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Abstract

General solutions for the transmitted and reflected waves in integral form are
obtained for a plane wave of arbitrary time dependence, normally incident upon a
semi-infinite, cold, collisionless, homogeneous, anisotropic ionized medium. The
special case of an isotropic plasma with an incident wave of harmonic time depen-

dence is also investigated.
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Transient Reflection and Transmission of a Plane Wave
Normally Incident Upon a Semi-Infinite Anisotropic Plasma

1. INTRODUCTION

The steady-state solution of wave propagation in an anisotropic plasma has
been carried out by several authors. 1-3  The technique is to solve Maxwell's two
curl equations along with an equation of motion for the electrons in the plasma.
This set of equations is combined into a partial differential vector wave equation of
both spatial and time dependence. The usual method of solution is to assume that
the time dependence varies as e’-iwt where w is the angular fi'®quency of the input -
wave. With this assumption it is possible to separate out the time dependence of
the complete solution, and then to solve the remaining ordinary spatial differential
equation. A correct solution to the partial differential wave equation is obtained
with a time dependence of e Wt

The question arises as to whether this solution is the total solution to the steady
state problem. It has been suggested by Hutchital? that, for a collisionless plasma,

B
an oscillation at the cyclotron frequency, £ = qmo , should also exist. Hutchital's

treatment involves solving the equation of motion for the electron orbit for a forced
electric field of e-im. This solution yields velocity components oscillating at both
the signal frequency and the cyclotron frequency. Similar oscillations will exist

in the current density, 6( =nqVv. The cyclotron frequency compone_nt of the current
density will in turn induce similar time-dependent components of e_lnt in the

(Received for publication 1 May 1964.)



electric field and magnetic intensity as a consequence of Maxwell's equations

UXE = -y 2%
”o ot
and
- - se
VX% = +
5{ eo ot

As yet this phenomenon of a steady-state cyclotron oscillation has not been observed
experimentally.

Some closely related experiments have been conducted by Schmitt. 5,6 These
experiments consist of transmitting nanosecond pulses through a plasma. In the
absence of a dc magnetic field, a transient 'ringing' at the plasma frequency II is
evident. When a static magnetic field is added along the direction of propagation,

a transient 'ringing' at two different frequencies is observed. The major oscilla-
tion occurs at the cyclotron frequency 2. Superimposed is a secondary oscillation
at a frequency close to J Q2+ II2. It is to be noted that these experiments involve
single-pulse transmission rather than a steady-state condition, but the ringing of
the signal at the cyclotron frequency could be related to Hutchital's problem.

The question of a forced steady-state oscillation at the cyclotron frequency in
a collisionless plasma is not fully answered. The complete rigorous solution in-
cluding transient effects for a plane wave of arbitrary time dependence, which is
normally incident on a cold, collisionless, homogeneous, anisotr(;pic half-plane
plasma, has not yet been reported. By solving this problem using Laplace trans-
form methods, it is anticipated that a complete solution can be obtained. This
solution should shed light on the proposed forced steady-state cycloggon oscillation.

In addition, the important situation of a plane wave of sinusoidal time depen-
dence propagating into a homogeneous, isotropic, ionized medium has apparently
not been rigorously solved. The more general solution for the anisotropic medium
should apply if the static magnetic field is relaxed to zero. The solution of the
anisotropic case will thus be useful in an isotropic medium.

In this paper an exact general solution to the anisotropic case is obtained in

integral form.

