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Abstract

Using WKB (Wentzel-Kramers-Brillouin) methods we have considered the
propagation of electromagnetic waves in isotropic lossless media which vary
slowly with both position and time. It is found that in such media the meaning of
various quantities, such as the group velocity, must be reinterpreted. The theory
is applied to study propagation in space-time varying dielectrics and plasmas.
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Theory of Propagation of Electromagnetic
Waves in Space-Time Varying Media

1. INTRODUCTION

A difficult problem to consider, conceptually, is wave propagation in media
which vary with both position and time. In such media our standard concepts of
frequency, wavenumber, and group velocity no longer apply. That is, we find that
frequency can only be defined as the time derivative of the phase function, and that
the quantity so defined is a function of both the position and the time at which the
observation is made. We also find that the group velocity no longer retains its
conventional meaning. In spatially-homogeneous, time-invariant media the group
velocity is interpreted as the velocity at which wave packets centered around some
wavevector k, propagate (Jeffreys and Jeffreys, 1962). In space-time varying
media this is no longer true. In fact, as we shall see, values of w and k do not
propagate with the group velomty V, @ ; rather different q;‘antltles (which are
functions of w and k) are propagated at this velocity. The same conclusions hold
true for energy flow (that is, the energy flux does not propagate with the group
velocity).

In this paper we will study the propagation of electromagnetic waves in loss-
less media which vary slowly with position and time. We will therefore employ
the four-dimensional WKB (Wentzel-Kramers-Brillouin) method. The WKB method
was first applied in three dimensions by Sommerfeld and Runge (1911), That is,
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in media in which the properties depended on position X but not on time,
Sommerfeld and Runge considered solutions of the form exp [iwt - flc_ - dx].
Because the phase function must be uniquely defined, Sommerfeld and Runge then
concluded that VX k = 0 was required. This is the original version of the
Sommerfeld-Runge Law. This result can be extended to the four-dimensional case,
as has been done by Whitham (1960) and Poeverlein (1962). That is, in space-time
varying media the existence of a uniquely defined wave function, exp [i f (wdt - k- dx)]
requires that Vw +d k/at = 0. This is the four-dimensional Sommerfeld-Runge Law.
In the present paper we will first give an elementary derivation of the four-
dimensional Sommerfeld-Runge Law. We will then examine its implications, and
finally indicate its use in studying electromagnetic wave propagation in isotropic,
lossless media which vary slowly with position and time.

2 GENERAL THEORY

2.1 Derivation of the Generalized Sommerfeld-Runge Law

To introduce the Sommerfeld-Runge Law we begin with the pair of equations
for the electric field E

2
VXVXg:_:-FOiﬁi. (1a)
a2

V * (eE)=0, (1b)

where the permittivity e (x, t) is a function of both position and time but the mag-
netic permeability is equal to that of vacuum. Equations (1a) and (1b) are appropri-
ate for propagation in a lossless space-time varying dielectric. We will later
generalize our results to include dispersive media, such as a plasma. Letus

assume a solution for _12 of the form
S ; %

B - xe?®Y, @

where e, varies slowly with position and time compared with ¢(x, t). Using (2) in

(1b) we find that, if & |Ve| << |9¢] we get
Ve, =0. 3)

If we use {(2) and (3) in (1a) we then find that if the dielectric varies slowly with
position and time, the function ¢ satisiies



|ve|%=n, <t t)(g—f)z. (2)

where the conditions that the medium be considered slowly varying are

|ve |2 >> v, (5a)
2 2
3 3
(22) > 2 (5b)
[%) 1 de
Fiﬁ >> e gt (5¢)
|v¢] >> % | ve]. (5d)

The solution of Eq. (4) can be written quite generally as

$=i [l dx - wat), (6)
L

where L is a line integral in four space between some initial point (:_(o . to) and the
observation point (x, t}. We can identify w and k in (6) by realizing that since the
Phase function ¢ must be a single valued function, the line integral in (6) must be
independent of the path joining (;0, to) to (x, t), Therefore, the integrand in (6)
must be a perfect differential and we have

ik = (Vg),, ' (72)
(3¢
lw = - a—t—)x . e (7}3)

Using these expressions in Eq. (4) gives the dispersion relation between o and kas
2k? = ¢ W2, 8)

where k2 =k k and €, is the relative permittivity of the dielectric. Equations (7a)
and (7b) imply a relation between w and k, in addition to that given by Eq. (8).
Differentiating (7a) with respect to t, taking the gradient of (7b), and then adding
the resulting equations gives:



—+ Vw =0. (9)

Equation (9) is the four-dimensional version of the Sommerfeld-Runge Law. This
result can alternately be derived by employing arguments on wave conservation, as
has been done by Lighthill and Whitham (1955). Equation (9) has also been dis-
cussed by Whitham (1960), Poeverlein (1962), and Landau and Lifschitz {(1959).

2.2 Discussion of the Properties of Eq. (9}
2.2.1 GENERALIZED GROUP VELOCITY

To discuss the properties of Eq. (9) in a medium which varies with both posi-
tion and time, let us first write Eq. (8) in the general form

w = Wik, x, t) (10a)
or
k=K(w,x1). (10b)

Equations (10a) and {(10b} are valid for an arbitrary linear medium, and not just a
dielectric. For example in a lossless plasma

k=ct-/wl- upz(f, t)

where Wy, is the electron plasma frequency. If (10a) is substituted into (9) we

obtain .
ak )
a_t+(1'v)5"(VW)k.t (11)
.
where
- - (W
Y-“ka"(ag)x‘t' (12)

The quantity V in (12) can be interpreted as a generalized group velocity as we
shall see in the following discussion. Upon defining d/dt = 3/at + V-V Eq. (11)

can be rewritten as



dk _
@ TWy (13)

From (13) we see that if W does not depend explicitly on position, then dE/dt = 0.
This means that if one moves along the ray with the velocity V, he will observe
constant values of k (that is, the observer moving with X, measures constant
values of wavelength). Therefore, if W is a function of k and t, but does not
depend explicitly on x, then k is a constant of the motion, so that wave packets*
sharply centered around some wavenumber k, will be propagated with V = aw/ ok
evaluated at k = l_(o .

