure is a thin wire. By
making the assumption that the wire radius is much smaller than the wire
length, it is p0551b1e to obtain an explicit analyt1ca1 solution of the SGEMP
induced currents on the wire (seereferenceZ) An exaﬁ?ﬁdtlon of the solution
clearly shows that the resonance effect is significant even for moderately
low electron energies, implying that the quasi-static approach to SGEMP
calculations for a resonant structure is inadequate.

In this report, the thin-wire model will be extended so as to include
other essential electromagnetic features of a FLTSATCOM satellite depicted in
figure 1. Clearly, this satellite is a highly resonant structure with the
capacitive solar panels and central cylinder resonating with the inductive
boom. On physical grounds, one expects that these added capacitive features

would introduce not only impedance loading but also localized current or



Figure 1. Photons Impinging on a FLTSATCOM Satellite



voltage generators into the thin-wire model studied im reference 2. The
currents induced on the boom consist of two parts: one part is due to the
motions of the electrons outside the satellite, and the other part is due to
the redistribution of positive chargés left behind by the ejected electrons
on the solar panels and the central cylinder. In this report, these
physical considerations will be put into a mathematical formulation from
which analytical results can Be deduced.

The usual procedure of solving SGEMP problems is followed in the present
report. First, the one-electron problem is solved and the solution of this
problem gives the so-called Green's function for the structure under consider-
ation. Then, the currents and charges on the satellite induced by many
moving electrons are obtained by using the calculated Green's function and
the principle of superposition. Such a procedure is valid for low-fluence
calculations where the mutual interactions among electrons are assumed to be
negligible. Explicit results are obtained for a given incident photoﬁ_pulse
(triangular time dependence), a given yield function, and given energy and
spatial distributions of the emitted photoelectroms.:

A simplified integral equation for the induced currents on the satellite
is derived in section II. This equation is then solved analytically for the
one—-electron problem, quasi—statiéally in section III and dynamically in
séction IV. It is observed from the calculated reéults that the satellite's
response can be described accurately by the fundamental rescnance mode alone
for all electron energies of interest. This fundamental resonance can be found
from a network representation of the satellite.. The rqﬁylts.obtained in
sections III and IV ére used in a low-fluence calculation in section V where
the satellite's response to a given incident photon pulse is considered. In
section VI, results are obtained of the induced currents resulting from the
redistribution of the positive charges left behind on the satellite by the
ejected photoelectrons. It is found that their contribution to the induced
currents is comparable to that from the moving photoelectrons. Some other
special aspects of the present SGEMP problem are considered in section VIIf
In the final section, section VIII, the results of this report are summarized

and some natural extensions of the present study are given.



SECTION II

A SIMPLIFIED EQUATION FOR THE BOOM CURRENT.

Although it is quite easy to write down an integral equation for the
induced surface currents on the satellite shown in fignre 1, this integral
equation 1s so complicated that it is difficult to extract any useful informa-
tion from it without spending an exorbitant amount of computer time on numeri-
cal computation. It is therefore of great value to haﬁe a simplified equation
from which the induced currents can be calculated with relative ease and ye£7
the results are physically interpretable and reasonably accurate.

The point of departure in deriving a simplified equation for the boom
current is the well-known integro-differential equation for the surface

current density K (reference 3)

2 exp(-s|zr-r'[/c) . ine ‘
nx| = - vv. J K(r')ds' = senxE (1)
S : .

4u|z~r']

where n is the outward unit normal of the surface S of the satellite.
With the total current I(z,s) along the boom in mind one can rewrite equation

(1) as (see figure 2)

d2 s2  [* exp(~-sR/c) o q‘inc "~ _sc T
—_— = j EXpL=SR/C) I(z',s)dz' = - se(E + E ) (2)
dzz c2 0 47R z Z

where R2 = a2 + (ziz')z, E;nc is the electrie field tangential to the boom

due to the ejected electrons and Ezc is the axial component of the electric
field on the boor due to the induced charges and currents on the solar panels.
In figure 2, the central cylinder shown in figure 1 has been deleted; its
effect on the boom current will be discussed in section VII. "Exact" values
of E:c can be obtained by first evaluating the currents on the solar panels
through a tedious numerical solution of. equation (1) over the entire surface

of the satellite. However, as will be shown later in this section, simple
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approximate expressions‘for E:c can be derived for use in equation (2).

With this approximate E:c, equation (2) is a simplified integro-differential"
equation for the boom current I(z,s). It is perhaps appropriate here to
mention that one can always write down an eduation with the boom current as
the only unknown by replacing the free-space Green's function in equation (2)
by a much more complicated Green's function that satisfies the boundary condi-
tions on the solar panels. The degree of difficulty in finding this Green's
function is, however, the same as solving the entire écattering problem.

To solve equation (2) one needs to know the end conditions that I(z,s)
must satisfy at z = 0,2. A careful examination of an appropriate static
problem valid nezr ;he intersection between the boom and the solar panels
shows that the presence of the solar pénels makes the linear charge density
on the boom vanish at the intersection. Thus, from the continuity equation
one then has the following end conditions:

i dr

iz = 0 at z = 0,8 (3)

The scattered electric field Eic can be viewed as the sum of two pa?ts:
(1) the electric €ield due to the net charge on each solar panel, and (2) the
electric field due to the currents induced on each solar panel when it is B
isolated from the rest of the satellite structure. The solar panels of a
typical FLTSATCOM satellite are electrically small for the dominating resonance
frequencies of the structure, as will be JuStlfled fromqfhp results in later
sections. Therefore, the current and charge distributions on them can be
calculated by solving some appropriate quasi-static problems. Without going
into great details, one can say from the solutions of such problems that the
quasl-electrostatic fleld scattered from the solar panels is a localized field.

8C

Hence, it is reasonable to approximate Ez in equation (2) by a strong

electric field localized around the end points of the boom, viz.,

Ezc'; VI8(z) - V;8(z-8) + VI8(z) + Vjs(z-1) (4)

-11



Vs o s

!

