Theoretical Notes Note 213

AFCRL-TR-73-0277
25 APRIL 1973
PHYSICAL SCIENCES RESEARCH PAPERS, NO. 546

MICROWAVE PHYSICS LABORATORY

PROJECT 5635

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

Transient Signal Propagation in Lossy Plasmas

RONALD L. FANTE RICHARD L. TAYLOR

Approved for public release; distribution unlimited.

AIR FORCE SYSTEMS COMMAND
United States Air Force

		. ,		
			چي جي	.
	·			
•				

Abstract

Using contour integration techniques, we have calculated the transient response of a lossy homogeneous isotropic plasma to a unit step and a step-carrier sine wave. We have found that in the presence of losses the temporal step function response within the plasma does not approach zero for large time as for the collisionless case, but rather approaches unity. The rate at which the transient approaches the asymptotic value of unity is strongly dependent on the losses, being quite rapid for large losses and exceedingly slow for very small losses. This result has an important impact on the propagation of EMP through the plasma sheath around a reentry vehicle, and through the ionized region near a low altitude nuclear fireball.

•				
			c :	_
	-			
·				

		Contents
1.	INTRODUCTION	
2.	BRANCH POINTS AND BRANCH CUTS	1
3.	NUMERICAL RESULTS	2
	3.1 Step-Carrier Sine Wave 3.2 Step Function	6
4.	DISCUSSION	13
RE	FERENCES	16
AP	PENDIX A	21
API	PENDIX B	23
API	PENDIX C	25
APF	PENDIX D	27
		29
		Illustrations
1.	Branch Cuts for the Functions (a) γ_1 ; (b) γ_2 , (c) γ_3 , (d) γ_4	
2.	Branch Cuts for the Function γ When $\nu_{\rm c} < 2\omega_{\rm p}$	3
3.	Branch Cuts for the Function γ When $\nu_{_{ m C}} > 2\omega_{_{ m P}}$	4
	p view v v v v v v v v v v v v v v v v v v v	5

v

،' د

Illustrations

4.	Deformed Contour Integration for the Case When $v_{_{ m C}} < 2\omega_{_{ m P}}$	6
5.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 1$ and $\omega_p/\omega_0 = 2$	7
6.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 5$ and $\omega_p/\omega_0 = 2$	8
7.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 10$ and $\omega_0/\omega_0 = 2$	8
8.	Transient Response to Step-Carrier Sine Wave for $v_c/\omega_p = 0.5$ and $\omega_p/\omega_0 = 2$	10
9.	Transient Response to Step-Carrier Sine Wave for v_c/ω_p = 1.0 and ω_p/ω_0 = 2	10
10.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 0.5$ and $\omega_0/\omega_0 = 4$	11
11.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 2.5$ and $\omega_0/\omega_0 = 4$	11
12.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 5$ and $\omega_p/\omega_0 = 4$	12
13.	Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 5$ and $\omega_p/\omega_0 = 0.7$	12
14.	Transient Response to Unit Step for $\omega_{D}x/c = 1$	14
15.	Transient Response to Unit Step for $\omega_{n}^{F}x/c = 5$	14
16.	Transient Response to Unit Step for $\omega_{D}^{P}x/c = 10$	15
17.	Transient Response to Unit Step for $v_c^P/\omega_D = 1$	15
18.	Response to a 10^{-6} sec Square Pulse for (a) $\nu_c = 0$, $\omega_p = 1.5 \times 10^{10}$ and (b) $\nu_c = \omega_p = 1.5 \times 10^{10}$	19
19.	Transient Response of a Conductor or Lossy Dielectric to a Unit Step	19

		IUDIES
1.	Comparison of Exact Results for the Transient E-Field With the Approximation of Eq. (16) for $v_c/\omega_D = 1$	17
2.	Comparison of Exact Results for the Transient E-Field With the Approximation of Eq. (16) for $v_c/\omega_p = 0.1$	17

Transient Signal Propagation in Lossy Plasmas

1. INTRODUCTION

There has been a great deal of research done (Haskell and Case, 1966a, b, 1967; Knop and Cohn, 1963; Knop, 1965; Lighthill, 1965; Felsen, 1969; Antonucci, 1972) on the transient propagation of electromagnetic signals through lossless plasmas, and the results are quite appropriate for the calculation of EMP through the undisturbed ionosphere. For transmission of EMP through the plasma surrounding a reentry vehicle or through the ionized region near a low altitude nuclear fireball, however, the theory is quite inadequate since here the effect of collisional absorption on the transient propagation is quite significant. The effect of collisional losses has been considered previously by Field (1971) using the method of characteristics, but unfortunately he does not present results for the transmitted field in the cases of interest to us. In this report, we will therefore extend the previous theories to include the effect of collisional absorption on the propagation of transients in a cold*, homogeneous isotropic plasma. We shall consider only two types of transient signals: the step-carrier sine wave and the unit step. The transient

(Received for publication 24 April 1973)

^{*} The cold plasma model is approximately valid in those regions near a nuclear burst where the electron temperature is less than 30,000°K. Also, in applying these results to EMP propagation we must be sufficiently far from the fireball to neglect nonlinear effects.

response within the plasma to the unit step is quite important since the response to an arbitrary EMP can always be synthesized as a superposition of the unit step responses.

As a starting point for our investigation we consider the Maxwell equations for the electric field strength E, and the Langevin equation for the electron velocity v. If we write E in terms of the Laplace transform

$$E(x,t) = \int_{B} \hat{E}(x,p) e^{pt} dp , \qquad (1)$$

it is readily shown that for $x \ge 0$

$$\hat{\mathbf{E}}(\mathbf{x}, \mathbf{p}) = \hat{\mathbf{E}}(\mathbf{x} = 0, \mathbf{p}) e^{-\gamma \frac{\mathbf{x}}{\mathbf{c}}}, \qquad (2)$$

where

$$\gamma = \left(\frac{p}{p + \nu_c}\right)^{1/2} \left(p^2 + \nu_c p + \omega_p^2\right)^{1/2}, \tag{3}$$

 $\omega_{\rm p}$ = electron plasma frequency,

 $\nu_{\rm c}$ = electron - neutral collision frequency.

We have also assumed that E(x, t=0)=0 for all x>0. In order to evaluate E(x, t), it is necessary to perform the integration along the Bromwich contour B in Eq. (1). This may be accomplished either by integrating directly along the Bromwich contour, or by deforming that contour into the left-half p-plane. This latter choice leads to integrals which rapidly converge, and will therefore be pursued in this report.