To examine the other limit when the properties of the medium vary with posi-
tion, but not with time, it is convenient to use (10b) in (9). For this case we obtain

(assuming the medium is isotropic)

dw dw 3K
9w 4 v . Ve :-(_) ( . (14)
ot — ok %, t ot w, X
From Eq. (14) it is clear that if K depends on w and X, but does not explicitly
depend on time, then
dw _ .
at 0. (15)

This means that the observer moving along the ray with the velocity V will observe
constant values of w (that is, constant wave period). Snell's Law follows immedi-
ately from Eq. (15). Therefore wave packets sharply centered about some fre-
quency w, will propagate with the group velocity V (evaluated at w = wg).

For the general case, when the properties of the medium depend on both posi-
tion and time neither » nor k will be invariant as one moves along the ray with the
group velocity V. (In Section 2.3, however, we do show that there are velocities
!(k) ¥ Vand XF") ¥ V with which values of k and w are propagated in space-time
varying media,) In this case other quantities will be inwgriants of the motion. .- ..

Consider each scalar component of Eq. (11). We have

ok
L . _ oW
IRl V“‘ﬂ"axL' (16)

¥In a spatially homogeneous, time-varying medium, pulses can be represented
as fdk A(k) exp[i(k- x - fw (k t)dt)] provided A(k) has significant amplitude
only at values of k for which Eq. (5) is satisfied.



To solve Eq. (16) we consider the subsidiary set

dx1=dx2=dx3=_dkﬂ an
Vv A2 v AVAT
1 2 3 Fxs

xg

dt
1

Let us denote the particular integrals of (17) by f(k_z'..’i' t) = CI; glk,, x, t) = C2;
hiky,x,t) = Cg; ¥lkg, %, t) = C,. Then it can be shown that (Sneddon, 1957)
(a) The general solution of (16) is given by

where @ is an arbitrary function, determined by the boundary conditions imposed.

(b) The invariants of motion, for an observer moving with the velocity V given
in Eq. (12), are C,, Cz, C3. C4. That is, each Cs satisfies

—"—+V°v) C_ =0. (19)

Therefore, for media which vary with both position and time the generalized
group velocity defined in Eq. (12) is the velocity with which the quantities Cg are
propagated. It is only in the limit of spatially homogeneous, time-invariant media
that some of the constants C, can be identified with » and k.

In Section 3.1 we will calculate the constants of motion for several examples

of media which vary with position and time.
2.2.2 THE ANGLE BETWEEN V AND k

In this section we will demonstrate that in isotropic lossless media the normal,
£ = (k/k), to the phase surface $ (x,-t) lies in the same direction g the group
velocity V. We will also calculate the angle between £ and V for the case of a
simple anisotropy.

Let us consider (10b) for the case when the dispersion relation can be written

as
k=K(w, 8,%, t), (20)

where 8 is the angle that the vector k makes with the z axis. (This corresponds
to the case when the dispersion relation is given by the Appleton-Hartree formula, )



Using Eq. (20) in Eq. (12), we have upon differentiating implicitly that the group

velocity is

v- () [R-£(35) ] e

where K is a unit vector along k, and 8 is the unit 6 vector in a spherical coordin-
ate system. Taking the cross product of k with (21) gives

LN

lexv |- (2%) (4%). (22)

From (22) we see that if the medium is isotropic and lossless so that K is inde-
pendent of & in Eq. (20), then kxV =0 sothat k and V are in the same direction.
The dot product of k with (21) gives k - V =k(dw/dk). From this result and (22)
we can compute the angle y between k and V. We have

[KXV] 1 9k 1 ok
[ta.ny|= KV %98 k35" (23)

Equation (23) is a well-known result from the study of whistlers (Holt and Haskell,
1965; Kelso, 1964). We have shown here that the result also applies to media which
vary slowly with both position and time, provided we understand that V is not the
velocity with which values of k and w are propagated. One final result of interest
is to use (23) and (21) to calculate the magnitude of the group velocity. We get

=1
e | e

2.2.3 THE EQUATION OF MOTION OF &k

In this section we shall demonstrate that the classic%equation presented by _
Landau and Lifschitz (1959) for the motion of the normal to ¢ (x, t) can be general-
ized to include space-time varying media. For isotropic media we write, using
k =k K in Eq. (11),

df  ~dk
RF.I- kﬁ = - (Vw)k,t . (25)

We next use the dispersion relation of Eq. (10b) in the second term on the left hand
side of (25). We obtain, after regrouping terms



ak . of1 dw, . 9K . -
W@ gD Y (VKD } == (T g (@8)

»

where V = | y_! = (0K/dw )'1 . Now substitute Eg. (14) for dw /dt into Eq. (26).

The result is

dk B
k5 +VEEk- (VK)w,t—-(VW)k.t. (27)

Equation (27) is valid for an arbitrary lossless isotropic medium. To obtain the
analog of the ray-normal equation of Landau and Lifschitz (1959), we next special-
ize (27) to dielectrics. For this case K = w/v where v = V = phase velocity., In
this 1limit Eq. (27) becomes

g—f-k‘(fe' Vv)=-9vix t). (28)

Equation (28) determines the motion of the ray normal in dielectrics which vary
slowly with both position and time. As demonstrated by Landau and Lifschitz, who
obtained the same equation for the case when v varies with position only, Eq. (28)
predicts a bending of the rays toward the region where v is smaller.