2. THE ANISOTROPIC CASE

Consider a linearly polarized plane wave, initiated at t = 0, traveling in the
positive z direction. Att = zolc, where c is the speed of light in free space, the
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B,

wave is incident normally upon a semi-infinite, cold, collisionless plasma. A con-

stant dc magnetic field is applied to the positive z direction {see Figure 1). Itis

desired to calculate the reflected and transmitted waves for all later times.
Maxwell's equations yield the manner in which the wave propagates in free

space. Maxwell's equations for this case are

3 1(z,t) B’)+2(Z.t)
_— =, ——— (1)
az o ot
and
8')4—2(2,1:) a¢& 1(z,’v:)
— —— = = . . - ) ) - 2 -— -
Y €5 ot . . (2)

where the electric field is taken along the positive x direction, the magnetic intensity

along the positive y direction,

€ free space permittivity,

o
and

M free space permeability.

o}
A Laplace transformation in time yields

dEl(z,p)

dz = THGP HZ(Z’p) (3)



dH, (z, p)
T = -Gop El (sz) (4)
where the initial conditions & 1(z, o) and Hy (z, 0) have been set equal to zero. The

magnetic intensity can be eliminated to give

¢? E,(z,p) 2

. P
— - T T EeER
z [

(5)

where ¢ = 1/\f € My

Solving for El(z, p) we have

-z
El(z,p) =F(ple ,

olg

where

Flp) =xX[f(1)]

and

f(t) = the time dependence of the electric field at z = 0.

Then
P

=2z

clw¢)=i'1[F@)e°_J=f&j§)uu-§), _ (6)

2 o for t<
where U{t - -E) =

oln olN

1 for t>

For the usual sinusoidal case we have f(t) = Eo cos wt.
Then

£ 1(2, t) = E0 cos (wt - koz) Ut - %) , (7)

where k = X .
o c



For a plasma 1mmersed in a dc magnetic field, Maxwell's equatmns must also
include the current density 4 The current density is defined by ,51 = nqv where
n = number of particles,
q = charge of each particle,
T = average velocity of each particle.
The equation of motion for an average electron is simply

mvi=q£i+q€ijk vak' (8)

This equation gives two component equations,

v, =L €.+ 0y, (9)
and
\}2=-fnq— 62-Qv1, (10)
qB,

where the cyclotron frequency £ = —= -

Taking the Laplace transformation in time of these equations and setting the initial

electron velocities equal to zero gives,

- q ,
pvV, -2V, =L E (11)

2 1

and

QV, +pV, =

glo

1

Solving these equations for V, and V, and using the definition of current density,

we obtain
E
1+ E__E_Z
e T2 P 1 E 1
Jl -Eo —-m— P 1 (3)
and
-2 TEI
2 P B9
J2 "Eo H —p2+92 pEzJ (14)

E,. ' = (12y-- -



where

2
H=(“q

vz .
Eom) = the plasma frequency.

Maxwell's plasma equations after a time transformation and for initial conditions

of zero, become

dE
—_ 1 = - H
dz HoP Ho s
E
2 Q 2
dH, 1 (1+‘p“ _‘“El)+l -
= - € p B
dz o] p2 +92 1
dE2 : H
dz “op 1°
a2 (;.2 E
dH, P E, .
= € + p .
dz o 2+92 2

If solutions of the form E, = Ale-az, E, = Aze_az, H
are substituted into the above equations, one obtains

alA

aB

aA

aB

1

=#, pBy.

2 2
112 (pAl +QA2) +pp” +Q )Al

]
m

0 p2+92

=-# pB,,

n? pa, - 24 +pi° + 224,

o Y

(15)

(16)

(17)

(18)

-az

1"

(19)

(20)

(21)

(22)



Eliminating By from Egs. (19) and (20) and eliminating By from Eqgs. (21) and (22)

yields
0 n% (A, + Q4A,) +pipl + a?)a
a A1 = € HSP 5 5 (23)
i pe+ K
and
\ n? (pa, - QA +pp® + 274,
a“A, =€ KD 5 (24)
L p° + Q2
Taking the ratio of these two equations gives
A, 1% Ay + 8y +pe° + 224,
B, 112 R~ : (25)
2 I° (pA, - 2A) +plp” + Q) A,
Cross multiplication and collection of terms of Eq. (25) will result in
A, = 1A, . (26)
Using this relation in Eq. (23) will give
2 .
= E 1+ — I -
2 c [ Pl &%) @n

< : -
The general solution for the fields will consist of a linear combination of the partic-

ular solutions or

2
= (_ Zp I 2
El(z,p)—Al{ylexpLT 1+pp+i :l+ yzexp[

where Y4 and Yo are arbitrary constants to be determined. At this point it is con-

venient to introduce the following transformation.