2. BRANCH POINTS AND BRANCH CUTS

The function γ in Eq. (3) can be written in product form as

$$\gamma = \gamma_1 \gamma_2 \gamma_3 \gamma_4 , \qquad (4)$$

where $\gamma_1 = p^{1/2}$, $\gamma_2 = (p + \nu_c)^{-1/2}$, $\gamma_3 = (p - p_1)^{1/2}$, $\gamma_4 = (p - p_2)^{1/2}$. For $\nu_c < 2\omega_p$ we have

$$p_1 = -\frac{\nu_c}{2} \pm i (\omega_p^2 - \nu_c^2/4)^{1/2}$$
,

while for $\nu_{\rm c} > 2\omega_{\rm p}$ we have

$$p_1 = -\frac{v_c}{2} \pm (v_c^2/4 - \omega_p^2)^{1/2}$$
.

The function γ_1 has branch points at p = 0 and p = ∞ . For this function we choose the branch cut shown in Figure 1a. The function γ_2 has branch points at p = $-\nu_c$

Figure 1. Branch Cuts for the Functions (a) γ_1 ; (b) γ_2 , (c) γ_3 , (d) γ_4

.

and p = ∞ , and we choose the branch cut shown in Figure 1b for this quantity. For γ_3 , which has branch points at p = p₁ and p = ∞ , we choose the branch cut illustrated in Figure 1c, while for γ_4 , which has branch points at p = p₂ and p = ∞ , we choose the branch cut shown in Figure 1d. If we write p = r_1 exp(i θ_1), (p+ ν_c) = r_2 exp(i θ_2), (p-p₁) = r_3 exp(i θ_3), (p-p₂) = r_4 exp(i θ_4), we can write $\gamma_1 = \pm r_1^{1/2} \exp(i\theta_1/2)$, $\gamma_2 = \pm r_2^{-1/2} \exp(-i\theta_2/2)$, $\gamma_3 = \pm r_3^{1/2} \exp(i\theta_3/2)$ and $\gamma_4 = \pm r_4^{1/2} \exp(i\theta_4/2)$. For each of these functions we then choose the Riemann sheet corresponding to the upper sign, so that

$$\gamma = \left(\frac{r_1 r_3 r_4}{r_2}\right)^{1/2} \exp\left[i\left(\frac{\theta_1 - \theta_2 + \theta_3 + \theta_4}{2}\right)\right],\tag{5}$$

and the branch cuts for the total function $\gamma = \gamma_1 \gamma_2 \gamma_3 \gamma_4$ are those shown in Figure 2 for $\nu_c < 2\omega_p$, and in Figure 3 for $\nu_c > 2\omega_p$. The integral in Eq. (1) can now be performed by deforming the Bromwich Contour B in Figure 2 into the

Figure 2. Branch Cuts for the Function γ when $\nu_{\rm c} < 2\omega_{\rm p}$

Figure 3. Branch Cuts for the Function γ When $\nu_{\rm c} > 2\omega_{\rm p}$

left-half p-plane. If we assume that $\mathbf{E}(\mathbf{x}=0,p)$ has poles at \mathbf{s}_0 and \mathbf{s}_1 , then Eq. (1) can be rewritten

$$E(x, t) = \int_{C_1} + \int_{C_2} + \int_{C_3} + \int_{C_4} \hat{E}(x=0, p) e^{(pt - \frac{\gamma x}{c})} dp$$
, (6)

where the contours C_1 , C_2 , C_3 , and C_4 are shown in Figure 4.

To illustrate how the contour integrals are performed, let us consider the integral along C_1 in Figure 4. At a point A on C_1 we have $r_1 = \sigma$, $r_2 = \frac{\nu}{c} - \sigma$, $r_3 = r_4 = (\omega_p^2 - \nu_c \sigma + \sigma^2)^{1/2}$, and $\theta_1 = \pi$, $\theta_2 = 0$, $\theta_3 + \theta_4 = 0$. At the point B on C_1 , r_1 , r_2 , r_3 and r_4 remain the same but θ_1 is now $-\pi$. Therefore at point A we find upon using these results in Eq. (5) that $\gamma = i[\sigma/(\nu_c - \sigma)]^{1/2}$ ($\omega_p^2 + \sigma^2 - \nu_c \sigma)^{1/2}$, while at point B, $\gamma = -i[\sigma/(\nu_c - \sigma)]^{1/2}$ ($\omega_p^2 + \sigma^2 - \nu_c \sigma)^{1/2}$. As a result the integral along contour C_1 can be written as [using the fact that $p = \sigma \exp(i\pi)$ and $dp = -d\sigma$]

$$I_{C_{1}} = -\frac{1}{2\pi i} \int_{0}^{\nu_{c}} d\sigma \stackrel{\wedge}{E}(o, p = -\sigma) e^{-\sigma t} \exp\left[-i\frac{x}{c} \left(\frac{\sigma}{\nu_{c} - \sigma}\right)^{1/2} (\omega_{p}^{2} + \sigma^{2} - \nu_{c}\sigma)^{1/2}\right]$$

$$-\frac{1}{2\pi i} \int_{\nu_{c}}^{0} d\sigma \stackrel{\wedge}{E}(o, p = -\sigma) e^{-\sigma t} \exp\left[i\frac{x}{c} \left(\frac{\sigma}{\nu_{c} - \sigma}\right)^{1/2} (\omega_{p}^{2} + \sigma^{2} - \nu_{c}\sigma)^{1/2}\right]$$

$$= \frac{1}{\pi} \int_{0}^{\nu_{c}} d\sigma \stackrel{\wedge}{E}(o, -\sigma) e^{-\sigma t} \sin \frac{x}{c} \left[\left(\frac{\sigma}{\nu_{c} - \sigma}\right) (\omega_{p}^{2} + \sigma^{2} - \nu_{c}\sigma)\right]^{1/2}. \tag{7}$$

Figure 4. Deformed Contour of Integration for the Case When $\nu_{_{\rm C}} < 2\omega_{_{
m D}}$

The integral along the contour C_2 is evaluated in the same fashion, while the integration along the contours C_3 and C_4 is trivial. For the interested reader, the details of the integration along C_2 are contained in the Appendix $\mathbf Q$ to this report.