We also note from Eqgs. (27) and (28) that if v is independent of position, but

does depend on time, we have

ak _
T 0. (29)

Therefore, as expected, the ray does not change its direction of propagation in
media that vary only with time.

2.2.4 TEMPORAL DISCONTINUITIES

It is often desirable to know the behavior of w and k when thegproperties of the
medium are suddenly altered. For example, suppose we have a dielectric in which
€ = ¢;(x) for t<t;, and €= ¢ (x) fort >t . To study the behavior of w and k
when temporal discontinuities occur let us integrate Eq. (9) from t; - § tot, + S.
(Note that Eq. (9) is not strictly valid for 5 =0.) We obtain

t1+8

1_{_(3:_,t1+8)-k(§_,t1-8)=-tf8(\7w)dt. (30)
-

-



In the limit as & — 0, the right hand side of (30) vanishes (unless Vw has a delta

function behavior). Therefore

kG, t; +8)=k(x,t; -3). (31)
Since Eq. (31) implies that both the magnitude and direction of k cannot change

instantaneously, then from (10b) we may write

Kilobt) +8), x, t; +5 =Ky [wlx t; -8 ), x, t; -5 |. (32)

For a dielectric, in which K = + (x, t) Ko € (x, t),
Eq. (32) yields

1/2

(x)
} (IJ(E’ t - 8 ) - (33)

€1 XK,
ez(g)

w(z,t+8)=i‘[

The positive sign in Eq. (33) is appropriate for the wave travelling along k, where-
as the negative sign is appropriate for the reflected component which travels along
~k. This latter component is negligible in the WKB limit. In the limit of a spatially
homogeneous dielectric, Eq. (33) reduces to the previous result of Morgenthaler
(1958).

2.3 Velocity of Propagation of Values of k and «

One of the points we have made is that in a space-time varying medium neither
@ nor X is an invariant as one moves with the group veloc:1ty V= V w. Itis possi-
ble, however, to define a new velocity V(k) such that k will be constant when the
observer moves with this velocity. To obtain X(k), let us suppose that the solution
of Eq. (11) is given by k(x, t). Then we can define a velgeity X' through the —

equation

V' -V)k=(VW)_,. (34)

If this were done, Eq. (11) could be rewritten as

ok ,
ot FIV+Y)-Vik=0, (35)
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from which we immediately identify

NARER A 4 (36)
Equation (34) can be solved for V by standard matrix methods, It is interesting to
consider the one dimensional limit (that is, 9 Jdx = a/dy = 0). Then Eq. (34)

becomes

oW

V' (2, t) (g—lz‘)t - (¥ (37)

b

which is readily solved for V. Using this result, along with Eq. (12), in Eq. (36)

then gives
(k) _ (aw (%_‘ZE)R t 3
vl - —k-)z,t*(—_ag): ' e

Therefore, we have demonstrated it is possible to define a velocity X(k) such that
the observer moving with this velocity sees constant values of k. A similar argu-
ment holds for w. That is, we can find a velocity X(“’) with which values of w are
propagated in space-time varying media. In general, y_(w) will not equal X(k),

except in the limit of spatially homogeneous, time-invariant media.

2.4 Comments on Energy Flow

Since in a space-time varying medium w and k are not propagated with
V= ka , we should not be surprised to find that the energy flux does not flow with
this velocity either. To consider this problem let us limit our discussion to iso-
tropic, lossless dielectrics. We then have, upon using Eq. (2} in (1) and employ-

ing the assumpt_ions expressed in Eq. (5), that the equation satisfi,id by 2 is

K(Vy-e)re (V- B+2(k-V)e,

l de
- duw W o
"Fo‘[Eo(at * 2w at)+2"’ 3t ]

where ¢ =1lne. (Note that Eq. (34) reduces to the results of Section 3.1.3 in Born
and Wolf (1959) in the limit when the medium does not depend on time.) Now recal-
ling that k- e = 0, taking the scalar product of eo* with Eq. (39), and then adding

its complex conjugate to the resulting equation gives:

(39)
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2
9 &,
ok I}
|£o|26_+ka_|£°;2=-poe Nk at+zwg'g)+w > 1, (40)
} z

where £=£%. X. If we now substitute k = v po€ into Eq. (40), and use Eq. (14)
to write dw/dt = - % oy /dt, we obtain

a|e |2

ﬁ(\/r‘-]&,]z) =‘%(%§‘)|Eolz' c—Ft— - (41)

[o]

Let us define an energy flux I =&|£O|2. Then in terms of I Eq. (41) becomes

gl+v = -13—"1 (42)

We now consider the flux equation further in the limit when Ve and k are in the
same direction (say along the z axis). From (42) we then have that:

(a) If e(z, t) is independent of time then
al _ (8 v 9y,
st (F+ViI=0, (43)

so that the energy flux I remains constant as one moves with the group velocity
V = (e,.:.o)"ll 2. That is, values of I are propagated with the group velocity.

(b) If €(z, t) is independent of position, Eq. (42) may be written as
d = (L, v.o -
E(‘I"(at*'vaz”‘”‘"’ ) (44)

so that it is not the flux, but rather values of (1) which are propagated with the
group velocity when ¢ depends on time only.

(¢) When the medium varies with both position and time neither I nor (el) are
propagated with V., As an example, suppose ([.l. € )1/2 B (z) +1 ‘Bl (z). ‘Then it
is readily shown that the invariant of the motlon is

Z
I exp{zf 'Bl(zr) dz'] . (45)

Therefore, we have demonstrated that it is only for media which are time invariant
that the energy flux (Poynting vector) is propagated with the group velocity.
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For dielectrics which vary with position and time it is not the energy flux I, but
rather some new quantity f(I, x, t) which is propagated with the generalized group

velocity, given by Eq. (12).

