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Abstract

The asymptotic behavior of transient signal propagation in lossless, isotropic
plasmas is discussed at length for a typical input signal of a step modulated sine
wave., A generalized saddlepoint integration is carried out that gives a continuous
solution for the dispersed signal everywhere except at the signal wavefront. The
solution for the wavefront is obtained by using a high-frequency expansion technique.
Universal curves are presented for the behavior of the distorted signal as a func-
tion of the plasma frequency, signal frequency, and propagation distance. The
solution is a very good approximation for plasma propagation lengths that are long

compared to a wavelength,
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Transient Signal Propagation in
Lossless, Isotropic Plasmas

Volume |l

1. INTRODUCTION

In a previous report on this subject (Haskell and Case, 1966) numerical solu-
tions were obtained for the propagation of signals in a lossless, isotropic plasma.
These numerical integrations could be carried out for propagation distances of a
few wavelengths at most. When the distance the wave propagates through the plas-
ma is a very large number of wavelengths, some alternate methods of solution
must be found. It is the purpose of this report to describe asymptotic solutions
which are valid for long propagation distances.

Early work along these lines was carried out by Sommerfeld (1914) who showed
by making a high-frequency expansion that the very first part of a signal, called
the signal wavefront, arrives at a given point with the velocity of light, ¢ . Som-
merfeld's solution, which is described in detail in Section*®, is valid only for a
short time after the arrival of the signal wavefront. By using a saddlepoint method
of integration Brillouin (1914) found solutions that are valid in a certain time in-
terval following the Sommerfeld region, The signal in this region is called a pre-
cursor since it preceeds the arrival of the main signal. This work of Sommerfeld

and Brillouin has been summarized in a book by Brillouin (1960} in which some of

the important early papers have been reprinted.
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The arrival of the main signal follows the precursors. However, the standard
saddlepoint method of integration must be modified in this region since the saddle-
point is approaching a pole in the complex plane. Methods for appropriately modi-
fying the saddlepoint method under these conditions have been discussed by
Cerillo (19850), Clemmow {1950), and Van der Waerden (1950). Cerillo's method
involves an expansion about the pole and leads to the so-called coinciding pole
solution. This solution is discussed in Appendix C of this report. This method
has the disadvantage that it is only valid in the immediate vicinity of the pole.
Following the method of Clemmow (1950), Pearson (1953) treated the transient
propagation of sound waves in acoustic waveguides. This method leads to a gen-
eralized saddlepoint solution which is valid for all times following the arrival of
the signal wavefront and is continuous as the saddlepoint crosses the pole.

The method of Van der Waerden (1950) involves a transformation which maps
the saddlepoints in the original complex plane into branch points in a new complex
plane. The evaluation of the integrals is usually somewhat more cumbersome by
using this method. Karbowiak (1957) attempted to use this method to describe the
transient propagation of electromagnetic waves in waveguides. However, his
original contours of integration violated causality and, as a result, he only included
one of the saddlepoints in the problem. His results therefore only include part of
the solution. In particular, his prediction of large so-called B-precursors imme-
diately following the arrival of the signal wavefront is incorrect.

The problem of obtaining asymptotic solutions for the transient propagation of
electromagnetic waves in waveguides has also been considered by Cerillo (1948)
and Namiki and Horiuchi (1952). Both of these treatments make a conformal trans-
formation of a trigonometric nature in the original integral which is unnecessary.
In neither case is the problem of the saddlepoint near the pole treated in a manner
which is valid over long intervals of time. )

In Appendix A of this report the general method of saddlepoint integration is
described in detail. This general solution includes the case of a saddlepoint
crossing a pole of order n . . This case leads to solutions which aze related to N
Fresnel integrals. These results are applied to the problem of the propagation of
a turn-on sine wave in a lossless, isotropic plasma. The general asymptotic solu-
tion is obtained in Section 3. Approximations to this general solution which are
valid over certain intervals of time are discussed in Section 4. It is found that the
general solution can be broken down into an anterior transient solution which is
valid in the region before the saddlepoint crosses the pole, the main signal build-up
which occurs when the saddlepoint is in the neighborhood of the pole, and a posterior
transient solution which holds in a region after the saddlepoint has crossed the pole.
General curves are presented for the solution in each of these regions and the total

response is plotted for a typical case.



The problem of transient signal propagation in a lossless, isotropic plasma
may be formulated in the following way. Maxwell's equations which describe the

propagation of electromagnetic waves in an isctropic plasma are

_ 3
curl £ = - B, —atﬁ-
(1)
- 8£
curl if' = £+€0 5
where
J =-Nev , (2)

N being the electron number density and v being determined from the equation of

motion

(3)

e
ot -~ "~ mér

Consider the one-dimensional problem in which £ is linearly polarized in the
xl-direction and is propagating in the x3-direction. Let the xl-component of
£(t,x3) be written as £(t,x3) and the Laplace transform of £(t,x3) as E(s,xs) .
If one then takes a Laplace transform in time of Eqgs. (1) through (3) and solves
for E(S,xs) setting all initial conditions equal to zero, one readily obtains the

equation
2 2 2
4 E(s,x) - (=51 ) E(s,x;) = 0 . (4)
2 3 2 3
dx3 c
where
_ 5 \1/2 ) ' =
M = (Ne )
€. m
o

is the plasma frequency.