3. NUMERICAL RESULTS

3.1 Step-Carrier Sine Wave

We first consider the case when E(x=0, t) is given by

$$E(x=0, t) = u(t) \sin \omega_0 t$$
 (8)

where u(t) is the unit step function. For this case $\hat{E}(o, p) = \omega_0/(p^2 + \omega_0^2)$, so that the poles s_0 and s_1 shown in Figure 4 are $s_0 = i\omega_0$, $s_1 = -i\omega_0$. If we define $\hat{r}_1 = \omega_0$, $\hat{r}_2 = (\omega_0^2 + \nu_c^2)^{1/2}$, $\hat{r}_3 = [(\nu_c/2)^2 + (\omega_0 - Z)^2]^{1/2}$, $\hat{r}_4 = [(\nu_c/2)^2 + (\omega_0 + Z)^2]^{1/2}$ and

 $\hat{\theta}_1 = \pi/2$, $\hat{\theta}_2 = \tan^{-1}(\omega_0/\nu_c)$, $\hat{\theta}_3 = \tan^{-1}[2(\omega_0-Z)/\nu_c]$ and $\hat{\theta}_4 = \tan^{-1}[2(\omega_0+Z)/\nu_c]$, we get

$$\gamma = \Gamma e^{i\Phi} = \left(\frac{\hat{r}_1 \hat{r}_3 \hat{r}_4}{r_2}\right) \exp \frac{i}{2} \left[(\hat{\theta}_1 - \hat{\theta}_2 + \hat{\theta}_3 + \hat{\theta}_4) \right]$$
(9)

so that the integral over C_3 and C_4 yields

$$I_{C_3} + I_{C_4} = \exp\left(-\frac{x}{c}\Gamma\cos\Phi\right) \sin\left(\omega_0 t - \Gamma\frac{x}{c}\sin\Phi\right). \tag{10}$$

Using Eqs. (6), (7), (10) and (A5), we have calculated the time response of the electric field in the plasma for the step-carrier sine wave excitation of Eq. (8). Figure 5 shows the response at $\frac{\omega_{\rm O}^{\rm X}}{\rm c}=1$ for an overdense plasma ($\omega_{\rm p}/\omega_{\rm o}=2$) for different values of $\nu_{\rm c}$. We comment that the results for $\nu_{\rm c}/\omega_{\rm p}=0.01$ are nearly identical with those obtained by Haskell and Case (1966a) for the case $\nu_{\rm c}/\omega_{\rm p}=0.$ For $\nu_{\rm c}/\omega_{\rm p}=1$, however, the response is quite different. This difference is even more apparent for the cases when $\frac{\omega_{\rm O}^{\rm X}}{\rm c}=5$ and $\frac{\omega_{\rm O}^{\rm X}}{\rm c}=10$, which are shown in Figures 6 and 7. For large values of $\omega_{\rm o}^{\rm X}/\rm c$, even when $\nu_{\rm c}/\omega_{\rm p}=0.1$, the transient

Figure 5. Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c = 1$ and $\omega_p/\omega_0 = 2$

Figure 6. Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c$ = 5 and $\omega_p^{=}\omega_0^{}$ = 2

Figure 7. Transient Response to Step-Carrier Sine Wave for $\omega_{\rm O} {\rm x/c}$ = 10 and $\omega_{\rm p}/\omega_{\rm O}$ = 2

response is altered significantly, and for $\nu_{\rm c}/\omega_{\rm p}$ = 1 the character of the response is completely different from the collisionless limit. Figures 8 and 9 illustrate how the nature of the transmitted signal changes as the distance into the plasma is varied. We note from Figures 8 and 9 that for large $\omega_{\rm o} {\rm x/c}$, there is an oscillation followed by a long wake in which the amplitude of the signal is nearly constant. It is readily shown that in this wake region, E(x, t) can be approximated by (see Appendix B)

$$E(x,t) = \exp\left(-\Gamma \frac{x}{c} \cos \Phi\right) \sin\left(\omega_{o} t - \Gamma \frac{x}{c} \sin \Phi\right) + \frac{\omega_{p}}{2\omega_{o} c(\nu_{c} \pi)^{1/2}} \left(\frac{x}{t^{3/2}}\right) \exp\left(-\frac{\omega_{p}^{2} x^{2}}{4c^{2} \nu_{c} t}\right). \tag{11}$$

In deriving Eq. (11) we have assumed that t >> x/c and that ν_c/ω_p is of order unity. From Eq. (11) we see that for large t the transient signal consists of a sinusoidal wave at frequency ω_o plus a component which eventually decays towards zero as $t^{-3/2}$.

Figures 10 through 12 indicate the nature of the response for $\omega_{\rm p}/\omega_{\rm o}$ = 4. Figure 10 shows the transient response for $\omega_{\rm o} x/c$ = 0.5, where the effect of large values of $\nu_{\rm c}$ is to radically alter the signal amplitude. From Figure 11 we see that when $\omega_{\rm o} x/c$ = 2.5, both the amplitude and the character of the transient response are radically changed from the case of zero collision frequency. In fact, the frequency of the oscillation for $\nu_{\rm c}/\omega_{\rm p}$ = 1 is quite drastically reduced from the case when $\nu_{\rm c}/\omega_{\rm p}$ = 0.01. Figure 12 illustrates the transient response at $\omega_{\rm o} x/c$ = 5. At this distance, for $\nu_{\rm c}/\omega_{\rm p}$ = 1, there is hardly any oscillation of the transient response, but rather a slow buildup, and then an eventual decay (not shown in the figure) in accordance with the second term in Eq. (11), since the first term in Eq. (11) is quite small for this case.

In Figure 13, we have shown the effect of collisions on propagation in an underdense plasma. Here we note that no interesting or unexpected behavior occurs, and we will not study the underdense case further. In addition, this case has been previously considered by Case and Haskell (1967). We only comment that our results do agree with the previous ones obtained by Haskell and Case (1966a) in the limit $\nu_{\rm C}/\omega_{\rm D} \rightarrow 0$.

^{*}To check the accuracy of Eq. (11), let us consider the case when $v_{\rm c}/\omega_{\rm p}$ = 1, $\omega_{\rm p}/\omega_{\rm o}$ = 2 and $\omega_{\rm o} L/c$ = 10. If we take a point in the signal wake at $\omega_{\rm o} t$ = 15, we have from Eq. (11) that E = 2.54 \times 10⁻³, while the exact calculation (see Figure 9) gives E = 2.51 \times 10⁻³.

Figure 8. Transient Response to Step-Carrier Sine Wave for ν_c/ω_p = 0.5 and ω_p/ω_o = 2

Figure 9. Transient Response to Step-Carrier Sine Wave for $\nu_{\rm c}/\omega_{\rm p}$ = 1.0 and $\omega_{\rm p}/\omega_{\rm o}$ = 2

Figure 10. Transient Response to Step-Carrier Sine Wave for $\omega_{\rm O} {\rm x/c}$ = 0.5 and $\omega_{\rm p}/\omega_{\rm O}$ = 4

Figure 11. Transient Response to Step-Carrier Sine Wave for $\omega_{\rm O} x/c$ = 2.5 and $\omega_{\rm P}/\omega_{\rm O}$ = 4

. .