Here, Vé (Vi) is the potential on the solar panel at =z =0 (2 = &) due to
the net charge on the respective solar panel. In terms of the boom current

one then has

Vi = - 1(0,8)/(sC)), Vj = I(L,8)/(sC) &)

and Cs is the capacitance of each solar panel. The quaatity V; (VE) is

proportional to the z-component of the incident electric field on the solar

panel at z =0 (z = &), viz.,

"no_ inc " o_ inc
Vo= dE"°(0,8),  Vj = dE"°(2,8) (6)

A careful study of certain canonical problems shows that d 'is roughly the
distance between the center point of the solar panel and the point at which
the boom is connected to the solar panel.

Taking into account equations (4) and (5) one can write equatiop (2) in

the following form: -

2 2
<4 _ s exp (-sR/c) I(z',s)dz' =
d22 c2 0 4R ’

™o

Ci [1€0,8)6(z) + I(%,8)6(z-2)]
S

~

—se[Einckz,s) +€?Einc(0,s)6(z)
+ dhjzinc(z,s)a (z-%) ] ¢

which, together with the end conditions (3), forms a set of eqqations.from ,
which one can determine I(z,s). The influence of the solar panels as mani-
fested by the delta functions on the right-hand side of (7) can, alternatively,
be incorporated in the end conditions. This can be accomplished by Lntegra-

ting each side of equation (7) over a small interval around the end polnts

12



z = 0,2 and expanding thevleff-hand side in the well-known asymptotic series.
Thus, equation (7) and the boundary condition (3) for 1I(z,s) can be replaced

by the following integro—diffefential equatibn:

2 2 L .
“3-% I explosk/e) I(z',s)dz" = -seE"C(z,s) €))
PICIN N 4R 7 -2 :

together with the new end conditions

C dc
d _ b b i
E; I(0,s) = EE; i(0,s) - —E—-SEZHC(O,S)
, (9
C dC ’
d - __b b inc
dz I(%’S) 2C . I(,8) + [ SEz (2,s)
where Cb is the'capacitance of the boom, given by
= 47e £/Q, Q =2 2n(&/a) (10)

Cy

and a is the radius of the boom. The integro-differential equation (8) can

be integrated to yield the following integral equation:

2’ f
J 2.9 (—SRIC) I(z',s)dz" = A cosh 22 + B sinh 3%
0 4R c c

A ' . .
N sinh(s|z-z"|/¢) Elnc(z',s)dz' (11
220 z

~

and the unknown constants of integration A,B can be determined from the end

conditions (9), and Z, 1s the free-space wave impedance.



The following typical dimensions of the satellite will be used for the
numerical calculations throughout this report: the boom length 2 = 8m, the
boom radius a = 0.005m, the rectangular solar panel m2asures 2m X3 m, and
the distance d = lm. Using these vélues, one obtains the following parameters:
Q= 14.8, Cb = 60.3 pF and CS = 97.8 pF.

Equations (9) and (11) will be used in the following study of SGEMP
induced currents on the boom. In section III these equations will be solved
in the quasi-étatic limit, whereas in section IV they will be sqlved in the

general case for a prescribed particle's path.

14



SECTION IIT

QUASI-STATIC SOLUTION

From a previous study of SGEMP induced currents on a thin wire (ref-
erence 2) it was observed that the quasi-static solution can be found by
directly solving the reduced equation obtained from equation (8) by making

¢ infinite. In the time domain the reduced equation becomes

2 ff -
? I(z',t) v _ _ . 9 inc ~
322 jo 4nR dz' = € at (z, t) . (12)

together with the end conditions (9), which in the time domain are

c daC

3 _ _b b 3 inc
55 1(0,t) = QC 1(0 8) - 3¢ 0,t) .
(13) .
C dc '
9 _ b b 3 inc

Let the incident field be that of a moving particle with charge q and
located at Do(t), ¢o(t)’~ zo(;), outside the satellitgi On the boom one _
then has .

z-z

inc _ _9q o 2 _ 2 o 82
E (z,t) = Gne .3 s R =p_ + (z-z )
© (14)
‘ . 2. o
B ginc oy _ =9 fg_+ 3z )2, _ 3(Z_zo)popo]
,t) =
ot "z 47ie R3 R5 R5 _
o] (o] o

where the dot denotes time differentiation. Next, one inserts the expression

15



(14) into the right-~hand side of the integro-differential equation (12) and
uses the end conditions (13) to obtain the following asymptotic solution for

the induced current at the center of the boom:

C C
e g =% o oo Ll : S
I(4/2,t) = 2Q8 [ZOI“ + po;x + Cb (ZOIH + o L) + L Cb @z IH + po;x)]
' : (15)
where
—f= 2 _ 1 _ 1
W m2 ¢ 2-042 a2 +HY2 2+ a-5?)/?
T £ 1 -1
I = +
Vot M e anh??
=0 _ n2 - 2% o’ - 20-6)°
Vow? D e a-e?
16)
T;l[ L- 2 +——5 -=—_1-5 ]
Lo 2 4 @2-0)21Y2 T @2+ 52 1?2
i -—
o N o n
Lo mE e eH32 2 epy?p3/2
S T N YeEL

L2 e )5’2 2 + -5)?1%/2

and the dimensionless variables £ and n are defined as

16



Zo ' pé
€=T) n=T (17)

When the particle moves withvelocity v that makes an angle 0 with

the positive z-axis so that
z=zv“+ v, = zv cos 8 + pv sin B (18)

one can express the current I(&4/2,t) as

1(%/2,t) = - 5%"7 [, cos 6 + L sin 6] , (19)
where
C C :
— s — d s =+
Lo =1 +=I'+ > — I
il l C, 2 Cb il
(20)
C C
= s = d s 4
I =1 4+ —=1I'+—~—1"
L L Cb 1L 2 Cb L

For the satellite under study, CS/Cb = 1.62 and d/% = 0.125. The norma;—

ized current components I" and ;L' are plotted in figyres 3 and 4. Whep‘h e
the particle is moving parallel to the wire with constant speed v (so that

6 = 00) the coordinate & is proportional to the time t, since by choosing

the time origin when the particle is right above one end (z = 0) one has

E = vt/%. On the other hand; when the particle is moving perpendicular to the o
wire with constant speed v (so that 6 = 900) the coordinate n 1is propor-

tional to the time t such that n = vt/%.