The problem is to determine the time response f(t,xs) in the semi-infinite
region x5 >0 when the time response £(t,0) is prescribed at x4, =0 . The solu-
tion of Eq. (4) may then be written

X
E(s,xg) = E(s,0) exp { ~ =2 (s%+ )L/2 ©



where E(s,0) is the Laplace transform of £(t,0) . The time response ._E(t,x3)
is then obtained by taking the inverse of Eq. {(5). That is,

X 1/2
E(t'x3) = r_l” f E(s,0) exp {st-—c:}-(sz+l'12) } ds (6)
¥s

where the contour vy is a line in the complex s plane from o -iw to co+i «©
and Co is to the right of all singularities. This condition is required by the

causal nature of the solutions. This report will deal with the propagation of a

turn-on sine wave with a carrier frequency W, - It will be convenient to normalize

all quantities to W, by introducing the following parameters:

‘r=wot

_w0x3
noE c

(7)

P = —

w

o
z =-wi=x+iy .

o

Using these definitions, the integral Eq. (6) may be rewritten as

1/2
£Llr,n) = T fwo E(z,0) exp‘lz1'~n(z2+P2) }dz (8)
Yg -
or, letting
= X S :
§ 7 (9)
as
1/2
£(E,n = 2:.ri f W, E(z,0) exp {1; [&z— (22+P2) :I I dz . (10)
Y

z
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2. SOMMERFELD SOLUTION FOR THE ARRIVAL OF THE SIGNAL WAVEFRONT

In order to describe the arrival of the signal wavefront, the integral in Eq. (10)
will be evaluated by making a high-frequency expansion, Consider a unit step sine

wave input for which

w
BE(s,0) = 2 5
s + wo
so that
1
w E{z,0) = .
N z2 + 1

Equation (10) can then be written as

e o 5]

1
E(E,n = - dz .
27i 22+1

(11)

Yz

If the radical in the exponent of Eq. (11} is expanded in powers of P2/z2 , keeping
only terms up to first order, then by using Eq. (9) the exponent can be written as

1/2
2 2
z[&n-n(1+—r—,—2-) ] = z(r-n)-"zlz
z (12)
= ZI‘-S )
where
r=qT1-n, % -
(13)
g - 2
2

Making the further approximation that 22 > 1 (that is, 52 > woz), one can then

write Eq. (11) approximately as

|
1 exp | zr - =
Elr, )} = 71 f 3 N dz . (14)



For r <0, the contour vy, can be closed in the right half of the z-plane for which
case £{r,n) =0 . Thatis, no signal arrives priorto r=0 or r=7. For r>0
the contour vy, can be closed in the left half plane. The integral along the path at
X = =« vanishes so that Eq. (14) can be written as a closed path for this particular
contour. Furthermore, this contour can be deformed into a large circular path so
long as we encounter no singularities in the deformation. If the radius of the large
circle is selected to be Nf?ﬂT, so that

.- ,_;1 Li0 (15)
dz = i{% efap |
then

zr -3 = 2ivrq sing . (16)

S e

The integration is to be performed over an interval of 22 in @ . It is convenient

to select the interval -% < 6 < % . Using Egs. (15) and (16) one may then
write Eq. (14) as
__ 3m/2
1 r . .
Elr, ) =EJE f exp11[2'\}rqsm9-9]l dé
-m]2

Making the further transformation
T
8 = p-3
sin 6 = -cos ¥ ,

one obtains

2
£(r,m) = 2—1,, Efﬂexpl-i [2¥rq cos ¥ + ¥] } dy . (17)
0



o—

Using the identity {(see, for example, McLachlan (1855) p. 192)

27
5T = £ [ exp |-i [2Tq cos ¥ + #]| av
0

one may write Eq. (17) as
gr,m) = T 3,29 (18)

or, using Eqs. (13) and (9)

1/2
£lr,m) = ﬁ% Jl(Vzpznz(g-n)U(g-n ) (19)

By letting

u = 2P%q(r-n) (20)
Eq. (19) can be rewritten as

Py g(r, ) = VB I,0W) U@ (21)
Equation {(21) represents a universal curve for the initial arrival of the signal.

This curve is plotted in Figure 1.
In order to investigate the range of validity of Egs. (19) and (21), note from

Eq. (15) that

2| =

=i

The approximations used in the integration of Eq. (11) wére
l2f? > p?
and

zZ > 1
|22

Since P is normally less than unity (for an underdense plasma) the second condi-

tion is the more stringent and is equivalent to



Pzﬂf(r.iﬂ

Figure 1. Universal Curve for the Sommerfeld Solution

Hl.o

>> 1 or r << gq . (22)

Using the definitions given by Eq. (13) condition (22) reduces to

2
Ton << L (23)
This condition shows that Eqs. (19) and (21) will work well for the Tront of the sig-
nal if p is large. However, as r increases to the point where condition (23) is
no longer valid the expression given by Eq. (19) breaks down. In the following
sections the form of the signal for these later times will be determined by using a

saddlepoint method of integration.

3. ASYMPTOTIC SOLUTIONS

The electric field intensity £(&,7n) as a function of normalized time & =

I

and distance 7 = (wox3)/c can be written from Eq. (10} in the form



E(E,n) = Z}Ti fF(z) exp [r;w(z)] dz (24)
Yz
where
F(z) = w, E(z,0) ' (25)
and

bz - (zz+P2)1/2

o \1/2
z[&—(1+P—2) ] . {26)
z

Asymptotic solutions of Eq. (24) can be obtained for large 7 by using the saddle-
point method of integration. Although ¢ is technically a function of 7, the results
of the previous section show that r must always be greater than 7 so that § is

a time parameter which is equal to one at the time of arrival of the signal wave-
front and increases with time thereafter. One can therefore consider w{z) given

w(z)

by Eq. (26) to be independent of 7.
The saddlepoint method of integration is described in Appendix A. Differen-

tiating Eq. (26) with respect to z one obtains

-1/2

w'(z) = §-z(zz+P2)

= & - (1 + T . (27)
Z
The saddlepoints are found by setting w”(z) = 0 and argggiven by .
, = _tiP§ . (28)
° 2
tT -1

There are therefore two saddlepoints, both of which lie on the imaginary axis and
move with time. At £ =1 (7 = ) the saddlepoints are at ti~ and as time pro-
ceeds they move in along the imaginary axis and approach *iP for long times.
Figure 2a shows the location of the saddlepoints before they have crossed the poles
at +i while Figure 2b shows the saddlepoints after they have crossed the poles.
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In order to determine the lines of steepest descent, w”(zo) must be evaluated.