Ef(z,p) = IIZ[EI (z,p) +i E, (z,p)]

HE (z,p) = 1/2 [Hz (z,p)FiH, (z,p)]



Use of these relations in Egs. (15), (16),(17) and (18) will yield a transformed wave
equation for both ET (z,p) and HE( z,p) which leads to

2
11
Ei(z,p)=A1 eXP[-%p 1+W :I , (28)

To obtain A1 it is necessary to match boundary conditions at the freespace plasma

interface. The following relations must hold.

+ + _ %
EI + ER = ET {29)
and
+ £ _ .t
HI + HR = HT . (30)
Also
E * ol ok
| R _ T _
— =2, — =-Z.,; — = Z
H + 1 H + 1 E: 2
1 R T
If we define the transmission coefficient as
+
E
+_ 7T
T = — R . : e - @31
EI :

then using Egs. (29) and (30) and the impedance relations above, we have in the

usual manner.

o 2 (32)



But
®
Zl : eo
o]
and
Z = A]' = ’Jop
2 BZ a
Thus
T - 2 : (33)
In
L+ 1+ sarm
We define
+
E
RrE = B:t
Ey

Then from Eq. (29)

T*=-1+Rrt. (34)

It is now convenient to make a shift of zo/c in the time axis. Att = 0 we have the
wave in free space incident upon the plasma at this instant. We stipulate that the
time response of the wave for t <0 is zero, and for t > 0 is f(t). At the interface

we have . ' . : -
Z 2
+ ] II
= - — 1+t ——
T F(p) A1 exp — P J S 1)
where

0 -pt
Fp) = [ ft) e Prat.
o3
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The complete solution for the transmitted wave in the plasma becomes

[ () o [ o |
N _2Fplexp | - |——] Pyl * o ag) _ (35)

ET (Z;P) = 2
1+ Jl TR | S
plp £iQ)

Taking the inverse Laplace transform of this expression will lead to £ ,(1_,1) (z,1).
Equation (29) can be used to obtain the reflected wave. The reflected wave in free

space is

Eg (z,.p) - 2F (p) - Fp) . (36)
1+ ,’1 —
plp i 82)

The inverse Laplace transform of Eq. (36) will lead to € i}l) (Zo’ t).

Use of the convolution theorem enables us to obtain some general expressions

for these inverses. The convolution theorem states that

t
2 FE e = [ - ) gln) dr, (37)
0
where
°° t
Fp) = [ ) e at,
o
S
o0 - _ t
G(p) = f git) e Plst,
o
and
;[,_I[F(p) G{p)] is denoted as the inverse Laplace transform.
2.1 The Reflected Wave
The reflected wave is given by
E5 2.t =L} 25() “F) | . (38)

11+ n?
plp £i¢2)



Let
2 :
M” =plp £iQ2)
or
M2=(p_a)z+ﬁz
where
. iQ
@«* Iy
and
.o
==
Then
T - 2 . 2/ (p-a)® + 82
7
1+J1+ o Jwo-a?+8 +[m-a?+p%+ 02

The shifting theorem of Laplace transforms states that

tlicp-a] = 27 [ap].

Therefore

27l TE) = e 27

'/p2+32 ’ %

1
[2+p% + [P en?

(39)

We note from Campbell and Foster' [Eq. (576. 3)] that

-1 9 2Jl (xt)

N S— e
p+/p?+x?

L

and also

21 (pG) - glo)] = Eagtﬁ, (40)

11
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Then

-1 2p _ -1 2
LTl —2E 1=z p(———— ) - glo) + glo)
l:p+‘/p2+l'[2] [ p+;pz+nz

(ZJ (Ht))
d
s It + go) 5 ()

23, (Itt)

a(t) - :

n

From Erdelyi, 8 et al. [Eq. (5.1-5)] we have

t

21 [G(Jpz + g )] =gw -8 [ g(|/t2 - )Jl (Bu) du . (41)

(o]

Equation (39) becomes

“lrdy - eat{ s(t) -

1
27, (Ht) J‘{ 2J2(th2-u2)
8 t —u

.[ 3, (ﬁu):|du }

which reduces to .