Figure 12. Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c$ = 5 and ω_p/ω_0 = 4

Figure 13. Transient Response to Step-Carrier Sine Wave for $\omega_0 x/c$ = 5 and ω_p/ω_0 = 0.7

3.2 Step Function

We next consider the situation when E(x=0, t) is given by

$$E(x=0, t) = u(t)$$
 (12)

For this case the pole s_0 coincides with the branch point at p=0, while there is no pole s_1 . Here, special care must be taken in performing the integral I_{C_1} , and the integral in Eq. (7) becomes

$$I_{C_1} = I_{\delta} + \frac{1}{\pi} \int_{\delta}^{\gamma_c} d\sigma \stackrel{\triangle}{E} (0, -\delta) e^{-\sigma t} \sin \frac{x}{c} \left[\left(\frac{\sigma}{\nu_c - \sigma} \right) \left(\omega_p^2 + \sigma^2 - \nu_c \sigma \right) \right]^{1/2}, \quad (13)$$

where I_{δ} is the integral along a circle of radius δ surrounding the origin in the p-plane. That is

$$I_{\delta} = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \, e^{\delta t \exp(i\theta)} \, e^{-\frac{x}{c} \, \gamma(p = \delta \exp(i\theta))} \qquad (14)$$

Using the result of Eq. (13), plus the appropriate expression for ${\rm I_{C_2}}$ from Appendix A, we have calculated

$$E(x, t) = \int_{C_1} + \int_{C_2} \hat{E}(x=0, p) e^{(pt - \frac{x}{c}\gamma)} dp$$
 (15)

Figures 14 and 15 show the transient responses to the unit step input at distances $\omega_p x/c = 1$ and 5 within the plasma for $\nu_c/\omega_p = 0.01$, 0.1, and 1.0. It is interesting and important to note, from Figure 15, that when $\nu_c/\omega_p = 0.01$ the transient response for $\omega_p t < 40$ is nearly identical to the results obtained by Haskell and Case (1966a) for $\nu_c/\omega_p = 0$. However, we now note that when $\nu_c/\omega_p \neq 0$ the transient response does not approach zero as $t \to \infty$ as it does for $\nu_c/\omega_p = 0$, but rather approaches unity. It is clear from Figures 14 and 15 that the rate at which the transient grows towards unity is highly dependent on the collision frequency. For example, if $\nu_c/\omega_p = 1$ we see from Figure 15 that the transient has reached a value of e^{-1} by $\omega_p t \cong 16$; for $\nu_c/\omega_p = 0.1$ the e^{-1} value occurs at $\omega_p t \cong 160$; while for $\nu_c/\omega_p = 0.01$ the signal has reached e^{-1} of its final value of unity at $\omega_p t \cong 1600$. Figure 16 illustrates the transient response at the larger distance $\omega_p x/c = 10$. The character of the response is essentially the same as for $\omega_p x/c = 5$, except that the rate of growth is toward the asymptotic value and

Figure 14. Transient Response to Unit Step for $\omega_p x/c = 1$

Figure 15. Transient Response to Unit Step for $\omega_{\mathbf{p}} \mathbf{x}/c$ = 5

Figure 16. Transient Response to Unit Step for $\omega_{\mathbf{p}} \mathbf{x}/c$ = 10

Figure 17. Transient Response to Unit Step for $\nu_{\rm c}/\omega_{\rm p}$ = 1

· ·

is even slower than for $\omega_p x/c = 5$. This point is further illustrated in Figure 17, where we compare the responses for $\omega_p x/c = 5$, $\omega_p x/c = 10$ and $\omega_p x/c = 20$, for the case when $\nu_c/\omega_p = 1$.

The behavior exhibited in Figures 14 through 17 is just what is expected physically since a wave of frequency ω propagates as

$$\exp\left[i\frac{\omega}{c}x\left(1-\frac{\omega_{p}^{2}}{\omega(\omega+i\nu_{c})}\right)^{1/2}\right].$$

The behavior near the leading edge of the responses is determined by the high frequency components which propagate as exp $(i\frac{\omega x}{c})$, while the time asymptotic behavior is determined by the low frequency components, which propagate as

$$\exp\left[x\left(\frac{i-1}{c}\right)\left(\frac{\omega_{p}^{2}\omega}{2\nu_{c}}\right)^{1/2}\right],$$

which approaches unity as $\omega \rightarrow 0$.

It is possible to develop an accurate analytical expression for the field strength, which predicts the time asymptotic behavior we have observed in Figures 14 through 17. Let us assume that t >> x/c, $\omega_p t$ >> 1, and ν_c/ω_p is of order unity. Then it is shown in Appendix C that

$$E(x,t) \rightarrow 1 - Erf \left[\frac{\omega_p x}{2c(\nu_c t)^{1/2}} \right]. \tag{16}$$

This expression is quite accurate for t >> x/c and $\nu_{\rm c}/\omega_{\rm p}$ = o(1). To illustrate this we have compared the results of Eq. (16) with the exact result in Table 1, for $\nu_{\rm c}/\omega_{\rm p}$ = 1 and $\omega_{\rm p} x/c$ = 1 and 10. We note that the agreement is excellent once we are not too close to t = x/c. Equation (16) is not nearly so accurate for smaller values of $\nu_{\rm c}/\omega_{\rm p}$ since then it is no longer legal to neglect σ in comparison with $\nu_{\rm c}$ in the argument of the sine function in Eq. (13). A comparison of the exact results with the approximation of Eq. (16) for $\nu_{\rm c}/\omega_{\rm p}$ = 0.1 is given in Table 2. As expected, the agreement is not generally good.