Differentiating Eq. (27) one finds that

T3/2

2
w(z) = - P2 z-3 (1 + %) (29)
z
At the saddlepoint zg' = HPE
2.1
2 3/2
w”(z;) = % exp{— i g} . (30)

Thus referring to Eqs. (A-4) and (A-8) in Appendix A, one sees that the lines of

steepest descent are given by 6_ = -si(n=1) and 6_=-F (n=3) . Similarly, at the
s 4 5 4

saddlepoint z; = -inNg2- 1

2 3/2
wlz]) = (i;-;)— exp }i } (31)

ol

from which the lines of steepest descent are givén by 95 = nf4 (n=1) and
GS = 5% {n=3) . The lines of steepest descent are shown in Figure 2 where the
hatched regions correspond to the valleys of the surface u = u{x,y). Along the
lines of steepest descent v(x,y) (the imaginary part of w(z)} is constant. The
straight line segments passing through the saddlepoints in Figure 2 are the lines of
steepest descent only in the immediate vicinity of the saddlepoints. Note that if the
contour of integration Y, is deformed to pass through the saddlepoints, the path
of integration approaches each saddlepoint along the n=3 path and leaves each
saddlepoint along the n=1 path. This was the assumption used in Appendix A, so
the results of Appendix A may be used directly.

Consider the time response at x3=0 to be a turn-ofesine wave, that is, -
J;'(t,O) = U(t) sin wot . The Laplace transform is E(s,0) = @, /(s2 + woz) from
which, by using Egs. (25) and (7)

F(z) = 221+1 =1§[ l__. 1.] ) (32)
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Equation (24) then becomes

dz

: IGXP[n(ew[z%le”z)]

z +1
Z

i [exp[n(gz-[22+Pz]llz)]

- dz (33)
z -1
Yz
Equation (33) may be written as
f(gn)=—1)1-1 +1_ -1, | (34)
LA 47 | "a b ¢ d
where
x0+i=a
exp[n w(z)]
I, = — dz (353)
a z +1
X
o
0 exp[n w(a)]
exp[n w(z)
I, = f —_— T de (35b)
- z -1
x_-ie
0
X, :
exp [n w(z)] ;
I, = — dz (35¢c)
c . <
. z +1i
X -1leo
o
){O+1°°
exp [n w(z)]
Iy = - dz (354)
z-1i
X
o

The location of the saddlepoints is given by Eq. (28}, so if the paths of integra-
tion of the integrals in Eq. (35) are deformed through the saddlepoints, the paths of
integration for I_ and I, go through z(;' while the paths of integration for Ib
and Ic go through 2 .

Note that
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iPVg2-1
wiz™) = —iPng- 1

Since the integrands in Ia and Ib are always analytic over the range of integra-
tion, then I, and I can be evaluated immediately using Eq. {A-19) together with
Eqgs. (30}, (31), and (36). One obtains

. 1/2 .
. 27wi (P/p - i ] 2 T
I, = Ners " 1)314 - o exp 1(Pn¢§ -1 +Z)} (37)

ViZ1

£
—

N
o+
S

1

(36)

_2m (p/pt/? i
b ovar 2-ndt s BE

exp {-i (Pq .52-1 +-E)} (38)

which can be combined to give

cos (Pn‘dgz— 1 + 1r/4) (39)

(£2.1)%0% (“ Pt ) :

-1, - 2«!27(%)”2

2.1

Since the saddlepoint crosses a pole in the integration of Ic , this integral can be
evaluated by using Eq. (A-30) from Appendix A, which is rewritten as

exp [n w(zo)] 9 B8 ’ B 2
I, = ————— 2J1 exp|-ag” | — f exp (— y) dy (40)
1 27i [ :l lﬁ[ Iﬁl
le|Na
. < _ -
whevre

2lw(z )
a = —z°r

o™
"

i exp(i%) (z0 - zk)

The path of integration in Ic is deformed through the saddlepoint 2, » SO from
Eqgs. (31) and (28):
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v1(§2-1)3/2
— 2P

i

(41)
b emfig] (B 1)
Ve2a
Observe from Eg. (41) that the pole and the saddlepoint coincide {that is, 8 = 0) for
1 (42)
Note from Figure 2 for £ <§g , the solution for Ic involves the contribution from

the saddlepoint alone; while for &> Eg , Ic has a contribution from a pole residue

in addition to the saddlepoint contribution.

Define
B = |g|VNa . (43)
For ¢ < Eg , P > 1 , the following relations hold
52_1 .
1/2 3/4
o () e (2 )
521
ag® = iB2 : (44)
B o
— = exp 1 = . . . .
el Lal- ‘ ~

Using Egs. (36), (40) and (44), one can write Ic for & < gg as

a
Ic = 2 expl-i(Pn\ng—l + B2 - %); f exp[iuz] du .
B
Let

v--4yZB . (45)



Then, using Eqs. (B-8), (B-9), and (B-15), one can write

P¢
For £t>¢_, < 1 note that
g ‘f£2_1
B .
—— = =-expli¢
Iﬂl ( 4)

I = irm expl-i(angz-l +

s

2

vz)}[l #(1-1)

Clv) +1i S(v)}]

15

(486)

Then the value of Ic for this range of £ is the sum of the contribution from the

pole residue and the saddlepoint contribution by Eq. (40). That is:

[

f e ont epfen(s- V)

- 27 exp{-i(Pn\‘gz-l + Bz-%)l f exp[iu2] du

where

Letting

one obtains

c

- ir exp{-—i(Pn §2—1 +

I = 27 exp¥~in(§-m)}

m
—2'V

B

For ¢ = Eg , note that v = B =0 and from Eq. (42)

Pn'V¢

<.

2)} [1 - (1-i) %C(v) +1S(v) ” .

(47)

(48)

(49)

(50)
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Thus Eq. {46) becomes

. . .m

Ic(.g-.gg) = iT exp {- i—
Likewise for & = gg
2
2 nP
~-Vi-P =
n [Eg ] 5
1-P

so that Eq. (50) becomes

Ic(£=§g) = ig exp{-i

Thus the solution is continuous when the saddlepoint crosses the pole.

In summary, for §{= gg

Ic = ir expz— i(PnJ‘;’z-l +1rz-v2)} [1 +(1-i)‘C(v) +iS(v)}] .

For gzgg

P
Vi-p?

Vi-p2

} .