23, (Ht) .o sz\/t u?) s ( ) gu

:FlQ'r/2 (42)

£ 71Tt - 5(t) -

Then from Egs. (37) and (38)

T 2 2 Qu
2) (11 7) J (" -u")J ——)du
+ 2 1( ) -8(7)}:' ar

t
* FiQ7/2 2
€5 (z 1) = [it-7) |:e {3(7)-_ Q
R Yo
) | T /Tz - 42



or
T

O 2. 2

t - 23, (11 7) 3, 2y o 22 gy
CRi (zdt) =0ff(t'7) e:FlgT/Z —L‘T— +Qf 1( 2 )

where f(t) is the electric field of the incident wave for all time.

13

dr, (43)

Equation (43) gives the time dependence of the reflected wave at the interface.

The spatial solution can be obtained using Maxwell's freespace equations.

Since

free space is nondispersive, the time dependence of the solution is given within a

constant phase angle for each spatial point by Eq. (43).

2.2 The Transmitted Wave

The transmitted wave is given by

{-22) o v it
i -1] 2Flexp | -|—5 Pyl* Slpa1

ET (Z,t) =-t

e

1+‘I1+ p{p £if?)

Let us examine

L-1 (z_zo) Hz
- 1+ ——
P c PJ p(p £10)
: w2 _ 2 2
As before we call p(p +i2) = M” and M = J(p—a) + 8.

Then
. - ) S
pJ1+ 2 =p!Mernz
plp i) M2

We now let

s=p-a-= ‘}MZ-BZ.

This results in

am2+ 1'[2

2 2
prp(pnﬁm _ste [ip2 2. [ B)(M s

:j;f[z_nzﬁz +(H2_32) + QdM2+H2

M2 M

M

(44)

(45)
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Then
zZ-2 2 Z-7Z 2,2 2 2
ol e oA AT

(46)

- 2,2 ‘/ 2, 72
=e°!t£1|}xp{-(z con‘[rz_ IT 2B +(12p%)+ @ rr+I[ )H
r

where r = sz + 62 .

Considering this product of exponentials we observe that

2-2 2,2 Z-Z .
exp [( . °) Jpz-“ £ +<n3ﬁ2)] - exp[—( c °) ‘/Gw%ﬁ)zﬂn —iﬁ)z] (a7)
P

From Goldman9 we see that

el ]

a(tf:ﬂ-(f:o()ii'}i’ (w2 o )
t2-|—2 ]

and from Erdelyi® [Eq. (4. 1-36) we have

£ 4 .
gt-l [_1_. G(p"' l):l =f JO (2 \,'yu‘t -'yuz)g(u)du
P P o

so that

t
-1 Y| _ d _ 2
£ [G(p +5):| = Eof JO (2 V'yut Yu )g(u)du

1
2
J. 12 Yyut - (u) udu
f 1( s )g . (49)
o
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From Egs. (47), {48) and (49) it follows that

_ z-2 2,2 z-2
21 exp{_( co)\/Pz‘pr +n2-32} =8(t_ co)_

zZ-z
( QN1 -iB) z-z \2 z-2
==L J, | (@-ip) tz—(——‘l) U(t- 0) -
72z \2 [ c
t2 - 0)
c
tr (z-zo
zZ-2 (II- iB) z-z \2 z-Z
-1HBO‘[5(L1- co) < = Jq (I -iB) uz-( co) U( —TO) .
=
o L ul -
c
Jl (2 Vil’[ﬁut - il'IBu2 } udu
' (50)
VimBut - impu?
and calling the right-hand side of Eq. (50) by h(t) we have
Z-Z 2,2
271 exp{'( co) \]Pz' Hzﬂ +H2-Bz} =ht). (51)
b .
Use of Eq. (41) will result. in
: Z-Z 2,2 t )
&t exp{- (_c_°) \/rz - P v -gP - nw - th( t2-u2)J1(ﬁu) du.  (52)
r o