1. ELECTRON LEAVING FROM A SOLAR PANEL

When the satellite.is illuminated by a photon pulse, most photoelectrons

are ejected from either the surfaces of the sclar panels or from the surface

17
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R

of the central cylinder. The path of an electron leaving the solar panel at
z = 0 with constant velocity v that makes an angle 6 with respect to the

positive z-axis can be described by

vt cos 6, p = vt sin 6, 0s9=sn
or (21)
T sin 8, T = vt/ '

N
]

“
LA
Il

T cos O, n

The current at the center of the boom induced by this electron is obtained by
substituting the expressions (21) for £ and n into equations (19) and (20).
The time history of this current is shown in figure 5 where the normalized

current I ,
s
I (1) =TI, cos 6+ I sin 6 (22)
s I L

is plotted versus t. From this figure one notes that the induced current is
relatively insensitive to the angle © at which the photoelectron is emitted.
This 1s particularly true for the case where 8 > 900, i.e., the electron
moves away from the satellite. Physically, this insensitivity to 6 can be
expected since the main interaction between the satellite and the electron

takes place at the solar panel from which the electron is emitted.

2. ELECTRON LEAVING FROM THE CENTER OF THE BOOM

The path of an electron that leaves the center of the boom at t =0
and moves with constant speed v at an angle © with respect to the positive

z—-axis is

2/2 + vt cos 0, vt sin 0, 0<8s<a
or (23)
T gin 8, T = yt/e

N
)
©
I

1/2 + t cos 0, n

ym
I

The current induced at the center of the boom is again obtained from equation

(19). The normalized current Ic’

20
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IC(T) = I" cos B + ;L sin 8 (24)

is graphed in figure 6 versus 1T for different values of 6. The symmetry

of the problem implies that only the case 6 < 90° is needed.

3. FREQUENCY SPECTRUM OF PARALLEL MOTION

The quasi-static calculations have so far been restricted to the time-
domain response of the current. In the quasi-static approximation the induced
current depends cnly on the instantaneous position and velocity of the particle.
To get the frequency-domain response, however, one has to specify the entire
path when taking the two-sided Laplace (Fourier) transform of the time-domain
response. When the particle moves ﬁith constant velocity parallel to the

boom one gets the following frequency-domain response:

I(&/2,s)

J 1(2/2,t)e Statr

-sL/2v

%; Ko(iipos/v)e {cosh(s£/2v) - 1 + [(s2/v)sinh(s%/2v)

+ (d£52/v2)cosh(sﬂl2v)]CS/Cb} (25)

N - - 7 i ) - .
wWhere Ko(x) is the modified Bessel function of the second kind and the +{(-)

sign is used for Im{s} positive (negative). Observe that I(2/2,s) is
actually a function of s%/v. The variation of the induced current with
w(= is) is shown in figure 7 where the absolute value of the normalized

quantity

=
]

(©/20)1(2/2,-10)

Ko(i pow/v)eimllzv-{cos(wl/Zv) -1 - [(we/v)sin(wi/2v)
'(dﬂwzlvz)cos(wQ/ZV)]CS/Cb} (26)

) 23
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is plotted for 0 < w&/v < 20. The nonresonant character

solution is clearly seen from figure 7.

25
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SECTION IV ' .

DYNAMIC SOLUTION

In the quasi-static solution it is assumed that all phenomena vary
slowly in time and ali oscillations are neglected. It is intuitively clear
that this assumptionis valid for very slowly moving electrons. In order to
establish the quantitative accuracy of the quasi-static solution the full-
fledged dynamic Maxwell equations for one particular choice of the electron's
path will be solved in this section.

The boom current in the s-domain is obtained by solving either the
integro-differential equation (7) or the integral equation (11) together
with the end conditions (9). Using the general theory of scattering from
finite-size bodies (the natural-mode method) one can cast the solution of

equation (7) into the following form (reference 4):

C
1(z,s) = —ssz: ;; iE'In(z) (27)
2 °"%n “n

Here, s ~are the natural frequencies and they are those values of s at

which equations (9) and (11) (and, of course, also équation (7)) have a non-
c
0.

1

. . in
trivial homogeneous solution, i.e., a nontrivial solution when EZ
The corresponding homogeneous solution is denoted by ‘In(z), which is the
current distribution of the natural mode with the resonance frequency 8-

' Furthermore, in equation (27), (c.f. reference 5) one has

“ § -
% inc, ine ' inc
cC_ = J E(z,s)I_(z)dz + dE (0,8)I_(0) +dE~ (&,s)I (&)
n 0o Z n z n z n
s O (4 9
B = - % J 1% (z)dz (28)
n 2 n
2me 0

26



1. NATURAL MODES

" To find the natural modes one solves the following eigenvalue problem:
Find the values S of s, at which theﬂfolloﬂing equations have a nontrivial

Solution:

j expsR/e) 1,1 6)dz' = A cosh 2% + B sinh 2=
0 .

4R
(29)
C C
d - b 4 ——
I(O s) 1(0,s), iz I(%,s) e I(2,s)
s s
From the symmetry of the broblem it is clear that the solution In(z) = I(z,sn)

is either an even or odd function of 2z about the point z = £/2 (the center
point of the boom). An application of the asymptotic theory for solving thin-
wire scattering problems to equation (29) glves the following first-order

solution (c.f. reference 6):

I:(Z)

cosh[sﬁ(z—i/Z)/c], evern. modes

(30)

Iz(z) sinh[sz(z—RIZ)/c], odd modes

Co - ’ S, .
where the unimportant unknown multiplicative constants have been left out.
The end conditions require that the natural frequencies he given by the roots

of the transcendental equations

C .
se: st tanh §£-+ Eh =0, even modes
n c c s ;
(31)
- C
sg: %% coth g% + Eh = 0, odd modes
s

For large values of |s| one can expand sg and sg in the following

asymptotic series:

- 27
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(32)
N Ke C, \3/C '
o ic b 1 b s , 1 1
s = & == (2n—1)1r+2————4(—-—) (—+—)——]
n L CS (2n-1)x Cs Cb 6 [<2n_1)“]3

Using the capacitance values given in section II, one obtains the

following values of the ten lowest resonances:

sﬁ =+ i@ﬁ =+ i(c/l)vz, sg =+ 1m§ = + i(c/Z)vZ (33)
n 1 2 3 4 5 6 7 e 9 10
vﬁ 1.06 | 6.47 {12.66 | 18.91 | 25.18 | 31.46 [37.73 |44.01 | 50.29 [ 56.57
vz 3.49 1 9.55 | 15.79 | 22.05 | 28.32 | 34.59 | 40.87 | 47.15 [ 53.43 | 59.71

It should be pointed out that the asymptotic forms (32) agree within 0.5% with
the numerical solution of equation (31) for all the roots except the lowest
ones (n = 1).