}

Ic = 2wl exp{—in(g- l-Pz)}

- ir exp{— i (Pn .52-1 + % vz)l [1 - (l—i)!C(v) +iS(v)l ]

where

In 2 manner similar to the above, one may obtain expressions for Id .

are

For £ sgg

d

o) )

I, = im exp{i(PnJ.gz-l + %vz)} [1+(1+i)lC(v)-iS(v)” .

(51)

(52)

(53)

(54)

(55)

These

(56)
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For gzgg
1, = 27 exp}in(g-\h—Pz)‘
-ir exp{i(Pn 52-1 +£2v2)} [1-(1+1)}C(v}-i5(v)}] . (57)

Combining Eqgs. (53), (54), (56), and (57}, one [inds
F =
or & §g

1 -1, = 27 {[1 + Clv) +S(v)] sin v + [Clv) - S(v)] cos ’Y} (53)

1 -1, = 47 sin ¢ - 27 {[1 - C(v) - S(v)]sin ¥ - [C(v} - S(v)] cos 'y} (59)

[ d

where
Yy = Pn £2-1 + %vz
Yy = n(&-\ﬁ?)

Combining Eqs. (34), (39), (58), and (59), one obtains for the complete asymptotic

solution for the electric field:
F =
or § Eg
cos (an.sz-l + 7r/4) _

1/2
£, ) = 1 (2) 374
NETIA ( 2 Pt
v Vi (60)
2
£5-1
! ' ' S . -
+ % {[1 +C(v) +S(v)] siny + [C(v) - S(v)]cos'y}
and for £ = .gg
(t.m) 1 P 1/2 cos (Pn d§2_1 + ,/4)
£lLm = n +sin¥y
oAk , 3/4 e
(£°-1) 1+ = 1)
£7-1

-% ‘ [1-c(v)~8S(n]siny - [C(¥) - S(v)] cos ¥ }
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where
1
E =
g 1-p2
1/2 3/4
v = (55) (1- P )(g2-1) (62)
V21
y = PaVgiar 4 I y = n(!;‘- 1-p2 )

Thus Egs. (60) and (61), together with the definitions in Eq. (62), give the
total saddlepoint solution for the turn-on sine wave in a plasma. This solution,
coupled with the Sommerfeld solution of Section 2, will give the total transient
response for large values of n . The solutions of Eqs. (60) and (61) are somewhat
complicated and, under certain conditions, simplified expressions can be obtained.
These simplified expressions will be obtained in the following section.

4. REGIONS OF TRANSIENT RESPONSE

In Section 3 the total asymptotic solution for a turn-on sine wave in a plasma
has been given. This solution is a good approximation provided 7 is sufficiently
large. The solution given there is also somewhat complicated. Under certain
conditions the solution given in Section 3 can be broken down into three regions:

a region before the saddlepoint crosses the pole (the anterior transient), a region
when the saddlepoint is in the neighborhood of the pole (the main signal build up),

and a region after the saddlepoint has traversed the pole (the posl:érior transient).
The expressions for each of these regions will be derived in this section, and the
conditions under which these expressions are valid will be given.

4.1 The Anterior Transient Solution
How far must a saddlepoint of Re : w(z) { be away from a pole in order that
one could use Eq. (A-19) for (A-24) instead of Eq. (A-30)? To answer this question

an asymptotic expansion of Eq. {A-30) can be obtained by integration by parts.

Equation (A-30) can be rewritten as
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o= L fexp[n w(z)] o

1 27i zZ - Zy
Y2
exp [n w(z )] = o1 B . 3 zld o
= =7 2« exp[—aﬁ m fexp(}"l"ﬁ—l)‘y (63)
|s]va
where
nlw(z )|
a = ——————
2
B =1 exp [i %] (z, - zy) (64)
o = arg;w”(zo)} .
Since

o) o - o e (ol )]

integration of Eq. (63) once by parts gives

o 8
- exp [1wiz )] exp [nwz)] exp (-2g?) lal S exp;(y |ﬁ|)}

I =
1 2iNT Na B 2iNT N y2
(65)
Integration again by parts gives
- explnwiz) exp |n w(z )
I = L °] - [ 3/;’] 5 + (higher order terms) (66)
_ 2iNT Na B - 2iNT 2a°/° Y < -~

which can be written by using Eq. (64) as

(z)
exp [n wizy)] L [1- 1 +] . (67)

I =
1 N2 |:n w”(zo)] /2 24 - 2 1wz )z -z))

Equation (67) is equivalent to the inclusion of the first two terms in Eq. (A-18).
Thus Eq. (A-19) may be used as long as the second term in Eq. (67) is small.
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Then, for times long before the saddlepoint moves into the vicinity of the pole,
Eq. (A-19) may be used for the saddlepoint solution. This solution will be referred
to as the anterior transient solution. This solution will be valid as long as the

following condition from Eq. (67) is satisfied:

12 << 1 . (68)
nz -2, )" wlz )
From Eq. (32)
1
F(z) = —5 . (69)
z7+1 .
At the two saddlepoints
2
. - . £E7 -1
F(zo) = F(zo) = A-‘-_—g(l-Pz)- N (70)

and

w(z;) = iPJ;z— 1

- 2.1 (71)
w(zo ) =-iP ‘.;'2- 1
The total asymptotic solution to Eq. (24) can therefore be written as
gem = £0e,m + £ (&M ‘ (12)

where e+(.§.n) and £ _(&,n) are given by Eq. (A-19) in Appendix A evaluated at
the two saddlepoints z; and zJ . Substituting Egs. (70), (71}, (30), and (31)
into Eq. (A-19), one obtains for Eq. {72) - P

/ -
£le,m) = (25" )1 2 (52-1)3/4 [5:2(1-1?2) - 1] [exp{i(PnJ&z_-l+ %);

+exp{-i(Pn\152_-1 + ”z)” (73)

"

I£| cos (nPJ.ﬁz-l + %)
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where
2 1)1 /4

lg] = (2)“2 ———(: — (74)
™ £ES(1-P%) - 1 '

is the amplitude of the asymptotic solution. Equation (74} can be rewritten in the

form
| £] Nw
M 2 (75)
woo-1
where
M - (_2_)”2 L
T P(l-P2)1/4
{76)
2 1-P% .2
w = 2 (E - 1)
P

Figure 3 is a plot of [ e'] /M vs w. The condition w =1 corresponds to
E=1 /’dl--l”2 and represents the time at which the saddlepoint crosses the pole.
The above discussion is valid as long as the saddlepoint is not too near the pole.