4. DISCUSSION

The most interesting point we have noted in this report is the effect of plasma losses on the transient response of a unit step. As pointed out in Section 1, this result has important consequences for the interaction of EMP with the plasma

Table 1. Comparison of Exact Results for the Transient E-Field With the Approximation of Eq. (16) for $\nu_{\rm C}/\omega_{\rm p}$ = 1

	$\frac{\omega_{\rm p}^{\rm x}}{\rm c}$ = 1			$\frac{\omega_p^x}{c} = 10$	
ω _p t	Eq. (16)	Exact	$\omega_{\mathrm{p}}^{}t$	Eq. (16)	Exact
1	0.480	1.0	10	0.026	1,0
3	0.682	0.685	30	0.197	0.197
5	0.753	0.740	100	0.480	0.479
10	0.823	0.823	300	0.683	0.683
30	0.897	0.897	1000	0.823	0.823
100	0.944	0.944			
300	0.967	0.967			
1000	0,982	0.982			

Table 2. Comparison of Exact Results for the Transient E-Field With the Approximation of Eq. (16) for $v_{\rm c}/\omega_{\rm p}$ = 0.1

	$\frac{\omega_{\mathbf{p}}^{\mathbf{x}}}{c} = 1$			_	$\frac{\omega_{\mathbf{p}}^{\mathbf{x}}}{\mathbf{c}} = 10$	
$\omega_{ m p}^{ m t}$	ω _p t Eq. (16) Exact			$\omega_{\mathbf{p}}^{\mathbf{t}}$	Eq. (16)	Exact
1	0.026	1.0		10	0.025	1.0
3	0.195	0.396		30	0.196	0.0062
5	0.315	0.410		100	0.480	0.0381
10	0.480	0.500		300	0.683	0.199
30	0.682	0.666		600	0.773	0.361
100	0.823	0.818		1000	0.823	0.479
300	0.897	0.896		1300	0.845	0.535
1000	0.944	0.943				

> **1**

surrounding a reentry vehicle*. For example, suppose the plasma sheath thickness x = 10 cm, ω_p = 1.5 × 10¹⁰ sec⁻¹ and ν_c = 1.5 × 10¹⁰ sec⁻¹. Then ν_c/ω_p = 1 and $\omega_p x/c$ = 5. Now suppose we had a square electromagnetic pulse of duration $T_o = 10^{-6}$ sec incident upon the plasma sheath surrounding a reentry vehicle. Then from Figure 16 it is clear that the nature of the signal present at the skin of the reentry vehicle when $\nu_c = \omega_p$ is significantly different than for $\nu_c = 0$. This difference is illustrated qualitatively in Figure 18. It is possible using the results we have obtained for the unit step excitation to calculate the transient response for an actual EMP due to a nuclear blast, but in order to keep this report unclassified we have not presented this result here.

The calculation of the transient response presented here is readily extended to spatially inhomogeneous plasmas, by approximating the plasma by a series of homogeneous layers, each with different values of ω_p and ν_c . Then in the nth layer, $\hat{E}(x,p)$ has the form

$$\hat{E}_{n} = A_{n}(p) e^{\gamma_{n} \frac{x}{c}} + B_{n}(p) e^{-\gamma_{n} \frac{x}{c}}$$
(17)

where A_n and B_n are obtained by requiring that E and $\partial E/\partial x$ be continuous across the interface between each layer, and γ_n is given by Eq. (3) with the values of ω_p and ν_c in the nth layer used.

The methods used here can also be readily extended to calculate transient behavior in a lossy dielectric or in a conductor. For this case, it is readily shown that the step function response at a point x within the material is given by

$$E(x,t) = 1 - \frac{1}{\pi} \int_0^1 \frac{dy}{y} e^{-y\tau} \sin \left[i y^{1/2} (1-y)^{1/2} \right] , \qquad (18)$$

where $\tau = (\sigma_0/\epsilon)t$, $t = \sigma_0 x/(\epsilon v)$, $v = (\mu_0 \epsilon)^{-1/2}$, ϵ is the dielectric permittivity of the material and σ_0 it's conductivity. For $\tau >> 1$ we obtain as an asymptotic representation for the step response

$$E(x,t) = 1 - Erf\left(\frac{\ell}{2\tau^{1/2}}\right), \qquad (19)$$

so that in a conductor or lossy dielectric, the unit step function response at a given point in the material eventually approaches unity for large values of τ . A plot of the transient response to a unit step in a lossy dielectric or conductor, as computed from Eq. 18, is shown in Figure 19.

^{*}It is of little consequence for the EMP propagation in the ionosphere since there $\nu_{_{\rm C}}$ is so small that $\nu_{_{\rm C}}/\omega_{\rm p}<<1.$

Figure 18. Response to a 10^{-6} sec Square Pulse for (a) $\nu_{\rm c}$ = 0, $\omega_{\rm p}$ = 1.5 \times 10^{10} and (b) $\nu_{\rm c}$ = $\omega_{\rm p}$ = 1.5 \times 10^{10}

Figure 19. Transient Response of a Conductor of Lossy Dielectric to a Unit Step

, T

References

- Antonucci, J. (1972) An Artificial Transmission Line for Studies of Transient Propagation in Plasma Media, AFCRL-72-0055.
- Case, C. and Haskell, R. (1967) Propagation of transient signals in plasma, in Proceedings of the Symposium on the Plasma Sheath, Vol 1, edited by W. Rotman, H. Moore, R. Papa and J. Lennon, AFCRL-67-0280.
- Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. (1954) Tables of Integral Transforms, Vol 1, McGraw-Hill, New York, p. 154.
- Felsen, L. (1969) Transients in dispersive media, IEEE Trans. on Ant. and Prop. AP-17:191-200.
- Field, J. (1971) Transient Propagation of electromagnetic waves in a stratified plasma, Radio Science, 6:503-510.
- Haskell, R. and Case, C. (1966a) Transient Signal Propagation in Lossless, Isotropic Plasmas, Vol 1, AFCRL-66-234 (1).
- Haskell, R. and Case, C. (1966b) Transient Signal Propagation in Lossless, Isotropic Plasmas, Vol II, AFCRL-66-234 (2).
- Haskell, R. and Case, C. (1967) Transient signal propagation in lossless, isotropic plasmas, IEEE Trans. on Ant. and Prop, AP-15; 458-464.
- Knop, C. and Cohn, G. (1963) Comments on pulse waveform degradation due to dispersion in waveguide, IEEE Trans. on Microwave Theory and Tech. MTT-11:587-588.
- Knop, C. (1965) The transient phenomenon in an isotropic plasma without loss, Proc. IEEE 53:741-42.
- Lighthill, M. (1965) Group velocity, J. Inst. Maths. Applies 1:1-28.