Comparing the normalized resonance frequencies %5 the.satellite to those

of a straight wire, which are, in the first approximation, given by
ve e = 2n-D)7, vo = 2n7, n#0

n|wire

one observes that numerically, the resonance frequencies of the satellite are

28



smaller than the corresponding ones of the straight wire. Thus, the solar
panels have the effect of decreasing the resonance frequencies, as expected.
This effect is mbst pronounced for the fundamental resonance whose resonance
frequency vi is lowered by a factor of three with the add-on of the solar
panels. The corresponding current distribution Ii of the lowest mode is

given by

1%(z) = cos (0.53 gg%gy) (34)
From equation (34) it can be seen that Ii takes its maximum value at

z = 2/2 and drops only 14% at the end points z = 0,%. Since Ii hardly
varies along the boom one may use concepts in circuit theory to determine the
resonance frequency of this mode. However, it should be emphasized that only
the lowest resonance can be obtained from circuit analysis. All other modes
are determined from the solution of a boundary-value problem. The lowest
resonance can be determined approximately from an LC network where 1 is the
inductance of the boom and C 1is the capacitance between the solar panels.

With the dimensions and parameters given in section II one has

L = peQ/4m = 1.18x107° henry
C = —= 1 — = 5.50x10 1 farad
2 [C_s E 41752] ' = : -

from which the normalized resonance frequency v; 1s found to be

v, = 1,05 (35)

which agrees with the previous result to within 1%.
In the lowest-order solution of equations (29) the damping of each
natural mode is neglected. To incorporate the damping into the expression

for the resonance frequencies one has to continue to the next higher order
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approximation to the solution of equations (29), or alternatively, one can

use the concept of equivalent length and then invoke the damping formula of

a straight wire (reference 7). By using the latter method the following first-

order approximation of the damping constants @ of the natural modes is

obtained:
e
e _c e Vn® o £T(2 9 ]
O'.n 7= n Gn = —(m[@n[(Zn—l)Z'ﬂP] - Ci[(2n-1)27]
(36)
0
o_c¢ .0 YnC
@ = E—Sn = ol [2n(4nﬂr) - Ci(4nﬂ)]

where Ci(x) is the cosine integral and T = 1.78l... is the exponential of

Euler's constant.

2. FREQUENCY VARIATION OF THE BOOM CURRENT

The resonances are uniquely determined by thesatéllitestructure, but
the excitation of each resonant mode depends also on the incident field, as
shown in equation (28).

Here and henceforth, the incident electric field Einc(z,t) on the boom
is specified to be that of a charge moving with constant speed parallel to the

boom. Thus, one has

inc ___q y (vt-z) 37
E, (&0 e 02 1+ 2evemy 2130 (37)
o, + v ( - o
where Y =_(1—BZ)‘1/2, B = v/c and Do is the transverse distance of the

charge from the boom axis (see figure 2). The time origin is so defined that
the particle is right above one end (z = 0) of the wire at t = 0. The

two-sided Laplace transform of equation (37) gives



-sz/v p s

9 e o '
27e vao Yv o[iposl(YV)A], Im{s} > 0
E:nc(z,s) = (38)
q e‘SZ/v Dos
-1 m{
2me 'vao YV KO[ lDoS/(YV)], Im{s} < 0O

Substituting the expressions (30) and (38) into equation (28) and evaluating

the fesulting integrals one obtains the following exprzssions for Im{s} < 0:
z b4

2 ‘ : .
c® = J EIPC(, )% (2)dz + d E2C(0,5)IC(0) +dEIPC(e,s)18 (1)
0 z s} n n

sinh[(sﬁl/Zc) - (s&/2v)]

=35 _x [ip s/(yv)] [ -
2me Y2V2 0o (sﬁ/c) - (s/v)

sinh[ (s€2/2¢) + (sl/zv)i
n e-s!./Zv +d [e—sﬂlv + 1] cosh(s2/2¢)
(s%/c) + (s/v) B

n
(39)

|

/A . . .
o _ inc o inc o) inc o
C Jo Ez (z,s)In(z)dz +dEz (O,S)In(O) -l--dEz (g,s)In(g)

i ) -~

sinh[(sﬁk/Zc) - (s&/2v)]

T 2me 2.2

——‘LYSV K, [ip s/ (yv)] [

(sp/e) = (s/v)

sinh[(s°2/2¢) + (s2/2v)] '
n - ]e—52/2v +d [e_SMV - 1] sinh(sﬁ.%/Zc)

(so/c) + (s/v)
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For Im{s} > 0 one simply replaces Ko[ipos/(Yv)] by KO[—ipos/(Yv)]

in equation (39). It now remains to determine Bn before equation (27) can
be used to evaluate the frequency variation of the induced boom current. The
integrals in equation (28) carn be easily evaluated with the expressions (30)

for the induced current. Thus,

Qes® i sinh(s°2/c) ]
e n n
BC = - 14—
n 4ﬂc2 seE/E
L n - 0'
(40)
' 0 (9] -
o ﬂlsn F sinh(sn2 c)
T T T e
4Tc | snl/é

The induced boom current is then given by

I(z,8) = o K_[1p_s/(yv)}e5H V)
. By &

+

o2 [sinh[(sfI - s/8)%/2c] sinh[(si + s/B)2/2¢]
gsz - s/B)%/c - (sﬁ + s/B)&/c

e e
n S—8
sn( o)

cosh[ss(Zz—z)/Zc]

<+ %g—cOsh(sﬂ/ZBc)cosh(sezlzc) ’ L~ P~ . -_— .
' o 1+ (c/lsn)sinh(snllc)

S

+
o}

2 [sinh[(sg - s/B)/2c] sinh[(sg + s/B8)%/2¢]
(sz - s/B)%/c . (s

+ s/B)2/c

o o
n sn(§ sn)

sinh[sg(Zz—i)/Zc]