2.5 Approximate Solution of Eq. (14} (Small Doppler Approximation)

In many instances it is difficult to obtain exact solutions of Egs. (11) and (14)
for space-time varying media. This is especjally true when dispersion is present.
However, when the frequency shift in propagating through the medium is small
compared with the transmitter frequency, it is possible to solve Eaq. (14) by itera-
tion. Let us consider the limit when

40t e, (46)
w

where, as before k = K(w, x, t) and ds = k- dx. The integral is along the ray path
in the medium between the transmitter and the observer. For the special case of a
dielectric, this requires that, in addition to the condition that the medium vary
slowly, the path length in the medium cannot be so large that f Kds >> 1. When
Eq. (46) is satisfied, we may neglect the right hand side of (14), and conclude that
w is approximately a constant of the motion. Furthermore, if (as is usually the
case) we specify that w = w, for all time at the position of the transmitter, then
w2 W for all x and t (for which Eq. (46) is still satisfied). Using w = w, then
gives in Eq. (4)

|v<ab|=i%2 n(aw,xt, (47)

where n{w, X, t) is the index of refraction, defined by lEl = ‘—(':’- n. Equation (47} is,
of course, the standard Eikonal used in ray optics. Similarly, in Eq. (6) we have
(substituting l k | = Yn(w, X, t)

= c o= .

w,

~ [ o o
p2i[2[nlu,xnk ax- wt] . (48)
where, as before, { is the unit vector normal to the phase surface, and is deter-
mined by solving (47). Finally. using (48) in Eq. (7b) gives for the first iteration
to the instantaneous frequency

l.IJo an( wos _x_l t)

we=w -— g 9. (49)
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where ds = K - dx = path length along the ray., Equation (49) is the result used by
ionospheric researchers in studying the Doppler shift through an ionospheric region
which varies slowly with path position and time (Weeks, 1958; Kelso, 1960, 1964;
Ginzburg, 1964; Bennett, 1967), It is evident, from Eqgs. (46) and (49) that Eq. (49)
is valid only when the Doppler shift is small compared with the transmitter fre-
quency. For most problems of propagation through the earth's ionosphere, Eq. (49)
is an adequate approximation for the instantaneous frequency. However, there are
laboratory plasmas and some planetary atmospheres (for example, Jupiter) where
(49) may not be a good approximation. In addition, the constraint of Eq. (46) may
not hold in many space-time varying dielectrics. In the next section, we will study
the exact solutions of Eqs. (11) and (14) in some dielectric materials.

3. APPLICATION TO ISOTROPIC, LOSSLESS DIELECTRICS

3.1 Calculation of the Invarients  and k in Dielectrics

We will now use the results of Section 2 to study the propagation in lossless
dielectrics with permittivity varying slowly with position and time. To simplify
the problem we will also assume that the propagation is in the same direction as

Ve, which we choose to be along the z-axis in a rectangular coordinate system.

For this case we have that

i f(kdz - wdt)
L

E =e e R (50a)
where
Kzt = wlz ) /u <z 0. ' (50b)

Also, from Eq. (14) we have that w(z, t) satisfies

e ufmp, (51)

dw
EE z

W

where B = ,/Foe - From the theory presented in Egs. (17) and (18) we know that the
solution of (51) will have the form C1 = c1’(C2) where C1 = f{w, 2, t) and 02 = glw, z,t)
are the particular integrals of

- dz _ dw (52)

(37

Hl&
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Equation (52) is not simply solved for arbitrary variations in e with z and t. How-

ever, for specific variations in € solutions are readily obtained.
3.1.1 8 SEPARABLE

When ¢ is separable we may write 8= ﬁl (z) Bz(t). In this case, upon com-
bining the first and third members in (48) we get

wByt) =Cy - (53)

Therefore, the observer moving with the velocity V = 1/8 finds that w ‘62 (t) is an
invariant. Similarly combining the first and second members of (52) we get

szI(z')dZ' -ft dt’ =Cy» (54)
Bz(t')

so that the general solution of (51) when ¢ is separable is

@y - =a| [ 8 G b _at (55)
wlz, _Bz(t) f , (z')dz -f ﬂ-?—) ,
2

where the arbitrary function & is determined by specifying boundary conditions on
w along any curve in the z - t plane. For example, if ,32 did not depend on time,
and we specified w= w at z = 0 for all t, then & = constant, and therefore

w = constant, as would be expected.
3.1.2 TAYLOR EXPANSION OF B

The situation when B is separable, studied above, does not usually occur in
practical situations. However, there are often problems in which it is appropriate
to Taylor expand B(z, t) in either z or t. For example, we can consider the case
in which we desire 1o study -the propagation only over the time 'mtqgral t Stst,.
In that interval we may expand B in Taylor series int as

Bz, t)=l3°(z}+t!31(z)+°--- (56)

If we assume that the first two terms of the Taylor series are an accurate repre-
sentation of B in the interval t; St 2t, we obtain from Eq. (52)

dz _ _dt
Z - (57)

.. —dw
B(Z, t) - wﬁl (Z) -
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From the first and third members of Eq. (57) we obtain

S c, . (58)

w
z 1 ]
where S(z) = f Bl (2') dz’ . Therefore w exp{S(z)] is an invariant as one moves
with the group velocity 1/8. A second invariant is obtained by solving the first and
second members of (57). This gives

zZ 1
te~S(2) -f dz' [3C,(Z')eﬁs(z ). C, . (59)