From Eq. {68) this is equivalent to

2
2 3/2
,,(_i_l) 2o 1)
N P :

4.2 The Main Signal Build-up

An expression will now be obtained which is valid fqg the arrival of the main.
signal. The arrival of the main signal corresponds to times when the saddlepoint
is in the vicinity of or coinciding with the pole.

For times when £ ~ .gg the first term in Eqgs. (60) and (61) is of the order

1 (1-p33/*

1
N2r Ny 2P
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For large n this term is negligible during the main signal build-up. Now, ex-
pand ¥ and v in Eq. (62) in a Taylor series about gg to obtain

2
S | S (79)
2 g
1-P
and
2 2,2
Y =—£—+n(§~eg)+M4L(e—gg)3+... . (80)
P2 2P
Then
b o= vy (81)
£
1]
100

w

Figure 3. Universal Curve for the Amplitude of the Anterior Transient
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for

2
2(1-P%)

3
-~ {5-5g) << n(&-ﬁg) .

The condition above is equivalent to

4
2 2P
(-t )2« 22 | (82)
g (1-P%?2

Thus, from Eqs. {60) and (61), the main signal build-up solution becomes
£(&,m = % I[l +C(v) + 8(v)] sin ¥y + [C(v) - S(v)] cosv} (83)

which may be rewritten as

£(6,m = A sin [n(g- 1-P2)+e°] (84)
where
A =j_—2 [(%+C(v))2+(%+5(v))2]1/2 :

_ -1| _C{v) - 8(v)
6 = tan [Tm ' (89)

) () )

Ve

This is an approximate solution for the main signal build-up for large 5 . The
amplitude function A in Eq. (85) is plotted as a function®f v in Figure 4.
Table 1 gives the values of v at which the maxima and minima of the amplitude

function A occur.
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— e

Figure 4, Universal Curve for the Amplitude A of the Main Signal Build-up

Table 1
Value of Extremum v
1.17 max 1.22
0.88 min 1.87
1.10 max 2,35
0,92 min 2.74
1.07 max 3.08 - S
0.93 min 3.39
1.06 max 3.67
0.94 min 3,93
1.05 max 4,18
0.95 min 4.42

The range of validity of the solution can be determined by requiring that condition (82)
be well satisfied and that the first term of Eq. (60) be small. The parameter v in
the amplitude function A acts as a stretching factor for time. The stretching
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factor is a nonlinear function of ¢ and thus is a nonlinear function of time. The

stretching factor may be expanded in a Taylor series about gg as follows

7/4
7 a-p3H 7 -p2)"/* p2-¥1-p?) 3
vos y2 g — -+ (8- 63+ ..o .
T g T 6P5 g
(86)
Keeping only the first term of this expansion will be a good approximation if
’ 4
(¢ - gg)z << §P : (87)
(1-p% P2 - ¥1-pd
The stretching factor v then becomes a linear function of time and may be
written as
3/4
N . "n (1-P2) .
v vy =Yg ——p— -5 . (88)

The solution given by Eq. (84) coupled with the linear stretching factor of Eq. (88)
may also be derived by making an expansion about the pole. This procedure is

carried out in Appendix C.

4.3 The Posterior Transient Solution

After the saddlepoint has crossed the pole and is well away from the pole, one
may again use Eq.{A-19) of Appendix A. However, the solution will now include
a term arising from the residue of the pole. The solution may be written down
immediately by making use of Eqs. (73) and (74). The solution for the posterior

transients is then

(g, = I.EI cos (nP 52-1 +%) + sin (n(g-—‘dl—Pz)
or
[
£t = - £l sin(n pV:2-1 —%)+sin n(g- 1-P2) ) (89)

By defining

nPVe‘.z-l - %
B n(&-ql-Pz)

A

(90)
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then assuming IEI << 1 one may use the identity of Appendix D and rewrite
Eq. (89) as

E£(&,m) = {1 - 2] cos (A-B)} sin (A;B + 91) (91)
where
1+ el
91 = tan-]‘[‘— tan(B;zA)] .
1- el

The amplitude of the high frequency signal therefore oscillates about the final value
of unity with a decrement, le , given by Eq. (74) and represented by that portion
of Figure 3 for which w >1 . This part of the curve is replotted in Figure 5 as a

function of ¢ for different values of P .

5. SUMMARY

The results of this report will be summarized by plotting the envelope of the
transient response of a unit step-carrier signal which has propagated in a lossless,
isotropic plasma under the typical condition 7 = wox3/c =10° and P=T/w_ =0.8.
These values were chosen to insure that the approximate solutions given for the
four regions of transient response would overlap. The total transient response is
shown in Figure 6.

No signal arrives prior to the time t = x3/c (¢=1) . Even the general asymp-
totic solution given in Section 3 does not hold at the moment of arrival of the signal
wavefront. The Sommerfeld solution given by Eq. (21) and plotted in Figure 1 must
therefore be used to describe the very first part of the signal response. The range
of applicability of this solution is indicated by region A in Figure §.