We shall now turn our attention back to Eq. (46) and investigate the second

exponential on the right-hand side, namely

C T

Observing that

sz + H2 - J(Iﬁ;’)z)-'- ! (53)
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and also from Erdelyi8 [Eq. (5.6-22)] that

o0
2 2
) 2 5@ o) 3 (Yu? - b?) du
27t lexpd -1 A =J(2\’bt)-bf o® o) 3
3 ) o 7.2

(o]

and, using the relation

271 |:G (%)] = A g (A1),

we find

-1 _
L “lexpy - _HEJ a(_zz) a'(zz)

’ 2
P L2 2
a(z-z ) (n +1 4 (2 ot J’ ( -b du

=n (). (54)

It thus follows due to Eq. (41) that

afz-z ) \‘ 2 2 t
271 - -2 §? + 1 =n(t) - Bfn(\‘tz—uz)Jl (Buw) du . (55)
(o] .

exp S =

Finally from the convolution theorem and Eqs. (52) and (55),

t
- t-7 3
- zZ-z ’ 2 { i
eﬁ.lexp -( = 0)p 1 p(p+19) = a’tjl}t(t 7) -B fh((t 'r) -u )J (Bu)d1€|

[o]

.
nir) -8 f ’7‘ V'Tz -2 )Jl (Bu) du| dr. (56)
o

The expression for the inverse Laplace transform for

2 F(p)

H2

1+\1+——
pp £if2)

has already been found and is given from Eq. (42); that is,



17

p t . 2J (7)
271 2F(p) = [ ttt-) SFiRT/2) 5y 3
2 o
1+ 1+-—-——-—-—-p(p:tin)

+9f T2 (H\!_T‘[j e )du}d—r]. 67

Forming a convolution of Egs. (56) and (57} will in principle yield the complete

solution to the transmitted wave in the plasma. The general expression is given as

T
t tex 23, (I 7) 3.2 -2} 1. (Bu)du
E.I:F (z,t) =f f ft-x-1)e* <5 (1) - 21_ +nf 2( ) 1 a7l e
°o |o \!Tz 2
) o]
X=-T
. f h (x-7) - B f (V(x-'r)z ﬂuz )Jl (Bu)duy> e (58)
o
T
o <nfr)-8 fn(v yz)Jl(ﬁy)dy dr| dx,
where

zZ-Z .
- OV (11 -iB) z-z_\2 z-2
h(t):a(t-z:")-( = ) i 3, [ -ig] t2 ( c°) U(t— c")
vz z-z \2
t - _ B

h et oL 22

Jl( vﬂ'lﬁ(ut -u ) i
Vil’[ﬁ(ut - u?)

and
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N = IIc Jl 9 IMct 1+ c c{T Jl/ c
a(z-—zo)t V a(z-zo) v2B(Z-zo) a(z—zo) 2 B(z-zo)
R Y
b= 3

3. THE ISOTROPIC CASE

3.1 Sinusoidal Time Dependence

While in principle Eq. (58) gives the total wave solution, the expression is
extremely complicated. Insight into the problem can be obtained by considering
some special cases of the more general problem. First, we will consider the case
with no de magnetic field. This is equivalent to allowing 2 = 0. Assume a time

dependence of

£ = E_ et gy

For this condition Eq. {43) for the reflected wave becomes

t -
iwT -
- Jo (Il T} d7
(1) _ -iwt € 2
8 (Z ) 2 Eoe f T . (59)
o
The transmitted wave can be obtained from Eq. (44), that is <
z-2
£ W=7 2REE) o _( CO) p2+m?p | . (60)