Upon using Egs. (58) and (59) in the general solution C, = $(C,) we get
1 2

2 T
wi(z, t) = e_S(z)cb [te's(z) -f dz' Bo(z' )e'S(z )] . {60)

The wavenumber k(z, t) is related to w by k = wB . We can determine the arbi-
trary function ®(---) by specifying boundary conditions on w. For example, sup-
pose we specify that = w g for all t, at z = 0. (This condition is appropriate for
the case of a plane wave of frequency w, transmitted into a space-time varying
half-space.) This requires that, in Eq. (56), the function & = constant. We there-

fore obtain

z
4 B,(z') dz'
= @ e"‘[’ 1 ) (61)

In the limiting case when BD and ,81 are independent c;f z this result can be readily
shown to be identical with the previous result of Morganthaler (1958) that

_ Bt ) i (B, + B t) : % (:a»é) '
@S YU TRRY T Y% (B, + Bt) *
where t, is the time at which the signal at (z, t) was at z = 0, To see this, we
recall that in spatially homogeneous dielectrics
t , t ,
I - S A
o o
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Upon performing the integral in (63a) we obtain

(_‘,ggi_f?l_:q) AT (63b)
o 1

If (63b) is substituted into (62) it is evident that Eq. (61) and (62) are identical (in
the limit of spatially homogeneous dielectrics). It is also interesting to use (61)
in Eq. (38) to calculate the velocity v{k) with which values of k are propagated when

B is given by Eq. (56). Using (61) in (38) we find

(a
Zz I

V(k) =  —
(88, '(%g')t ]

1

T

3.1.3 TRAVELING-WAVE-MODULATED DIELECTRICS

One other case of interest is when 3 depends on position and time as z - vot.
This situation arises when the dielectric is modulated by a travelling wave, such as

an acoustic wave. For this case, upon definingu = 2 - vot, we have from the first

two members of Eq. (52)

vodt dz - vodt du

dz
— = = = - (65)
1 VOB 1- vo,B 1- VOB
Combining the last member of (65) with the third member of Eq. (52) gives
du ___dw
1-v,B(u)'vw_cﬁ° (66)
e o du

Equation (66) is readily solved to give

[1-v,B(=z- v 11 w(z, t) = Cy - (67

Therefore w(l - VOB) remains invariant as one travels with the group velocity
Vv =1/8. Itis also simple to obtain the other constant of motion C2 which is

determined from

%‘z— = Bz - v D). (68)
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Lettingu =z - v t, so that v gt =] - d_u’ we find as the solution to (68)
o o dz dz

(z - vot)

er-z=C .
- v, B(S) 2

(69)
The general solution for w is therefore
z - vot
ds

) i f(_1 : vo_ﬁ(s')) -z
w(z, t) = . (70)

1- VOB(z -v‘?i

As before,

the arbitrary function ¢ is determined by specification of w along some
curve in the z - t plane,

As an example, consider a sinusoidal travelling wave disturbance

Jei =-VL [1 -5 cos aflz - vot)] where & <1. Then Eq. (70) can be written, after
p v v

performing the integration (assuming |1 —70— |+8-2)as

P B

vo 2 SVO 2
sin a(z - v_t) tan {a 2 Vo) T\ W
q) SV v 2 ) p * p
(TB)+ (1 -vq)cos a(z - vot)»\/(l __"2)2 - (810-)2
P P M v
w(z, t) = £

(z
p
(152 [5E) o wte vt
-+ cosa(z -v
vp vp o

. R : . i -
If we again specify that & = Wy atz =0 for allt, (where w_3>>av_, w, >> av, )
it can be shown, after considerable manipulation, that the function b (p) is identi-
fied as

(71)

) (72)



v 2 5v 2
r = 1-;& - v° (73)
P P

and p is the argument of &(--+) in Eq. (71). It appears from Egs. (71) to (73) that
w (z, t) can exhibit some rather unusual behavior in the limit when v, = V- This
problem has been considered by Hessel and Oliner (1961) who have shown that the
difficulty arises because v, —= Vj gives rise to a singularity in the basic differential
equation of Eq. (1a). That is, if (1a) is written in terms of the variable s = z - Vt,
then the coefficient of the dzElsz2 term becomes vanishingly small as v, —~ Vo
Therefore our results in (71) to (73) are limited to the regions where v is not too

close to v_.
P

3.2 Time of Transit in Space-Time Varying Dielectrics

Since the phase and group velocities in a space-time varying medium are func-
tions of position and time, it is not immediately evident how long it would take for
a disturbance to travel a distance L along a ray. To study this problem let us con-
sider the motion of the point at which the phase @ =0. In particular, let us suppose
®=0fort=t, at some point X on a given ray. Then the time ty, at which ¢ =0

will reach another point Xy along the ray is a solution of

(0 t1)
(k- dx-wdt) =0. (74)

& to)

To study the solution of Eq. (74) let us specialize to the case when k is in the same
direction as Ve. If we assume that the initial point X igs z = 0 and the observation

point is at z = L. we can rewrite Eq. (74) as . <
(L, t;)
(kdz - wdt) =0. (75)
0, t,)

Since the line integral in Eq. (15) is independent of path it can be taken along any
curve joining (0, t o) to (L, tL) in the z-t plane. For instance, wé shall find it con-

venient to write
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L t
fk(z. o) dz - f W(L, t) dt =0 . (76)
(o} to

transit time (tL -~ to). To

Equation (76) is an integral equation to be solved for the
t) is independent

understand the meaning of Eq. (76) let us first suppose that 8(z,
of t, and that w (z = 0) is specified to be equal to w_ for all t. Then since
w(z=0)= w(z=L1) = w Eq. (76) becomes the obvious result

_ dz
Lot - fV(z) ' (77)

where V(z) = [FOE (z)]hllz. In the other limit when B (z, 1) is independent of z, we
get [assuming k(t = to) = ko for all z] that t;, is a solution of