- %g sinh(s2/28c)sinh(s°2/2¢) 5 S
n 1 - (c/ﬁsn)sinh(snklc)

Im{s} < 0 (41)
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On physical grounds, it is expected that the current is large near the
center of the boom and so it is of special importance to know the current at
z = 2/2. Since the current distribution of the odd modes vanishes at the
center point one gets the following expression for the induced current at

z = f2(s = -iw):

By R

< W
2: e 2

n=1 0u+ign)

+

2 [sin[(wl/v - vﬁ)/Z] sin[ (wl/v + vﬁ)/Z]
- (w::)2 wl/v - V: wl/v + vs

e
vV

L (42)

+-%§ coé(ml/Zv)COS(Vz/z)]

v 4+ sin v
. n

. ) e .
When  1is real and near the resonance frequency w s the most important

term in fhe sum (42) is

_ ) . iws 2/ (2v)
I(&/2,w) = —2—%— Koipown/(w)]e

By Q

n +
v (1-8)/8 Ve (1+8) /8

we [sin[vs(l—ﬂ)/ZB] Sin[v§(1+B)/ZB]

e e
w-w + ia
n n

e
AY

+ 2 cos(ve/ZB)cos(ve/Z)] . — (43)
2 n n . e
vn + sin vn

e e . ,
where, as before, v, o= lwn/c. . — !
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e

. ' . o , e
On the other hand,when |w - mzl > a the "dawping contribution" to s

can be neglected and si can be approximated by sﬁ = * img- The simplified
sum thus obtained can be 5umhed_in a closed form to yield the following

" expression:

12/2,0) = 2 x_[o_u/ ()1t BV

{sin(ml/Zv) - B sin(wl/2¢c) - [va/(wQCS)][cos(wQ/ZV)-cos@ﬂ/Zcﬂ

-1
+ (dw/cvz)cos(mEIZV)} {B[sin(wl/Zc) - {ch/(wﬂ/Cs)]cos(wEIZCH}

(44)

. . o
As expected, the denominator in equation (44) vanishes at w = w -
The frequency variation of the current at the midpoint of the boom is

graphed in figures 8a - 8c. In these figures the normalized quantity

S (w) = % |1¢2/2,0) ] (45)

is presented. From these figures one notes that the induced current has a

very strong peak around the lowest resonance. In fact, the graphes show that
for electron velocities less than c¢/3 only the lowesg resonance is important.
For higher velocities the second resonance gets somewhat more important but
still its magnitude is 5 times less than the magnitude of the fundamental
resonance for B8 = 0.5. These results show that for most SGEMP calculations
involving this type of_satellite one can limit his attention only to the

lowest resonance.

3. TIME HISTORY OF THE BOOM CURRENT

The time variation of the induced current is obtained by taking an
inverse Laplace transform of the expression (41). Following the same procedure

as the one used in reference 2 one gets the following expression:
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1@/2,6) = - a0 [1,€0ms8) + V® S 1 cos(vE/8 - ¢ )exp(-62E/8)

n=1

+ U(g-1) Z I_ coslv_ (5~ 1)/8 + ¢ Jexpl- -8°(E-1)/81 +0(8 )]

n=1
where (46)
I exp(ip ) = - ‘—3% Ko[‘nvﬁl (vB)1
1+i[dve/(wy2) - Bcb/(c vo)1

cos(vo/2) + cbsin(vsjz)‘/ (Cvo) +2Cy cos(vﬁlz)/[cs(vﬁ)z]

i”(E,n;S) is given by equation (20) and U(t) is the Heaviside unit step
function. The correction term 0(82) in equation (46) is negligible if the
particle speed is not too large (B < 0.5) even wheﬁ it is very close to the
solar panels.

In figures 9a through 9c the time history of the normalized induced

current I(t),

I(t) = —%l“—“m/z t)

is graphed at the mldp01nt of the boom with B and ni=p /l) as parameters.
Note that the time coordlnate is expressed in terms of the normalized variable
£ = vt/%. From these curves one can see how the free nglllatlons of the
satellite are excited by the moving particle and that the excitation is
particularly strong when the particle is close to one of the solar panels.

One also notes how these oscillations sustain themselves long after the
particle has passed the satellite. Once the particle has passed both solar
panels the current is a damped sinusoidal oscillation, showing that the’
fundamental resonance is sufficient to describe the induced current in the
time region t > &/v. In these figures the fundamental rasonance appears to

be different for different values of 8. This apparent difference is, of
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course, due to the fact that the time variable is expressed in terms of
£ = vt/%. When the current is piotted directly versus the time t these
oscillations will have the same periodicity and damping éonstant.

Included in figures 9a through 9c are also the corresponding quasi-
static results as given by equation (15). The graphes show that the différ-
ence between the quasi-static solution and the full-fledged dynamic solution
is greater in this case than it is in the case of a thin wire. The important
result of this section is that for.system vulnerability assessments it is
sufficiently adequate to include only the lowest resonance term in the sum
(46) together with the quasi-static term. The latter term contributes
mainly when the particle is close to the solar panels.

The behavior of the fundamental mode of the FLTSATCdM satellite studied
in this report can be described by a RLC series network with some voltage
generators. The inductance L and the capacitance C of this network have been
calculated previously in this section, L = 11.8 uH and C .= 55 pF. The
resistance is found from antenna theory to be R = 49 Q. The voltage

generators are, c¢.f. equation (28),

% ' ) »
V(t) = J Einc(z,t)dz +dE:nc(0,t) +dEi‘nc(£,t) (48)

0
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SECTION V

MANY-ELECTRON CALCULATION

So far only the effect of one moving charged particle has been treated
in the calculations. These calculations can be used directly to treat the

effect of a number of monoenergetic charged particles leaving the satellite

at the same time and moving in the same direction. In the actual case where

a photon pulse impinges upon the satellite the electrons are ejected at

different directions and with different velocities. In this section, certain
aspects of these actual features will be considered. . '