p+|p+n2

Utilizing Eqs. (48) and (57) we obtain
t

. 27, (II x)
8 (1) (Z, t) =K j{e‘lw(t-T-X) s (X) _ —2-——-}(1}{ Ps
o] X
o

T
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or
t teT
iwx
. e J o (TIx) dx
GS)&J)=E.I é“““T)l-zJ[ RS o )
o X
le) o]
z2-Z z-z \2 z-z
Z-7 ( c’)HJl (1 '1'2 -( 0) U('r- 0‘)
. ) (1,_ 0) _ C (o] o] dr
¢ Vz z-2 \2
* (%)
c
and finally Z~Z
(=)
c
iwx
. 2-2 e J (IIx) dx
ES[.I)(z,t) =Ec’e_1wc exp iw( = 0) -2 ]2(
t 0
. z-z \2 : z-2 |2
2z JelmTJl (1'1 VTZ _( o) ) 90107y 61 72_( o) )
_( ol C _ 1 c .
c
zZ- 2 z-2 \2
Y l‘ VTZ _( o) 1‘2 _( o)
o)
c
t-7 iwx
e Jg (IIx) dx 2-2
o | - ar | - U(t- °) (61)
o

Equation (59) gives the reflected wave at the interface for all times. This wave
will travel in the negative z direction undispersed in the freespace half-—plane. While
this integral is not listed in closed-form, for large times the Besgel function may

be expanded in an asymptotic expansion yielding

t
. 0 jwr J,{IT)dT
£ 121) (zo, t)~ 2E e vt J € 2

T

372

t - _ 57, 4dr
Mz f (cos wT + i sin w7) cos (IIT - =)
K
o
where to is large enough so that the expansion is valid. The first integral of the
above expression is simply a constant. The second integral is not listed but

(since cos [l‘['r - %:I = cos % cos II7 + sin 57'” sin II7 ) yields integrals of the form
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cos wT cos H7dT

3/2 :
-

tO

t

f cos wT sin M7 dT
t ,,.3/2

o

f sin wT cos 1T dr
+3/2

sin wT sin I 7 d7
-3/2

o~
O S+

Integrals of this type yield damped sinusoidal oscillations of frequencies |u + 11 l
and Iw -1I I . This can readily be seen by graphical integration. We therefore
see that the transient reflected wave from the interface will have oscillations at
the absolute magnitude of the sum and the difference of the signal frequency and the
plasma frequency.

Looking at the transmitted wave we make another interesting observation. For

Z-Z
Q

times of the order [ + A], where A is a small increment, the integrals in

Eq. {61) contribute very little to the expression. On this small time scale the

transmitted wave in the plasma becomes

: z2-2
E.(I.l) (z,t) = E_ exp -i[wt-w ( CO:I ,

which is just the way in which the wave would have travelled in free space with no
plasma present. This result is independent of the plasma frequency if the order of
A is small compared to 1/ II . This simply means that the wave must 'try out' the
plasma to determine the plasma frequency and then act accordingly. This result,
well known for dielectrics in general, was first discovered by Sommerfeld and
Brillouin and is pointed out by Stratton, 10

Allowing t to become very, very large in the general expressions should yield

the steady-state solutions.
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Considering the transmitted field at z = z, We have

bRy, (Mx) dx

(1) _ -iwt
Er’ (2.1 =E e 1-2f = (62)
o
Then allowing t to become very, very large gives
0 _lwx
. J, (IIx) dx
(1 _ -iwt € 2
€ T (zo't)steady state Eoe 1-2 f X (63)
o
or
© I (Mx)ax o sinwxJ,(Ix)dx
8(1)(z " E e—iwt - f coswx Jo (1Ix +if sinwx Jq (1Ix
T ‘7o’ ‘steadystate "o X I X

From Watson, ¥ we find

.
1 =1 w
© coswx J, (IIx) dx 7 COS [2 sin (T-['):l for w= II

°f * ﬁ -m?
2fus fu?on2)

forw = II

and
-
1 . . =1l{w .
® wx Jz (Ix) dx 4 7 sin [2 sin (i)] forw =1II
- . [ ]
X T - ' .
° _ 0 for w =II
Calling
00 iwx
_ e Jz(Hx)dx
1=/ — ,
o

we see that, for w =1II,

*Reference 11, p. 405
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\-_/
el..':l
|