L
L= Vit')at' ,
jt.o

(78)

which is the result obtained previously (Fante, 1971).
As an example of the application of Eq. (75) to dielectrics which vary with both
Position and time, let us consider the case when B is given by Eq. (56), along with

the boundary condition that w = w,atz =0 for all t. Then from Eq. (61) we have

z r r
-f Bl(z ) dz
o

w=w e , (79)
z . ,
- [ Byz") dz
- (o}
k = w, Bz, t) § _ . o @ (80)
Using these equations in (75) gives for the transit time
L 1
1y =S(z )
At=tL-t =eS(L)f ‘l’:}o(Z )e dz' , (81)
o]
(o}

where S(z) = j: Bl (g)dg. From Eq. (81) one could also define an equivalent group
velocity V(L) = L/At, as '
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V- - L ) (82)
S(L) v -S(z') dz’
e j; Bz )e

In the limit of spatially homogeneous, time-invariant dielectrics ( ﬂl =0, 'Bo inde-

pendent of z) Eq. (82) reduces to the usual result V = (8 )_1.

3.3 Discussion of Transmission Through a Dielectric Slab

The results of Sections 3.1 and 3.2 can be applied to considering the transmis-
sion of plane waves through a lossless dielectric slab of thickness L in which the
permittivity varies slowly with space and time. Let us denote the solutions in the
slab by

E=e(z,t;z,t)e'i f(wdt':kdz)_ (83)
o] o [¢]

where w and k are the appropriate solutions of Eq. (51) and eo(z. t) is the appropri-
ate solution of Eq. (39). For example, if Bz, t) = ,Gl(z) Bz(t) then

1/2 3/2
B,(z) By (t,)
eo{z. t; Z s to) = eo(O) l:—’gl—(z_)—:l [W . (84)

Now suppose the slab occupies the region 0 z< L, and a plane wave

E1 =exp [i wo(t - z/¢)] is normally incident upon the slab from the region z < 0.
Then the field transmitted through the slab at time t_, into the region z > L, will
consist of a number of components. First, there will be a wave which crosses
(from z < 0) the z = 0 boundary at time Ty, and is transmitted directly through the
dielectric, arriving at z = LY at the time ts' Next, there is a wave which crosses
the z = 0 boundar_y at time r,, and arrives at z = LY at the time ts’ ‘ifter being
internally reflected at time 7, by the z = L. boundary and at time 7, by the z = 0
boundary. Next, there is a wave which crosses (from z < 0) the z = 0 boundary at
time t¢ and arrives at z = L™ at the time to after being reflected twice at the z = 0
boundary (at times 7, and 1'3) and twice by the z = L boundary (at times 7, and 1'4),
and so forth. Let us define R(0, 7 )} as the internal reflection coefficient at z = 0F
boundary at time r, R(L, 7} as the internal reflection coefficient at z = L~ at time
¢ (for the case when the medium is spatially homogeneous R(0, ) = R(L,T)

= [/s_(_m—é—o - 1] [m‘_o + 1]'1), T(r) as the transmission coefficient, from
z=0"toz-= ot at time v, and 'ff‘(r) as the transmission coefficient from z = L.~ to
z = L.¥. Then, the transmitted field at z = L' can be written as



21

iw T
Ez =LY, t=t) = Ty {T(r) a(rpe © !

iw

T
+ T(z3) Alty) RO, 7)) R(L, 7)) e © °

(85)

lw T

+ T(rg) A7) R(O, 7)) R(L, 7,) RO, ) R(L, 7)) e © *4...},

where A(r) = eo(z =L* t= ts; 2z, = 0, to =71). From (85) it is clear that the nature
of the transmitted field will be known once the times Ts Tgr T3ttty have been
determined. Extending the discussion of Section 3. 2 we see that these are solutions

of the equations

L t
fk(z, t)dz = f w(0, t') at' , (86)
o 71
o] Tl
- fk(z, T)dz = f w(L, t') dt' , (87)
L Ty
L ' rg
fk(z. 7,) dz = f w(0, t')dt' . (88)
[o] T3

Therefore T{» Ty, and so forth, could be obtained by first solving (86) for -
Then using the solution of Eq. (86) in Eq. (87), the resulting equation could be
solved for Tos and so forth.

Equation {85) can also be applied to the case of transmission into an infinite
half-space. We can obtain this limit by setting ?(t) = Isgnd R(L, v) = 0. We there--
fore obtain for the field at a point z at time t

iw 7
E(z, t) = T(r) A(r)e ° 7, 89)

where T, is the solution of the equation
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z t
23 S T
f k(z', t.) dz' = f w(o, t') dt . (90)
T
1

When B{z, t) is given by Eq. (56), we can use the results of Section 3., 2 to express

‘l'l as

S(z) Js '
, =t -e ° f Bo(z')e-s(z)dz'. (91)

o]

Once 1, is known, T(r ) can be obtamed by applying the usual WKB methods to the
profile e{z) = y.o [B {z) + ™ Bl(z)]

As an example of the application of the more general result of Eq. (85) let us
consider the case when the dielectric slab is spatially homogeneous, Then (85)
becomes

+ A iw o1

E(z = LY, t=t) = T(t) {r(ep At e
iw oT3
+ T(T3) A(ra) R(rl) R( rz) e (92)

10.!01.‘5
+T(r5)A(r)R<r)R( )R(r)R(,)e +} .

where
3/4
el
A(r) = [ E(ts’] E (93)
S,
and Tm is the solution of
t
s
f vit') dt' = mL . (94)
"m m=1, 2, 3, =--

To examine the various frequency components present in the transmitted wave of

Eq. (92) we can Taylor expand the functions 7,(t). Thatis
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0
rm(t) = Tn(; + (t - tS) (_gtﬂ) +oeen (95)
ts

where

ot vt ) e{t_) 1/2

( m) - s’ | m (96)
at ¢ v(rm) e(ts) ‘
s

Using this result we may rewrite (92) as:

i, (t- ts)