Following the Sommerfeld region-the anterior transient solutiofegiven by Eq. (74)
is indicated as région B in Figure 6. Region C is the main signal build-up solution
of Figure 4 with the nonlinear stretching factor v given in Eq. (85). Finally, the
posterior transient solution given by Eq. (91) holds for region D of Figure 6,

The main conclusions to be drawn from Figure 6 are the following., The ampli-
tude of the precursor region which preceeds the arrival of the main signal is small
and becomes smaller as the propagation distance 7 increases. Also,
the time between the arrival of the signal wavefront and the arrival of the main
signal increases with increasing n . The main signal can be considered to arrive

at Eg = 1IVI—P2 » which corresponds to the time of arrival at the group velocity



27

10 r
1
<
[
~
I
01—
¢
Figure 5. Amplitude Decrement of the Posterior Transient
12 P:0.8
n=10*
1O

A - SOMMERFIELD SOLUTION
08l B- ANTERIOR TRANSIENT

C - MAIN SIGNAL BUILDUP
D - POSTERIOR TRANSIENT

0.4

0.2 H

0.0

Figure 6. Typical Envelope of the Transient Response of a Step-Carrier
Signal Propagating in a Lossless, Isotropic Plasma % = w_x./c = 104

= = o3
P = H/wo =0.8
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tg = x?'lvg

crossing the pole and the amplitude of the envelope response is equal to 1/2. Once

= x3/(8w/3k)w . At this instant of time the saddlepoint is exactly
o

the saddlepoint has crossed the pole, the envelope response becomes oscillatory
about its final value of unity.
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Appendix A

Saddlepoint Method of Integration

The method of steepest descent or the saddlepoint method of integration can be

used to obtain the asymptotic behavior of integrals of the form

1
27i

I = f F(z) exp[n wi(z)] dz (A-1)

Yz

when the real quantity n is large and positive. The complex function ;v(z) is a
function of the complex variable z = x + iy . That is

w(z) = ulx,y) +ivix,y} . (A-2)
If -w(z) is analytic then from the Cauchy-Riemann conditions u, = Vy and

uy -V, This implies that u is harmonie, that is, u o+ uyy =0 . The sta-
tionary point z = (xo . yo) is the point (or points) where dw/dz = 0 . At this
point, u, = 0 and uy = 0 . In the neighborhood of this point on the surface

u = u{x,y) one can write

hZ + 2u__hk +u kz:l
xy vy

1
u(xo+h,yo+k)-u(x°,y0) TR

[~

= ! P(h 1k) .

[\&}
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Since

. 2 2 _ 2
LI P(h,k) = (uxx h + Uy k) (uxy u uyy)k ,

it follows that P(h,k) will have the same signas u . for all h and k if

2
(uxy) - Uy uyy <0

For this condition the (xo ,yo) could therefore be a local maximum or minimum.
However, from the Cauchy-Riemann conditions, uiy -u_ _u = u2 + u2 >0

XX yy Xy XX

so that the stationary point (xo ,yo) must be a saddlepoint of u(x,y) .

If n is large, a change in v will produce rapid oscillations of the integrand
in Eq. (A-1)., If the contour can be deformed along a path where v is constant,
then the oscillations will disappear and the major contribution to the integral will
occur where u is largest. Now, since Vu*Vv=u v _+ uy vy = -uxuy + u)‘:uy =0,
the lines of constant u (called level lines) are normal to the lines of constant v
which is a line of most rapid change in u and is called a line of steepest descent.
The idea of the saddlepoint method of integration is then to deform the contour of
integration through the saddlepoints along the lines of steepest descent. If 7 is
large, the major contribution to the integral (A-1) is then obtained from the integra-
tion only in the neighborhood of the saddlepoints.

One can expand w(z) in a Taylor series about the saddlepoint z, as follows

wiz) - wlz)) = § (z - 2)° wlz) . (A-3)
Let .

wiz) = A &Y (A-4)

(z-z) =r e’ . - «  (a-5)
Then

w(z) - w(zo) —;Ar2 exp i(20 + a)

(A-6)

(u - uo) +i{v - vo)

where u, = u(zo) and Vo = v(zo) .

The level lines are given by u =u_ or, from Eq. (A-6), by cos{(26+a) =0

o
Thus the level lines are given by
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a (Z2n+1)x

GL = -3 ry n=0,1,2,... . (A-T)

Likewise the lines of steepest descent and ascent are given by v = v, or

sin (280 + @) = 0 , from which
0 = - 3 + o5 n=0,1,2,... . (A-8)

Along the lines v =v_, note that 20 +@ = nr , 5o that from Eq. (A-6)
u-u = é Ar2 cos nr . Therefore, n=1,3 corresponds to lines of steepest

descent while n = 0,2 corresponds to lines of steepest ascent.

Now, let the function F(z) be written as the sum of a holomorphic and mero-

morphic function in the neighborhood of the saddlepoint. Thus
F(z) = G(z) + H(z)

where
G(z) is holomorphic in the region of the saddlepoint,

H(z) is meromorphic in the region of the saddlepoint.

Consider first the integral over the analytic part, G(z) . If G(z) is expanded

in a Taylor series about the saddlepoint

(k) (z, )

G = D) o (oo g ) _ (A-9)

k=0

and substituted into Eq. {A-1), together with Eq. (A-3), one obtains

. . -
o (k) »
(z nwz)
IG = '2% eéxp [TIW(ZO)]Z — f(z z) exp{—-—— (z-zo)2 dz
k=0 Yz (A-10)
where
Ig = 2—11T—1 G(z) exp [n w(z)] dz .
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Now deform the contour so as to pass through saddlepoint z, along the lines
of steepest descent. Assume that the path of integration approaches the saddle-
point along the steepest descent path corresponding to n = 3 and leaves the
saddlepoint along the n = 1 path. The integration is then made up of two parts.

From Egs. (A-5) and (A-8), one obtains for n =1

z=-2, =T exp[x@] r exp[i(§ - %)]
dz = exp[i(% - %)] dr (A-11)
(z - zo)2 = -r? exp [-ic ]

and for n=3

z-z, =T exp[19:| =r exp[ Tﬂ- - %—)]
dz = exp 1(%’5— - %)] dr (A-12)
(z - zo)2 = -r° exp[- i

From Eq. (A-10) we can then write the prototype integral Ik in the form

n w”(z )
{____o (z-zo)z} dz

k 2
Y, -
p n w(z )
1 ! k o’ 2
= 5 exp{lk(lzr- - %)l fr exp{ ——r exp[m__]jdr exp[ %
0
1. 3 «a - k "w”(Z)
5T explik(—z—--i)} fr exp}- ——r expl:-m:]}dr exp[
r
(A-13)
Using Eq. (A-4) one can rewrite Eq. {A-13) as
r
1 . k A 2
Lo = 3771 [exp!(k+1) (%-%)1}[1‘ exp{——n—z--r }dr
0
(A-14)

r
-exp{(k+1) (——% 11frk exp{ frzl dr]
0
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Noting that

k+1

expl(k+1)(3—21r-—%)ii = (-1) expt(k+1)(2 —)i; .