[1-21] =1+ .
e T i
or
w2 ,,. 12,1
2 u2 W 2
[1-21] = E— (64)
2 2
w ) 1+ ]_-n_
w mz
Tor the case w =<II we find
[1-21] =1- cos[z sin_l(ﬂ- +i sin ZSin-l(-"—J—)] .
II Il
Letting
-1f w
8 =2 si =,
sin (H)
then
sing- : 1—0058 . W
2 o
2
0= _2(__‘1.
cos T
and
sin 8 = 9 Y __“‘J_ ' .
II II

Equation (65) takes the form

[1-21] =
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and finally

[1-21) = — = . (65)

N

1+ Y1 -

N

Equations (63), (64), and (65) now give

g et [ 2 (66)

(1)
2 T 2o t)steady state” o 2

Equation (66) is exactly the same result for the steady-state solution obtained by
the usual means. Thus in the steady state the reflected wave will have simply an

eTiwt dependence.

We now look at the solution, for a wave launched at z = 0, of

£(t) = }*:oe'i"’t U ()

in an infinite isotropic plasma. The solution is given by the inverse Laplace trans-
form of Eq. (28), that is,

t 2
2 =z . A
ot | ir . Jl(l'l . -_T)U(t—‘—:-)
€z, ) =E e W | 07| a(r-2)- 25 ¢ dr
O c c
2
2 - Z
=} 2
¢ St
or
L iwT 2 22
e Jl Iy~ -5 dar
= -3 Lz _ﬂ c _z
CT(z,t)—Eoexp 1(wt c) 1-Z 2 U(t c)_
-
Z/C c2

We find the approximate steady-state solution for small values of z/c and for both
small and large values of I /w by assuming that, as time becomes very large, the

steady-state solution becomes
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o0 -
w2 z]1 f ewTJl(H'r)d-r

ST(z’t)steadystateon exp -i(wt e (67) -
o T
From Watson, * we have
w
@ 7, (IIt) sin wt T forv =1l
—— dt =
t i
0 — forw = 11
w + Vuz - I'[2
and
© J,(Ht) cos wt ccss[si.n-1 (w_)] forw = 1II
—  ® = . :
o 0] forw = 71
Then Eq. (67) becomes for w << II
- » w2z _zll )
£ T(z‘ 1:)ste.’-.tdj,' state ™ To ©¥P [ : (wt Tj| [1 © (1 ! T‘[-) ]
~ Eoe‘“"t(l - ElI) . ‘ (68)
c
The usual steady-state solution for w <1II is given as
- -iwt z 2 2
€ T(z’t)steady state - To® QXP{' c I -w } : <
and for w << I and small z/c
_ —iwt _~2zll/c _ -iwt _ 2l
€plz. 1:)steady state~Eo® N =Eye |:1 i :] : (69)

so that for this order of approximation Eqs. (68) and (69) agree.
For the case of small z/ c and w >> Il.we have the freespace solution from Eq.
(67)

2 T(z’t) steady state =E0 exp [-—i (ut - w_z):l . (70)

*Reference 11, p. 405.
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The usual steady-state solution for the condition w > II is

- -iwt . 2 2 2
ET(z’t)steadystate_ o exp (12 w” - I )’

which for w >> Il reduces to

= - -z
€ T(Z’t)steady state ~ Lo €XP [ I(Mt c ):I (71)

We see that Egs. (70) and (71) also agree for this order of approximation. In fact
Egs. (59) and (61) are exact equations and should in general reduce to the steady
state solutions for large times, although to show that this is true may be a formid-
able problem.