Ez=L%, t)=) Bpe 1 , (97)
L
where
3/4 o 2(8-1)
€ ) iw T
_ 2 21-1 o 2£-1
Bl = T(TZE-].) T(ts),: t) J e H R(Tj)
j=0
and
1/2
vit_ ) ( )
\Qi = wo v(—rs__) = W —G_TZZ;L . (98)
20-1 ° e lty)

From Eq. (97) we see that the transmitted signal consists of components at the
instantaneous frequencies ‘Q'l‘ .0,2, ,(7,3, .(),4 *** . This interpretation assumes
that By is a slowly varying function of time in comparison with exp (i 2t), which
is the case in the WKB approximation. The importance of the frequency components
at 9,2,_ .Q.3, .9.4. and so forth, in comparison with that at .(7,1, will depend on the
amplitude of the reflection coefficient R. For R << 1 only .Q.1 will be significant,
but for R near unity this conclusion is clearly not true.

Therefore, we see that, because of the spatial boundaries, the transmitted
signal has components at 'Q'l' ‘Q'Z' .0.3 +++ , and not just at ‘Q'l as found by
Morganthaler (1958), who did not account for boundary effects. For relative per-
mittivities near unity the components at 92, .(23, and so forth, will be negligible
compared with that at ) 1 For large relative permittivities, however, the higher
order frequency components will be significant,
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3.4 Further Discussion — Ray Tracing Methods

In the general case when the direction of propagation is not along Ve, it is
not a simple matter to solve Eq. (11) or (14) for space-time varying dielectrics.
In many cases it is acceptable to use the approximation of Eq. (49), but for others
this may not be possible. In such cases it appears most appropriate to approxi-
mate the temporal behavior of the dielectric in a stepwise fashion. For example,
in the time interval 0 £t = tN the function B(x, t) can be approximated by:
B = Bl(ﬁ) for0 St <ty B= Bz(f) for t,< t<ty o, B= BN(i‘.) fortN_1< tsty
where we assume that | (Bj - Bj_l)l Bj I << 1. Now suppose we have a signal of
frequency wy which enters the dielectric along the direction k, at time t = 0. Then
in the interval 0 £t <t, we can ray trace (using Snell's Law) to determine the path
along which the signal will travel. The distance 51 along the ray, which the phase
¢ = qbo will traverse in time interval t,, is obtained by solving

Sl
t1=f B, (x) dS , (99)
o]

where dS = k- dx, and the integral is taken along the ray path. Att=t,, B is
suddenly changed to ,Bz(x). The new frequency wy agssociated with the point we are

following along the ray is (see Eq. 33)

0 = w =i (100)

where X, is the coordinate of the point S = Sl on the ray. Also, if ﬁ(t1 - 8)is the
normal to the phase surface at t; - 3, thenatt, + 3 the normaﬁl‘ is still in the same
direction, by virtue of Eq. (31). That is, if the angle between k(t1 - §) and the

z axis is 91, then the angle between Q(tl + 5 ) and the z axis is also 91. The new
ray path (valid ”during t </1: <,t2) is _de:ermined by ray tracing starting atx = Xy,
along the initial direction k{t, + 5) = kit; - §). The distance S, - 1 which the
wavefront will travel along the new ray path in the interval t, < t<ty is obtained

by solving

5
2
ty -t = [ By as. (101)

Sl

We can continue the above process until we have traced the progress of the ray
point we have chosen for all values of time in the interval 0 <t = tN .
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4. APPLICATION TO DISPERSIVE MEDIA

4.1 Discussion of the Invariants

The propagation in dispersive media is far more complex than in dielectrics,
As the simplest example, consider the propagation in a lossless, isotropic plasma
in which the propagation is in the same direction as Vw_, where w_ is the elec-
tron plasma frequency. In this case the dispersion relation is c2k? = w?2 - wpz(x, t),
so that Eq. (14) becomes (assuming w is not too close to cup)

2 dwnd
dw _ wp dw = 1 wp
st/ T3 e i (102)

From Eqgs. (17) and (18) we have that the solution of (102) will have the form
C1 = Cb(Cz), where C1 = f{w, 2z,t) and C2 = g(w, z,t) are the particular integrals of

¢. &= . g“;d‘”z : (103)
w srle )
e/ 1-2P Jt’ ' p
w

Unfortunately, Eq. (103) is not readily solved for the constants of motion, except
in the limits when w_ depends on z or t, but not on both. For example (as expec-
ted from the discussion of Section 2) we have that w = C1 when wp is independent
of time. This means that w is an invariant as one moves with the group velocity

V= c(l-wilwz)”z. When «_ is independent of position we find that the particular

integral C, = o? - w(t), which is just a statement of the fact that values of k are
propagated with the group velocity on spatially homogeneous media.

We have not been able to obtain the exact invariants of the motion when wp is
an arbitrary function of z and t. In most practical plasma problems, however, we
are fortunate thai; the inequality of Eq. (46) is satisfied &0 that w can be approxi-.
mated by the result of Eq. (48), One can easily imagine problems where Eq. (46)
is not satisfied, however, and in this tase ray tracing methods seem most appropri-
ate. In the next section we will discuss how ray tracing can be applied to space-

time varying plasmas.