Appendix A

Here we discuss the integration along the contour C_2 . Consider the point C shown in Figure 3. Here $r_1 \equiv \rho_1 = (\eta^2 + \nu_c \eta + \omega_p^2)^{1/2}$, $r_2 \equiv \rho_2 = (\eta^2 - \nu_c \eta + \omega_p^2)^{1/2}$, $r_3 \equiv \rho_3 = \eta$, $r_4 \equiv \rho_4 = (4\omega_p^2 - \nu_c^2 + \eta^2)^{1/2}$ and $\theta_1 \equiv \overline{\theta}_1 = \pi/2 + \tan^{-1} [(\nu_c/2 + \eta)/Z]$, $\theta_2 \equiv \overline{\theta}_2 = \tan^{-1} [Z/(\nu_c/2 - \eta)]$, $\theta_3 \equiv \overline{\theta}_3 = \pi$, $\theta_4 \equiv \overline{\theta}_4 = \pi/2 + \tan^{-1} (\eta/2Z)$. At the point D, all the above quantities are the same except θ_3 which now equals $-\pi$. Defining $\theta_c = 1/2$ $(\overline{\theta}_1 - \overline{\theta}_2 + \overline{\theta}_3 + \overline{\theta}_4)$ and $R = (\rho_1 \rho_3 \rho_4/\rho_2)^{1/2}$, we can then write the contour integral on the upper horizontal portion of C_2 as

$$I_{2}' = -\frac{1}{2\pi i} \int_{0}^{\frac{\nu_{c}}{2} + \xi} d\eta e^{-(\eta + \frac{\nu_{c}}{2} - iZ)t} e^{-\frac{x}{c} R(\cos\theta_{c} + i\sin\theta_{c})} \hat{E}(p = -\frac{\nu_{c}}{2} - \eta + iZ)$$

$$+\frac{1}{2\pi i}\int_{0}^{\frac{\nu_{c}}{2}+\xi} d\eta e^{-(\eta+\frac{\nu_{c}}{2}+iZ)t} e^{\frac{x}{c}R(\cos\theta_{c}+i\sin\theta_{c})} \stackrel{\triangle}{E}(p=-\frac{\nu_{c}}{2}-\eta+iZ). \quad (A1)$$

The integrals over the lower horizontal portion of \mathbf{C}_2 can be performed in a similar fashion, and yield

, I

$$I_{2}^{"} = -\frac{1}{2\pi i} \int_{0}^{\frac{\nu_{c}}{2} + \xi} d\eta e^{-(\eta + \frac{\nu_{c}}{2} + iZ)t} \left[\frac{x}{e^{c}} R(\cos\theta_{c} - i\sin\theta_{c}) \right]$$
$$-e^{-\frac{x}{c}} R(\cos\theta_{c} - i\sin\theta_{c}) \qquad (A2)$$

Combining Eqs. (A1) and (A2) we may write

$$I_{2}^{'} + I_{2}^{"} = -e^{\frac{-\frac{\nu_{c}}{2}t}{\pi}} \left[\int_{0}^{\frac{\nu_{c}}{2} + \xi} d\eta e^{-\eta t} e^{-\frac{x}{c}R\cos\theta_{c}} I_{m} \left\{ \hat{E}(p = -\frac{\nu_{c}}{2} - \eta + iZ)e^{i(Zt - \frac{x}{c}R\sin\theta_{c})} \right\} - \int_{0}^{\frac{\nu_{c}}{2} + \xi} d\eta e^{-\eta t} e^{\frac{x}{c}R\cos\theta_{c}} I_{m} \left\{ \hat{E}(p = -\frac{\nu_{c}}{2} - \eta - iZ)e^{i(Zt + \frac{x}{c}R\sin\theta_{c})} \right\} \right]. \quad (A3)$$

Finally we must perform the integrals over the vertical portions of C2. Consider the point G. At this point $\mathbf{r}_1 \equiv \widetilde{\mathbf{r}}_1 = [(\nu_c + \xi)^2 + \rho^2]^{1/2}$, $\mathbf{r}_2 = \widetilde{\mathbf{r}}_2 \equiv (\xi^2 + \rho^2)^{1/2}$, $\mathbf{r}_3 = \widetilde{\mathbf{r}}_3 \equiv [(\nu_c/2 + \xi)^2 + (Z - \rho)^2]^{1/2}$, $\mathbf{r}_4 = \widetilde{\mathbf{r}}_4 \equiv [(\nu_c/2 + \xi)^2 + (Z + \rho)^2]^{1/2}$, $\theta_1 = \widetilde{\theta}_1 \equiv \pi - \tan^{-1}[\rho/(\nu_c + \xi)]$, $\theta_2 = \widetilde{\theta}_2 \equiv \pi - \tan^{-1}(\rho/\xi)$, $\theta_3 = \widetilde{\theta}_3 \equiv -\pi + \tan^{-1}[(Z - \rho)/(\frac{c}{2} + \xi)]$, $\theta_4 = \widetilde{\theta}_4 = \pi - \tan^{-1}[(Z + \rho)/(\frac{c}{2} + \xi)]$.

At the point H, all the above quantities remain the same except $\theta_3 = \pi + \tan^{-1}[(Z-\rho)/(\frac{\nu_C}{2}+\xi)]$. Defining $\psi_0 = \frac{1}{2}(\widetilde{\theta_1}-\widetilde{\theta_2}+\widetilde{\theta_3}+\widetilde{\theta_4})$ and $R_0 = (\widetilde{r_1}\widetilde{r_3}\widetilde{r_4}/\widetilde{r_2})^{1/2}$, the integrals on the vertical portion of C_2 can be written as

$$I_{2}^{""} = \frac{e^{-({}^{\nu}c + \xi)t}}{\pi} \left[\int_{0}^{Z} d\rho e^{-\frac{x}{c}R_{o}\cos\psi_{o}} R_{e} \left\{ \hat{E}(p = -\nu_{c} - \xi + i\rho)e^{i(\rho t - \frac{x}{c}R_{o}\sin\psi_{o})} \right\} - \int_{0}^{Z} d\rho e^{\frac{x}{c}R_{o}\cos\psi_{o}} R_{e} \left\{ \hat{E}(p = -\nu_{c} - \xi + i\rho)e^{i(\rho t + \frac{x}{c}R_{o}\sin\psi_{o})} \right\} \right]$$
(A4)

The total integral on the contour C2 is then given by

$$I_{C_2} = I_2^{1} + I_2^{"} + I_2^{"}.$$
 (A5)

Appendix B

Here we outline the derivation of Eq. (11). We consider the limit when $t>>\frac{x}{c},~\omega_p t>>1$ and ν_c/ω_p is of order unity. In this case it can be shown that the integral along the contour C_2 is negligible so that

$$E(x,t) = I_{C_1} + I_{C_2} + I_{C_4}$$
 (B1)

where I_{C_1} is given in Eq. (7) and $I_{C_3}^{} + I_{C_4}^{}$ is given in Eq. (10). Now in Eq. (7) it is clear that for t large, the principal contribution to the integral must come from σ near zero. Therefore $I_{C_1}^{}$ may be approximated by expanding the integrand in Taylor series about σ = 0. We get

$$I_{C_1} \simeq \frac{1}{\pi \omega_0} \int_0^{\nu_c} d\sigma \, e^{-\sigma t} \sin \left(\frac{\sigma}{\nu_c}\right)^{1/2} \frac{\omega_p^x}{c}$$

$$\simeq \frac{1}{\pi \omega_0} \int_0^{\infty} d\sigma \, e^{-\sigma t} \sin \left[\frac{\omega_p^x}{c} \left(\frac{\sigma}{\nu_c}\right)^{1/2}\right]. \tag{B2}$$