The following calculation is intended mainly td be an order-of-magnitude
calculation and, hence, the quasi-static expression (15) for the induced currents
will be used. A careful examination of equations (15) and (16) and figures
3 and 4 reveals that the induced current is described with sufficient accuracy

by the exﬁression

C
- _.9qv _s 1 2d cos ¥ '
I(r) = 508 —Cb (_-[2 213 ) U(t) 49)

where 1 = (t-t')v/%, V¥ = angle between the boom and the particle's velocity

v, and t=t' is the time when the charged particle leaves the solar panel

at z=0. It should be pointed out here that equation (49) is valid only for

vt > d/%, where d has been defined on page 7. The reason is that the effects
of the Solar-panels have been approximated by lumped netgork elements and .. . . ..
generators throughout his report. Referring to figure 10 one can also express

Y in terms of 6 and ¢ as follows:

cos P = sin 0 cos ¢ (50)

The energy distribution fe(E) (or, equivalently, the velocity distri-
bution) of the emitted electrons is a function of the energy hv of the

incident photons and can be approximated with a triangular distribution:
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Figure 10. Angles Describing the Emitted Chatrge
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2B/ (hv)2,  E < hv |
£ (B) = ' ' (51)
7 0, _ E > hv

where the electron kinetic energy E = mv2/2, m 1is the mass of the electron,
v 1is the frequency of the incident photon and h is Planck's constant. The
" yield fy (i.e., the total number of electrons ejected by a photon with

frequency v) can be approximated as (references 8, 9)
= (B/2) ()™ * (52)

where B ‘and ¢ are constants that depend on the material of the solar

panels. Roughly, one has
a=1.3, B=0.05 (53)

and B 1is in unit of (keV)d. The number distribution fv of the incidenﬁ

photons can be described by that of a radiating black body, i.e.,

2 2 ‘
£ (hv) = . 1 h™v (54)
v z(3) (kT)3[exP (hv/kT) - 1] ‘

where 7(x) is the Riemann zeta function, T the absolute temperature and
k Boltzmann's constant. Finally, the angular distribution f of the elec-

trons is a cosine distrlbutlon from the normal of the panels, i e.,
S

£,(8,4) = (2m) cos 6 (55)

Let the total number of photons in the pulse be Nv and the shape of the

pulse f(t) be triangular so that

0, t <0
t/tz, 0<t<t
f(t) = o 2 o (56)
(2t0-t)/t0, t,<t< 2to )
0, t > 2t
o]
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A typlcal wvalue of t, 1is 10 ns, i.e., the pulse width is 20 ns.
Combining equations (49)-(56) one has

Lo B J quE/E Cg 1 [1 _72d/a'cos 8 cos<g1 |

20/2E °b (t-i:‘)2 V2E (t-t') 1
fg(B,¢)£E(E)fy(hv5fv(hv)f(t')sinE)ded¢dEd(hv)dt* (57)
Since only back-scattered electrons are of importance here, the angglar domain
of integration in equation (57) 1s 0< e < n/2, 0s< ¢ & 2n. Performing the

integrals in the following order: (1) the @,¢-integration, (2) the E-integra-

tion, (3) the hv-integratien; and (4) and t'-intégration one obtains

I(t) = EXEE fEEE-EE J ++~l;——-¥L-f (BYf_(ho)f (hw)£(t"')dE d(hv)dt’ %
c 4 2 Gb (t‘t,)Z JE e y v .

2N g2 26 1 1 o _
= 2. JBE. S J _— fy(hvjfv(hv)f(t')d(hv)dt'

30e 2 Cb (t__t,)z Jhv i
_ N,q% £(5/2-a)T(5/2-a) EE_ me> B JZtO 1 E(E'yat'
= . ,}” ' .2
69¢c z(3) Co VIRT (@ Jo (oot
N q% - ¢ 2 - (et )2
(D conmren b fof 2ol ] o om
6Qct§ 2 () Cy T wry®  LEE=t,

Note that the result (58) is valid orly fpr t > 2t since the t'-irtegration
converges only for t > 2t°. Again; this is dueé to the lumped network model
for the solar panels: Using appropriate values for the constants in equation
(58) one gets

[ 2 .
B i a-12 _-1.8 | (1-10/¢): : 59
I(t) = 2.67%10 N (KT) L0 [—_'_1-20/1; ] t > 20 ns (59)
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where I 1s in amperes, kT in keV, t in ns. For kT = 1 keV one

has

: |
I(t) = 2.7x107% N gn [(i:;g;‘t‘ ] £ > 20ns (60)

With a photon flux of 1016/m2 per pulse and kT = 1 keV one gets (c.f.

reference 10)

2 ) N
I(t) = 1.6x10° %n [—Q:M-], t > 20ns

1-20/t
(61)

1.6x10° t-2, t > 50 ns

R

The time dependence of the current pulse is shown in figure 11. In this figure
the current pulse is plotted for t = 30ns, since on physical grounds equation
(61) is expected to be valid for t > 30ns. The parameters of the incident

photon pulse chosen for this numerical sample calculation corresponds to a flux
level of 10-4

that the amplitude of the induced current pulse on the boom can be of the order

cal/cmz. From the above low-fluence calculations one notes

of hundreds of kiloamperes and that the width of the current pulse is consider-
ably larger than the width of the incident photon pulse.

The above calculations are based on a quasi-static expression for the
induced current. Since fhé chosen photon pulse Vidth i;ibf the order of théu
transit time along the satellite under consideration, the calculations might
not be reliable. However, judging from figures 9a - 9c one can say that the
quasi~static solution still yields the correct order-~of-magnitude calculation
for the induced currents. For a more accurate pulse shape and frequency
variation of the induced boom currents, the calculations performed in this
section have to be extended to include the effects of the lowest resonance of
the satellite; Unfortunately, sﬁch an extension is considerably more compli-
cated and is beyond the scope of the present investigation. Because of its

importance, however, it should be carried out in a future investigation.
N
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Figure 11. Current-Pulse Shape from Low-Fluence Calculation
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SECTION VI

CURRENTS RESULTING FROM REDISTRIBUTION OF
NET CHARGES ON SOLAR PANELS

When a photon pulse strikes the satellité, as depicted in figure 2,
a majority of the emitted electrons come from the solar panels because of
their relatively large surfaces and, hence, each panel is left with some
positive net charge.” This charge redistributes itself over the entire
satellite and in so doing currents are induced. To get an estimate of these
currents it will be assumed that one solar panel is bombarded by a short
photon pulse (at t = 0) and that the net charge on the panel.immediately
after the passage of the photon pulse is Q. The following calculations
will show the importance of including the effects of net charges on the
satellite in any type of self-consistent calculations.