4.2 Ray Tracing in Space-Time Varying Dispersive Media

The simplest method of applying ray tracing techniques to a lossless, isotropic,
space-time varying plasma is to approximate the temporal variations in a stepwise
fashion as was done in Section 3.4. That is, we approximate the plasma frequency
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wp(x, t) by: wp = wpl(f) foro<ts tl‘ wp = wpz(i) for t1 <t< tz,wp = "’p3(§) for

1:2 <t <« t3, and so forth. We assume that

“ph1 " “p2

<< 1,

and so forth. To illustrate the method we will further assume that the plasma
occupies the half-space z > 0, and is spatially stratified in the z direction only.
Att = 0, a point p on the envelope of a signal of frequency w, enters the medium
at an angle 90 relative to the z axis. Then by Snell's Law we have that the ray

path during the time interval (0, tl) is determined from

9 1/2 5
w g (0) w 1(z)
1-—9-—5— sin 6 = 1-__1’_—2- sin 8(z) .
“ wy

#* .
The component at frequency w, moves along this path at the group velocity

1/2
- 2 2
"CE-wpllwl] »

so that during the time interval 0, tl) the distance S1 travelled along the ray by the
point p on the envelope of the signal is the solution of

v,

S .
1
_ g5 :
L f ACK (104)
o]

where the integration is along the ray path (in isotropic media the gay and group
paths are the same). We could also have chosen to follow the progress of a par-
ticular value of phase ¢ = ¢ 1 In the time interval t1, the distance Sl' travelled
along the ray by this value of phase is then the solution of

t. = f ds | (105)
1 Vo1
o P

*The above discussion would apply to the motion of a wave packet with fre-
quency spectrum initially centered sharply about w = w,.
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- _ EYA
where Vo1 * cl\/l (‘"pll w)?.

Now suppose that at t = t1 - 5(8 — 0) the point p on the envelope has reached
the point x = X;» and that the ray path at that point makes an angle 61 with the
z-axis, Att = t1 the plasma frequency is suddenly changed from wpl(z) to wpz(z).
By virtue of Eq. (31), 8 cannot change instantaneously so that G(t1 -8)= 9(1:1 +3)
= 91. Therefore, the new ray path in the plasma during the interval t<t< t2 is

determined from
1/2

)12y (z)]?
z
(1-[01L21J ) sin g, = (l-l:ljl ) sin 8 (z), (106)
wo wo

where the new frequency w, associated with the point p we are following is

1/2 .
wz = [wl‘?’ - wplz(zl) + “’p22(21)] . (107)

This component now moves along the ray trajectory with the group velocity

g1/2
=V, = wp2(?) (108)
o) | (222

and during the interval ti<tec t2 traverses the distance S2 - S1 along the ray,
where S2 - 5, is the solution of

) ;
B ds
t2 - tl = f v (109)
S

and the integral is along the ray.

The above procedure can be repeated continually until the position and fre-
quency of the point p of interest have been determined everywhere in the-time
interval of interest. Of course, if in any region of space (or time) we reach the
situation where w is close to w_, the WKB method is no longer valid, and one
must do a more careful analysis (see, for example, Kelso, 1964; Ginzburg, 1964).
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5. COMMENT ON ABSORPTION

To keep our discussion relatively simple we have avoided considering the
effect of absorption. When absorption is present we find that [since ¢ {x, t) must
be unique even when losses are present] Eq. (9) still holds, except that w and k
may both be complex numbers (and in addition the real and imaginary parts of the
k vector will generally lie along different directions). However, our interpretation
of various quantities, such as the group velocity and the ray paths is no longer
valid. For example, when absorption is present |E| = | Vo | may be greater
than the speed of light, and consequently no longer retains any physical meaning
even in the limit of spatially-homogeneous, time invariant media.

In order to understand why @ and k may both be complex in lossy space-time
varying media, we first realize that since Eq. (9) is valid when Eq. (31) must also
still hold, so that if the properties of a lossy medium are abruptly changed at
t = t; we still have that k(t, + §) =kl - 8 ). In a lossy dielectric k and w are
related through K2 = w2 Ho€ *iwp,o, where ¢ is the conductivity of the medium.
We now suppose that ¢ = €50 77 g and w = wy = real for t < tl; and € = €o
T = 0y fort > tl. Then since k = | El is continuous att =t, we can determine the

new frequency wy during t > t; from

wf hoey tluysg oy * g Boey tluzkoTy (110
If wy Were real we would require that
€ 1/2
w2 = ) w, , (1113.)
€9 1 -
and
oy C ] e _
w. = |— w, . . (111b)
2 oq 1

Equations {(111a) and (111b) cannot be simultaneously satisfied, except for the
special case when (ell 62)1/2 = (0'1/ o-z). We therefore conclude that for Eq. (110)

to be satisfied in general, w, must be complex. In particular denoting

_ +i n h
w2 = wz lwz we have

wlz €= [(wzl)z - (w;)z] €9 = wg Og (112a)
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1
wy o = 2w2 wy € + wy Ty (112b)

Equations (112a) and (112b) can be solved for ‘"'2 and w‘2' . We will not probe too
deeply into the effects of absorption. This will be deferred to a later paper. We
do comment that the analysis becomes relatively straightforward in the limit when
the absorption is small (o/we << 1) since then the relevant equations may be
studied using perturbation methods. For example, the ray paths can be determined

by neglecting absorption, and so forth.

6. SUMMARY

We have studied the properties of the WKB solutions in lossless, isotropic
space-time varying media. It was found that, in principle, one can always obtain
constants of the motion which lead to a complete determination of the frequency
and wavenumber, once appropriate boundary conditions have been specified. Once
w and k are known one can readily study the transmission through space-time
varying media, as was illustrated in Section 3. 3. In general, however, the con-
stants of motion are not always easily obtained. In such problems we have shown
in Sections 3.4 and 4. 2 that one can obtain solutions by modelling the medium by a
series of temporal steps. That is, the index of refraction n(x, t) is approximated
byn;(x)in0 st = t nz(z) int, <t< ty, and so forth, and ray tracing techniques

are applied during each time interval,
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