Eq. (A-14) can be rewritten as

;(k+1) 1(k+1)a }[1 k+1)]f r expt-lé rZ} dr . (A-15)

k ~ 271 e"pl

Now if 7n is sufficiently large, the upper limit of the integration can be extended
to infinity without increasing the error significantly. If this is done and use is

made of the relation

%@ T _lﬂ
frkexpl—arp[dr=(—lf+1))— k>-1
0 pa P
Eq. (A-15) becomes
k k+l r(ks) _
_ i [1 (-1) :| 2 -i{k+1)a |
Ik Er (ﬂ) exp ’ —2 ’ . (A-lB)
2

Since I, is zero when k is odd, it is possible by letting k = 2m and using
Eq. (A-4) to rewrite Eq. (A-16) as

1
_ -p™ T (m *3 )
II'n - 27 (m+l) . (A-17)
[n W”(zo)-] 2 : S, . -
2

If Eq. (A-17) is combined with Eq. (A-10), the asymptotic solution of the integral

IG can be written as

exp [n w(zo)] = (-1™ P(m + % ) G( Zm)(zo)

1. = (A-18)
G . 1/2 . m
(20 wtz)] m=0 1r(2m)l[—_nw (20)]
: 2

.
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For sufficiently large values of 75 the first term in the series of Eq. (A-18)

is a good approximation to the integral and is given by

I exp_ 1 wlzy) G(z ) (A-19)
o z . -
G Nz [271 w”(zo)__] 1/2 o

Now consider the evaluation of the integral over the meromorphic part of F(z) .
Assume that H{z) has a pole zZy of finite order in the neighborhood of the saddle-
point and can thus be expanded in a Laurent series about the pole. Then the con-

tribution of the integral over H(z)

H 2Ti
y

L, = — fH(z) exp[7 w(z)] dz (A-20)

z

will involve evaluating integrals of the form

exp [ w(z)
I o= == ] dz . (A-21)
n 2Ti (z - 2 )n
k
zZ
Let
m
m= d ;|
n dzm n
K

Then the following recursion relations hold:
(v _ o
Lo = {n-1) I

and

1(1“'1) = (n-1) I (A-22)

or

1 qtn-1)
n - (@-1)1 dzfcn—l) I - (A-23)
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Thus, the integrals containing higher order poles can be obtained from I, by
successive differentiation.
Consider now the evaluation of 11

1 exp [n w(z)
I = f [ ] dz . (A-24)

1~ 27i z -z,

Y2

As before, deform the path Y, along the path of steepest descent through the sad-
dlepoint. Using the relations (A-3), (A-4), (A-11), and (A-12), Eq. (A-24)

becomes

exp 7 w(zo)] R exp{- lzé r2; exp {—ia’/2 dr
- ool |
1 27 0 ir exp —ia12}+ z, = 2y

jJ- exp{-—’-’—;ﬁ rzg exp{—i al2 } dr
R

ir exp}-i al2{+ zg " 2y

Let r — -r in the second integral and factor out a (-i) to obtain

R
; exp [ W(zo)] f exp ll— EZA rzil dr
1 2mi r-iexp‘ialzi(zo—zk) )

-R l

If n is large enough, then one can extend the range of integration from -« t0 +

without introducing significant errors. Then

exp wiz ) = 2
1 - [Z .°] fexP(“a‘") dr (A-25)
Tl r —ﬂ - L .
where
_ nA
a =73

(A-26)

™
n
[
®
»
ol
—
(][~}
—
N
o
'
N
x
-
L]
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Multiplying the integrand of Eq. (A-25) by (::g) one obtains

exp( ar 2 }
dr (A-27)

a'\a

1 27wi

exp [n wiz )]} f r exp( ar )

The first integral is zero since the integrand is an odd function. In the second

integral one can write

5l ay . (A-28)

exp {'X(rz"ﬁ i

3\
—
[\V]
u
O!‘S

If Eq. (A-28) is substituted into Eq. (A-27) and the order of integration is inter-

changed, one obtains

<0

exp [7 w(z ):l ;
I, = ———5—— & f dy exp (ﬁzx) f exp “ -(a+x)r2 ; dr
0 ~c0

Carrying out the integration over r one obtains

exp [:11 w(zo)] r 5 N
L = —— 28 f dx exp (8% ) Tl (A-29)
0 X

Making the change of variables

1/2 y

(a+x)
8] oo - ' %

the integral I, in Eq. (A-29) becomes

ad

exp [1 w(z )] 2
=-—-—|:—.°— 2T exp(aB) L fexp{(y —ﬂ-) }dy. (A-30)

I1 2rwi Iﬁl
6 |Na
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Appendix B

Relations Involving Error Functions and Fresnel Integrals *

z
Error Function: erf (z) = 2 f exp (-uz) du (B-1)
N
0
Complementary Error Function: erfc (z) = 1 - erf (z) (B-2)
z u2
Fresnel Integral: F(z) = f exp{i ?I—Z}du {B-3)
0
Z 2
Cosine Fresnel Integral: C{z) = f cos:%} du {B-4)
o - < -
z 2
Sine Fresnel Integral: 5(z) = f sin{mT }du (B-5)
0

*See Abramowitz and Stegun (1964).
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Identities
erf(-z) = - erf(z) (B-6)
F(-z) = -F(2) (B-7)
C(-z) = -C(2) (B-8)
S(-2z) = -5(2) (B-9)
F(z) = C(z) +1iS(2) (B-10)

, .
. exp|i+
F(z) - (1;1) erf[fz‘.’. (l—i)zl - _\[%1 ert [Ez exp “4%'}] . (B-11)

Asymptotic Values

Clx) ~ 5 as x = (B-12)

S(x) — 3 as X — w (B-13)

exp (zz) erfc(z) ~ L, O(—lé-) (z —w, |arg z] < 3—:) . (B-1¢)
zNT z

Other Relations

el B

f exp (i uz) du - f exp (i u?) du
0 0

- V2 s - Y5 Lot +is@)] (B-15)
m
2

N C 1114; [1 - (1-i) {C(q) +iS(q)}]

-]
f exp (i u2) du
B

where q =V2/r B .