The problem under coﬁsideration can be formulated mathematically as
follows. The initial net charge on the solar panel at z =0 is Q. In
accordance with the discussions in section II this initial condition means

that

Einc(t=0+) =9 502 _ (62)

The situation is similar to that of discharging a capacitance into a trans-
mission line. -The boom current then satisfies the integro-differential

equation

/ 2 2\ (2 _
(_d _ s_)J exp(-sR/e) 1 (yr g)gpt = £ {[1(0,5) - Q15(2)

2 4mR C

dz c 0] s
+ I(L,8)6(z-2)} (63)

together with the end conditions
4L _ o, z = 0,8 (64)
dz .
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Or, equivalently,

R‘ : .
-J 952&:2515)1(2',s)dz' = A cosh §£(+ B sinh 22 (65)
0 4TR c ¢

together with the end conditions’

d Cy
g 1(0:8) = IE; [1(0,8) - 9] |
(66) .
_ c |
d _ b
3z [(%s8) = = 70— 1(2,s)
s
The solution of equations (63) and (64), or equations (65) and (66), is
I (0) :
= _EQy_1 'm :
Hz,8) = - oo 5 W@ (67)
5 n n n
and at z = &/2 one has
e
2
I(zlz,s)-=9,§§'3 cosh Sy t/20) - L (68)
_ S n s—sﬁ (snllc) + sinh(snR/c) L

The frequency variation of the current at the midpoint of the boom is then

% —

| - cos(ve/2)
[ 1 _ 1 -] n (69)

' e, e e,, e e e
(wﬂ,/c)+vn+16n (w!./c)—vn+16n v + sin v

1W/2,0) = Q & L

s n=1

When ® is not close to a resomnance frequency, the induced current I(8/2,w)

is expressible in the following closed form:
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1(8/2 )7— 9% : 1 : (70)
)= Cs (Cb/CS)cos(mEIZc) - (wf/c)sin(wl/2¢c) 7

When w 1is close to the resonance frequency wz the sun can be approximated
by one term, namely, -

1 ..cos(ve/Z)

(ws/ec) - v + 16 v + sin vﬁ

1(4/2,0) = - Q C—b

The normalized quantity

IQ(m) = 56-1(2/2 ,) . ‘(72)

is graphed in figure 12. A comparison between figures 8a - 8c and figure 12
reveals that the currents induced by the moving electrons are of the same
order of magnitude as those induced by the "holes" left behind by the emitted
electrons. .
The inverse Léplace transform of equation (68) gives the following time-

domain representation of the induced boom current:

‘a e e
C. ® cos(v /2)sin(w t)exp(-c_t)
1(2/2,t) = _2Qc EE'E: 1 . n . n
s n=1 v + sin v
n n .
i ) [
. e e
- 20¢ c EE 55 51n(wnt)exp( ant) . 7%
C e e

- . e
s n=1 [(Cb/CS) + 2]31n(vn/2) + v cos(vn/2)
In figures 13a - 13b the normalized quantity

15(6) = %%9-1(2/2 £) (74)
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is plotted versus time. It 18 observed from these figures that the first

resonance alone accounts for much of the induced current after only 3 transit

times of the satellite.

55



L e

SECTION VIT

SOME RELATED CONSIDERATIONS

In this section a brief discussion is given of some speclal aspects
concerning the influence of the central cylinder. - 7

The lowest even resonances that have been calculated in section IV are
not affected appreciably by the presence of the central cylinder when the
cylinder is in electrical contact with the boom. The reason is that the
charge density vanishes at the midpoint of the boom for the even resonances.
On the other hand, the charge density of the odd modes has a local maximum
at the center of the boom. It 1s therefore expected that mainly the odd
resonances in section IV are affeéted by the central cylinder.

When the boom and the central cylinder are in direct electrical contact
with each other, the method used in sections II and IV to calculate the
current on the entire boom can be applied to each section of the boom that
connects the solar panels with the central cylinder. After some algebraic
manipulations one obtains the following transcendental equatibn from which

the odd resonances can be calculated:

2
/ 2 2C. C 2¢, 1-1
o, st . si s4 b b b -
st coth 70 + [( c) + cC ] [—-CS + Cc ] 0 (75)

8 C

where Cc is the capacitance of the central cylinder. With the height and
and diameter of the central cylinder both being 2m omg has Cc/Cb 22,20 . .
and, as before, CS/Cb * 1,62. For large values of |s| one can expand s,

in the asymptotic series

10.04
SRR ic (Zmr + 32'06 - 3) (76)
n -k nm {2nw)

The ten lowest Tesonances as given by a numerical solution of equation (75) are
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ng'= * i(c/z)vg : (77)

n 1 2 3 4 .5 6 7 8 9 10

v 1.696.73(12.80 | 19.01 } 25.25 | 31.51 | 37.78 144.05 | 50.33| 56.60

The asymptotic form (76) agrees within 0.5% with the numerical solution of
equation (75) except for n = 1. '

The lowest resonance frequency can be obtained from a network description
of the satellite as shown in figure 14. The resonance freduency W of this

network is given By

A L, 2 \|/2 c :
wo =17 (C + C )] = 1.8 2 } (78)
b s c

which agrees within 6% with the lowest odd resonance frequerncy of the satellite
given in the table. _

It can be seen from the table here and that given in section IV that the
odd resonance frequencles are lowered by the central cjlinder. This effect
can be understood from the fact that the current of the odd modes vanishes at
the ﬁidpoint of the boom when the central cylinder is albeent,. whereas in the-
presence of thé central cylinder this is notrthe case, In the latter case one
can allow some net current to flow into the cylinder from the boom on either
side of the cylinder. This net current gives rise to some net charge on the
cylinder. To calculate the effects of these charges is beyond the scope of
the present report and has to be left to a future investigation.