We have thus far seen, for waves of sinusoidal time dependence incident on a
semi-infinite isotropic plasma, that the waves initially travel through the plasma
as if it were free space. This is true even for an over-dense plasma. This condi~
tion exists on a time scale small compared with the plasma frequency period. On
this time scale there is essentially no reflected wave. At larger times the reflected
signal will 'ring' at beat frequencies of the sum and difference of the signal fre-
quency and the plasma frequency. This effect will also occur in the transient trans-
mitted wave as evidenced by the first integral in Eq. (61). For very, very large
times the waves should approach the usual steady-state solutions. This has been
demonstrated for the reflected wave and also for the transmitted wave at the

boundary.

3.2 Step-Input Case

We now consider the step-input case. The time dependence of the wave at z = o
becomes f(t) = EO U (t). This is equivalent to letting the frequency approach zero in

the sinusoidal case. For the reflected wave Eq. (59) becomes

t I (II7) 2.J, (It
(1) _ 2 B 1
€x (zo.t)—-ZEoof—1r dr = E_ —ni___l

and the transmitted wave at the interface becomes

2 J1 (I1't)
o It

8.(1}) (zo,t) =E

These results have been previously stated by Schmitt. 3
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4, CONCLUSIONS

General expressions for the transmitted and reflected waves in integral form
are obtained for a linearly polarized plane wave of arbitrary time dependence pro-
pagating along a static magnetic field and normally incident upon a semi-infinite,
cold, collisionless, homogeneous, anisotropic plasma. The solutions yield inte-
grals involving products of Bessel functions with arguments related to Qt/2 and
IIt. For a complex time dependence, e-iwt, products of cos wt and sin wt with
the Bessel functions occur. These expressions will give complicated beat fre-
quencies involving w,Il, and £. These integrals are not listed, and have not yet
been reduced to a simpler form. It has not been possible to obtain the steady-
state solution in closed form from the general solution.

In the general expressions for reflected and transmitted waves, if @ is relaxed
to zero the isotropic solutions are immediately obtained. Examination of this case,
for an incident wave of e 1%t dependence, has been carried out. For this case the
wave initially travels through the plasma as if the plasma were free space. This
occurs regardless of whether the plasma is over dense or under dense. The time
scale for this propagation is small compared with the plasma frequency period. At
later times both the reflected and transmitted waves will 'ring’' at frequencies

| wtIl | These 'ringings' are a transient effect and vanish as the steady-state
condition is approached. The steady-state case is investigated at the plasma-iree-
space interface and also in the plasma for shallow depths. The solutions for both
cases reduce to the standard solutions. It is seen that the step-input case is a
special case of the sinusoidal case where the signal frequency is set equal to zero.

It is planned to try reducing the integrals obtained for the anisotropic general
case by analytical methods. If this fails numerical integration will be carried out
to determine the behavior of the complete solution including both transient and

steady-state solutions. o - ’ .
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Page 24: Equation immediately preceding Eq.(68) should read

og o-iwt[yzhf e
6’T(z’ t.)steady state Eo € lil c (l 11‘[)]
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€T(Z’ t)

steady state ® o
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Page 18: at top of page, for n{(t) should read
n(t) = II}/EG% 3, (2 Mz—ftzo—)) [-1+V2ﬁ(§_zo)(a("zﬁo)Jllz(ﬁ;c_z—o))]

instead of

N T\ 1 AL Fea
n(t) = a(z-zo)t Iy (2 a(z-zo))[“ 2)3(2_20) (a(z-';())) J1/2(B(z-z°))]

Page 23: Bottom of page should read:

wz t einJln'rz-%)d'r
€ (z,t) =E_e Wtcc .20 < t-2)
izt =E e e =% 5 U( P
zfe 2 z
7l 2
2
c
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iwT 2 z2
—i(wt—'m—z) t em Jl(l'l T '—2)_d‘l'
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© ¢ Jz/e v 2 z
T - —
2
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Page 24: Equation {67) should read:

0 _iwT
. e J,(M7)dr
- ~iwt{,_zI 1
@T(z, t) Eo e [1 ——j ]

steady state c T

instead of
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