The integral in Eq. (B2) is a standard Laplace Transform and yields

$$I_{C_1} \simeq \frac{\omega_p}{2\omega_0 c(\nu_c \pi)^{1/2}} \left(\frac{x}{t^{3/2}}\right) \exp\left(\frac{-\omega_p^2 x^2}{4c^2 \nu_c t}\right).$$
 (B3)

· · · · · ·

Finally, upon using Eqs. (B3) and (10) in Eq. (B1), we have

$$E(x,t) = \exp\left(-\Gamma \frac{x}{c} \cos \Phi\right) \sin\left(\omega_{o} t - \Gamma \frac{x}{c} \sin \Phi\right) +$$

$$+ \frac{\omega_{p}}{2\omega_{o} c(\nu_{c} \pi)^{1/2}} \left(\frac{x}{t^{3/2}}\right) \exp\left(-\frac{\omega_{p}^{2} x^{2}}{4c^{2} \nu_{c} t}\right). \tag{B4}$$

Appendix C

For a unit step when ν_c/ω_p is of order unity and t>> x/c we may neglect I_{C_2} so that the transient response is given by I_{C_1} , which from Eq. (13) with $\delta \rightarrow 0$ is

$$E(x,t) \simeq 1 - \frac{1}{\pi} \int_{0}^{\lambda} \frac{dy}{y} e^{-uT} \sin L \left[\frac{y}{\lambda - y} \left(1 + y^{2} - \lambda y \right) \right]^{1/2}, \tag{C1}$$

where $T = \omega_p t$, $\lambda = \nu_c / \omega_p t$ $L = \omega_p x / c$. When T >> 1, it is clear that the principal contribution to the integral comes from y near zero. Expanding the integrand about y = 0 and extending the range of integration to ∞ then yields

$$E(x, t) = 1 - \frac{1}{\pi} \int_0^\infty \frac{dy}{y} e^{-yT} \sin\left(\frac{L}{\lambda^{1/2}}\right) y^{1/2}.$$
 (C2)

The integral in Eq. (B2) is a standard Laplace transform (Erdelyi et al, 1954) and upon evaluating it, we get

$$E(x, t) \simeq 1 - Erf\left[\frac{L}{2(\lambda T)^{1/2}}\right]$$
 (C3)