Also, in a similar manner

f exp (-i u?) du = "—% exp [ —1{-} [1 - (1+) {C(q) - is(q)}] . (B-16)
B
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Appendix C

Coinciding Pole Solution for Main Signal Build-up

The solution for the electric field of a turn-on sine wave propagating in a
plasma is given by Eq. (34). Neglecting the contributions from Ia and Ib one
can write

£ = 5 (1,-1y) (c-1)

where

x
(o)
exp [n w(z)
I = f L_l dz ,

c . z +1i

xo-lm

= _ (C-2-
xo+ioa
exp [1 w(z)]
Iy = f —_— dz
zZ -1
x0

Consider the prototype integral

exp | w(z)
S f L ) . (C-3)

k 2ri z - 7y

Yz
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Expand w(z) in a Taylor series about the pole

w/a(zk) 2
w(z) = wiz) +wilz Nz -z )+~ (z-2z)"+... . (C-4)
Introduce the transformation
z 7 i) (C-5)
zZ-2, = ’ X = . C-5
k 1 w”(zk) 172 ?IW"(Zk) 1/2
2 2
Then Eq. {C-3) can be written
exp [n w(z,)] 1o exp[xz +2%]
I = —oa S Z az . (C-6)
-ieo
Noting that
. X
exp (ZX) _ 1 f
= =+ exp(Zu)du ,
0
Eq. {(C-6) can be rewritten as
exp EUW(zk)] i 2 ry 2
Ik = —— ffexp[z +Zu]dud2.+ f exp[Z]dZ
2w i ——
-ie 0 ~ic
(C-7)
By the method of residues one can readily show that
i [ 2]
1 explZ - 1
P f = dz = 5 . (C-8)
-je

The first integral in Eq. (C-7) can be obtained by evaluating

X
1 2
L = g f f exp[Z +Zu] dudz . (C-9)
9
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Letting Z = ir and reversing the order of integration, one obtains

du fexp{-r2+iru dr .

-

.1
L = %7

Integrate over r to obtain

L]
[}

X 2
1
1 S fdu\]‘lr_ exp{-u—4]
0

or

X/2

1 f 2
I, = — exp (-v") dv
N F

from which (see Appendix B)

nwiz)

1
I, = = erf (C-10)

Using Eqs. (C-8) and{C-10) one obtains for the prototype integral in Eq. (C-T7)

I = < [ ( )] 1+ erf m Wil (C-11)
= = exp|nwiz + er _
The two poles in Figure 2 are at i . Thus
_ _ - X
wii) = i[§ -\h-Pz] ,
wi-i) = -i[g -V1-p? ] ,
wii) = wi-i) = | - _1__] (c-12)
V1-p?
-3/2
W@ = -ip2a-pt
w-i) = iP2(1-p?)~3/2
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Then
7 wo(i) T (. m
——y = J—- v, exp,i-— (C-13)
[271 w”(i)]llz 2 'L l 4l
7 w(~i) T . W
= Y= v, expl-i-= (C-14)
[Zn w,,(_i)]llz Yz L { 4l
where
3/4
- J7 (1-P%
v * ¥ -———P (¢ - Eg)
(C-15)
iy = L .
1-p2

If the contours of the integrals in Eq. (C-2) are taken along the entire imaginary
axis where it is assumed that the major contribution comes from the vicinity of the

pole (this is equivalent to neglecting I, and Ib) then Eq. (C-1) can be written as
_ 2mi . . '
s = E [0 - o] (C-16)

Making use of Eqs. (C~11), (C-13) and (C-~14), one obtains
g(E,m = ai—lexp (-i¥) [1 + ert‘(#—--’zr VL expl-i % })]
- exp (iy) [1 + erf (J% v expl i %{)] } . (C-17)

where ¥ is given in Eq. (62). Using Eq. (B-11) from Appendix B, Eq. (C-17) can

be written as

e = A (e - oY) Loy +istv)]

- 12 ei4'(1+i) [C(VL) -1i S(VL)]

or

£(g,m = % sin ¥ +-% [C(vL) +S(vL)] sin ¥ +';'[C(VL) - S(vL)]cos P
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and finally

E(E,m) = I [1 + C(vL) + S(VL)] sin v + [C(vL) - S(vL)] cos 7} (C-18)

o =

where use has been made of Eq. (81). Note that Eq. (C-17) is equivalent to
Eq. (83) provided one uses the linear stretching factor given by Eq. (88).






Appendix D

A Trigonometric ldentity for U = X sin A + Y sin B

Consider
U = XsinA+YsinB . (D-1)
Let
A= o+
g (D-2)
B =a-~ . -
Then
o = A;—B LT -
({D-3)
_A-B
B = 2

Use the identity

sin (@ * B} = sina cosg tcosa sing . (D-4)



D2

Substitute Eq. {(D-2) into Eq. (D-1) and use Eq. (D-4) to obtain
U = (X +Y)sina cos B +(X - Y) cos a sing

or
U = Im }(X +Y)cosB @ +i(X - V) sinﬁ_ei"’ ‘

Write Eq. (D-3) as

sin {a + 91)

1/2
U = [(X+Y)2 coszﬁ +(X-Y)2 sinzﬁ]

where

_X-Y
tan 6, = ¥i¥

tang .
Rewrite Eq. (D-6) as
2 .2 1/2
U = [X +Y +2XYcosZﬁ] sin(a+01)
If X<<1 and Y =1, then Eq. (D-8) can be written as
sin B+ X sin A =~ [1 + X cos 23] sin (o + 91)
or

sinB + X sin A ~ [1 + X cos (A-B)] sm[A‘sz . 91]

(D-5)

(D-6)

(D-7)

(D-8)

(D-9)

(D-10)