The eﬁtire satellite as seen from the terminals between the two points
where the boom intersects the central cylinder can be considered as a
receiving antenna center-loaded with the c¢ylinder. Two quantities that
uniquely describe the antenna at the terminals are the input admittance and

the short-circuit current. The short-circuit current is the current induced
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Figure 14. Network Representation of the Lowest Odd Resonance
of a FLTSATCOM Satellite
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by the moving electrons when the central cylinder is absent and the two halves
of the boom are connected. This current has been calculated in section IV.
The input admittance of. the antenna can be calculated with the aid of
the thin-wire model of the boom together with the end conditions derived in
section II. Some algebraic manipulations similar to those in section IV give

the fo;lowing expression for the input admittance:

o wa 1
. - o k)
Yin(”) 1QZ z; e, 2 e.2 e s e (79
on=l (wtia )" =~ (w )" v_ — sin v
n n n n
When w is near ws,. the most important term in the sum is
e
2w “n 1
i =
Yin®) = 10z (80)

: e e e . e
ow=-w + io v - sin v
n n n n

If Im - mﬁl >> as then the influence of aﬁ can be neglected and the simpli-

‘fied sum thus obtained for Yin can be summed in a closed form as follows:

2 sin(wl/2¢) + (wiC /eC, Ycos(wl/2c)
Y. (@) = mi s b
in Qz cos(wl/2c) - (mlCS/ch)sin(mZ/Zp)

(81)

i -—— - - e

The frequency variation of the input admittance ié graﬁhed in figure 15.
The normalized quantity presented in this figure is Zinn’ where Zb is the
characteristic impedance of the boom, z, = ZOQ/4n.

The current I flowing through the central cylinder is given by

1= Isc/(l + chin) (82)\

where Isc is the short-circuit current calculated in section IV and Zc is

the impedance presénted by the central cylinder at the terminals.
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SECTION VIII

SUMMARY, CONCLUSIONS, AND SUGGESTIONS

The method of solution employed in this report is summarized in figure
16. A rigorous integral equation for ﬁhe induced surface currents on the
entire satellite is first written down with the incident tangential electric
field as the source term of the equation. This source term can be either the
field of the ejected electrons moving outside the satellite or the net charge
left behind by the electrons on the satellite. To make the integral equation
analyticaliy tractable a simplified integral equation for the boom current is
obtained in which the effects of the solar panels and the cenfral cylinder
are duplicated by some localized generators driving, and some lumped impedances
loading the boom. This simplified integral equation is subsequentiy solved
analytically after splitting the boom current into its even and odd parts with
respect to the central cylinder. The quasi—sfatic and dynamic solutions for
one moving charged particle are obtained and compared. The boom current
arising from the redistribution of the net positive charge on the satellite
is calculated from the simplifiedAintegral equation. The quasi-static solution
for one particle'is then utilized to obtain, by superposition, the solution of
the many-electron problem for a given incident photon pulce, a given yield
function, and a given angular and energy distribution of the ejected electrons.

The important findings of this investigation are as follows:

1. The quasi-static solution is in general not suﬁé&ciently accurate.
When the electron is less than one meter away from either solar panel,
the peak value of the boom current is within a factor of two from the
peak value of the dynamic solution for electron's energy less than
20 keV. For higher electron energies and greater distances away from
the satellite the quasi-static solution can be off by orders of magni-
tude.

2. For B > 0.15 (electron's energy > 5.6 keV) the fundamental mode alone
accounts for at least 90% of the energy contained in all the even

current modes, whereas for B < 0.15 the fundamental mode together with

61



pofoTdwy uoTanTog Fo poylsy 2yl Surlordeqg wealSerq Jooly

jxodey sTY3 Ul

NOILNI0s

NO11vI11280-47138

NOL1NnI0S
FONINTI-MOT

[ —— o — ]

NOILlM10S.

JIWVNAT

3§57INd NOLOHJ
IN3Q1DNI

NOILln10s
JIL1VY1S-1S¥ND

A

SINIHHND Wood
Jao aNV N3A3
404 NOILNTI0S

—

*9T 2an314
L
YIANITAD VHINID JL17731YS NO SNOYLI33
ANV ST3NVd ¥VI0S LY I9¥YHD L3N 40 SN 1 AOW
SNOTLIQNOD AMVANNOS NOILNEIY1ISIa3y a3Liara
/
SOV01 IONVAAdWl d3dWnT Shy3l
ONY SHOLYY3IN39 J3ZITvI01 3J¥nos
| :
WOOH ¥3A0 3L17731v¥S
NOTLVNDI TTVHOILNI - JYILNT ¥3A0

A

LEIEI RPN

NOIL1YNO3 YY9ILNI

| .

62



quasi-static solution accounts for the same percentaée of energy.

3. The wavelengths of the even and odd fﬁndamental modesrare, respec-
tively, about three and four times those of the corresponding modes
of a thin wire whose length equals that of the boom. This increase
in the resonance waveléngths implies that the induced current continues
to oscillate with significant amplitude even long after the photon
pulse has passed the satellite. '

4. The even fundamental mode can be excited to a comparable extent by
the moving electrons and by the redistribution of the positive net
charge on the satellite left behind by the ejected electrons.

5. The fundamental mode of the boom current can be calculated with
sufficient accuracy from a RLC network excited by two types of voltage
generators, one type accounting directly for the field of the moving
electrons and the other for the induced currents and charges on the
solar panels and the central cylindgr. The resistance R has to be
computed from antenna theory, while L and C are respectively the
inductance of the boom and the capacitance between the solar panels
and the central cylinder.

6. The time history of the boom current is calculated, by superposition,
in terms of the total number N_ and temperature T of an incident

16 photons per square meter and kT = 1 keV

photon pulse. For Nv = 10
4

(these data correspond to a flux level of 10 cal/cm?), the peak
current 1s of thevorder of hundreds of kiloampereé.
: . . e o _—

It appears that since the fundamental mode alone is very close to the
true dynamic solution, the most natural and important extension of the present
work is to make use of the results on the fundamental mode to calculate the
low-fluence response of the satellite. Such a calculation will consist of two
parts: one part is associated with the redistribution of the positive net
charge on the satellite and the other part deals with the effect of electrons
moving outside the safellite. This suggested direction for extension is indi-
cated in figure 16 by broken lines. Another important direction for immediate

ihvestigation is to seek a set of self-consistent equations for the determina-

tion of the amplitude of the fundamental mode. The end result of this report
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