es y

		·				
	·			€ €.	** ** ·	:
						:
			·			
Section N						

Appendix D

Here we include a Fortran listing of the computer program used to calculate the transient response of a lossy homogeneous plasma. The program inputs are $XL = \omega_p x/c$, $AL = \nu_c/\omega_p$, $OM = \omega_o/\omega_p$, D = the radius δ of the contour in Eqs. (13) and (14) (D is usually set to 0.01), M = number of different values of $T = \omega_p t$ at which calculation is to be carried out, and L = 1 for a unit step input, while L = 2 for a step-carrier sine wave input. The program outputs are E E = E(x,t) = electric field strength, F F = contribution to E from poles, FU = contribution to E from integral along C_1 , and FUNC. FUN = contribution to E from integral along C_2 .

```
000100
     PROGRAM RON(INPUT, OUTPUT)
                                                                        000110
     REAL 42, 43, M4, N1, N2, 43, N4
                                                                        000120
     COMMON AL, OM, XL, L, PI, ZO
     COMMONITERMS/TERM1, TERM151, TERM2, TERM2SQ, TERM3, TERM3SQ
                                                                        000130
     CVCVPCHCS
   5 READ 13, 0, AL, 04, XL, L, 4
                                                                        000150
     IF(AL .EQ. 0.0) STOP
  1u FORMAT(4F10.4,2I4)
                                                                        C00170
  PRINT 2J, AL, OM, XL, L
2J FORMAR(1H1,49X,*AL = *F1J.4/5GX,*OM = *F1J.4/5GX,*XL = *F1J.4/5JX G00190
    1,* L = *I5///9X,*T*,13X,*EE*,16X,*FF*,16X,*FU*,15X,*FUN*,15X,
                                                                        000190
    2*FUNC*,7X,*CP SECONDS*/)
                                                                        000200
     PI = 3.14159265358979
                                                                        000210
     TERM1 = 9.0 * 4L
                                                                        000220
     TERM153 = TERM1**2
                                                                        000230
     TERM2 = 10.0 * AL
                                                                        U30240
     TERM252 = TERM2 **2
                                                                        000250
     TER43 = 9.5 * 4L
                                                                        000250
     TERM352 = TERM3**2
                                                                        000279
     ZO = $287(1.0 - J.25*AL**2)
                                                                        000280
     F2 = S1RT(AL**2 + OM**2)
                                                                        000291
     M2 = AL / F2
                                                                        000340
     F3 = SQRT((0M - Z0) **2 + (4L / 2.0) **2)
                                                                        0.0310
     M3 = J.5+AL / F3
     F4 = SQRT( (OM + ZO) + +2 + (4L / 2.0) + +2)
                                                                        û00320
                                                                        000330
     M4 = J.5+AL / F4
                                                                        000340
     S = SQRT(OM) + SQRT(F3) + SQRT(F4) / SQRT(F2)
                                                                        060350
     P1 = 1.0 / SQRT(2.0)
                                                                        000360
     N1 = 1.0 / SQRT (2.0)
                                                                        0.0370
     P2 = $24T(J.5*(1 - M2) )
                                                                        000380
     N2 = SQRT(0.5+(1 + M2) )
                                                                        036396
     N3 = S2RT(0.5+(1 + M3))
                                                                        000400
     P3 = $227(0.5*(1 - M3))
                                                                        000410
     IF(OM .LT. ZO) P3 = -93
                                                                        000420
     N4 = SIRT(0.5*(1 + M4))
                                                                        004430
     P4 = SQRT(0.5*(1 - M4))
     CP = N1*N2*N3*N4 + N1*N4*P2*P3 - N2*N4*P1*P3 + N3*N4*P1*P2
                                                                        040440
        - N2*N3*P1*P4 + N1*N3*P2*P4 - N1*N2*P3*P4 - P1*P2*P3*P4
                                                                        000450
     SP = 91 N2 N3 N4 - P2 N1 N3 N4 + P3 N1 N2 N4 + P1 P2 P3 N4
                                                                        + P4*N1*N2*N3 + N1*P2*P3*P4 - N2*P1*P3*P4 + N3*P1*P2*P4
                                                                        0 v ü 47 (
                                                                        000480
     00 30 J=1,M
                                                                        000490
     XX = FLOAT(J)
                                                                        000500
     IF(XX .3E. 7.0 .ANO. XX .LE. 21.u) T = XL + 0.1 + 0.2*(XX - 6.0) 000510 IF(XX .3E. 22.0) T = XL + 3.1 + (XX - 21.0)
     IF(XX .LE. 6.0) T = XL + J.02*(XX - 1.0)
     IF(L .EQ. 1) FF = FUNR(T)
     IF(L \bulletEQ. 2) FF = EXP(-G+X_+CP) + SIN(OM+T - G+XL+SP)
                                                                        800548
     FUNFU = FU(T)
                                                                         000570
     FUNFUN = FUN(T)
                                                                         09u580
     FUNEUNC = FUNC(T)
                                                                         000590
     EE = FF + FUNFU - FUNFUN + FUNFUNC
      SPTIME = SECOND(A)
  30 PRINT 40, T, EE, FF, FUNFU, FUNFUN, FUNFUNC, SPTIME
   40 FORMAT(5X, F8.3, 1P, 5(3X, E15.3), UP, 3X, F9.3)
                                                                        000620
      GO TO 5
```

```
FUNCTION FU(T)
                                                                   000660
                                                                   000670
     SOMMON AL, OM, XL, L, PI, 70
     COMMON/TT1/TT1
                                                                   000650
     COMMON/3/D
                                                                   00u690
     TT1 = T
     N = 1
                                                                   000700.
     THO = 3.0
                                                                   000710
     GO TO (5, 6), L
                                                                   000720
   5 H = (0.999 - D) + AL / 2.0
     FOUR = FUNK1 (D*AL + H)
     ENDS = FUNK1(D*AL) + FUNK1(0.899*AL)
                                                                   060760
     GO TO 9
   6 H = 0.399 AL / 2.0
                                                                   000770
     FOUR = FUNK1 (H)
                                                                   000780
     ENDS = FUNK1(0.00001) + FUNK1(0.099*AL)
                                                                   000790
   9 SUMO = (ENDS + 4.0*FOUR) * H / 3.0
                                                                   068600
  10 H = H / 2.0
                                                                   0.0810
     N = 2 + N
                                                                   000820
     TWO = TWO + FOUR
                                                                   000830
     FOUR = 0.0
                                                                   003840
     Y = H
                                                                   000850
     IF(L .EQ. 1) Y = D+AL + H
     I = 0
                                                                   000870
  20 I = I + 1
                                                                   006880
     FOUR = FOUR + FUNK1(Y)
                                                                   000890
     Y = Y + H + \dot{H}
                                                                   000900
     IF(I .LT. N) 30 TO 20
FU = (ENDS + 2.0*THO + 4.0*FOUR) * H / 3.0
                                                                   000910
                                                                   000920
     IF(ABS(SUMO - FU) .LT. 1.0E-6) RETURN
                                                                   000930
     SUMO = FU
     GO TO 10
                                                                   0.0950
     END
                                                                   000 960
FUNCTION FUN(T)
     COMMON AL, OM, XL, L, PI, ZO
     COMMON/TT2/TT2
                                                                   Qu1010 ___
     TT2 = T
                                                                   001020
     H = 9.5 AL / 2.0
                                                                   0.1030
     N = 1
                                                                   001040
     TWO = 0.0
                                                                   001650
     FOUR = FUNK2(H)
                                                                   ũu1u60
     ENDS = FUNK2(0.0) + FUNK2(9.5 + AL)
                                                                   801070
     SUMO = (ENDS + 4.0 \pm FOUR) \pm 4 / 3.0
                                                                   001080
  10 H = H / 2.8
                                                                   001090
     N = 2 + N
                                                                   0.1100
     THO = TWO + FOUR
                                                                   001110
     FOUR = D.O
                                                                   001120
     Y = H
                                                                   001130
     I = 0
                                                                   Ou1140
  20 I = I + 1
                                                                   001150
     FOUR = FOUR + FUNK2(Y)
                                                                   001160
     Y = Y + H + H
                                                                   0.1170
     IF(I .LT. N) 30 TO 20
                                                                   001180
     FUN = (ENDS + 2.0*TWO + 4.0*FOUR) * H / 3.0
                                                                   001190
     IF(ABS(SUMO - FUN) .LT. 1.0E-6) RETURN
                                                                   001200
     SUMO = FUN
                                                                   801210
     GO TO 10
                                                                   0-1220
     END
                                                                   001230
```

70 T

```
Üü126u
    FUNCTION FUNC(T)
    COMMON AL, OM, XL, L, PI, ZO
                                                         001280
    COMMON/TT3/TT3
                                                         0.1290
    TT3 = T
                                                         0.01300
    H = Z0 / 2.U
                                                         041319
    N = 1
                                                         001320
    0.6 = OHT
                                                         661330
    FOUR = FUNK3(H)
                                                         001346
    ENDS = FUNK3(0.0) + FUNK3(ZD)
                                                         661350
    SUMO = (ENDS + 4.0 FFOUR) + H / 3.0
                                                         001360
  10 H = H / 2.0
N = 2 + N
                                                         0.1370
                                                         0.01380
    THO = THO + FOUR
                                                         661336
    FOUR = 0.0
                                                         001400
    Y = H
                                                         0.1410
    I = 0
                                                         001420
  20 I = I + 1
                                                         001430
    FOUR = FOUR + FUNK3(Y)
                                                         001440
    Y = Y + H + H
                                                         0 4 1 4 5 0
    IF(I .LT. N) GO TO 20
                                                        Ui1460
    FUNC = (ENOS + 2.0*TWO + 4.3*FOUR) * H / 3.0
                                                         001470
    IF (ABS(SUMO - FUNC) .LT. 1.DE-6) RETURN
                                                         001480
    SUMO = FUNC
                                                         նս149Ր
    GO TO 10
    END
FUNCTION FUNK1(Y)
    COMMON AL, OM, XL, L, PI, ZO
                                                         001550
    COMMON/TT1/TT1
                                                         001560
    TERM = SIN(XL*SQRT(Y*(1.0 + Y**2 - AL*Y) / (AL - Y) ) )
    GO TO (10, 20), L
  10 FUNK1 = -EXP(-TT1+Y) + TERM / (PI + Y)
                                                         661590
    RETURN
  20 FUNK1 = 04 * EXP(-TT1+Y) * TERM / (PI * (Y**2 + 04**2) )
                                                         001610
    RETURN
                                                         u01620
END
001650
    FUNCTION FUNK2(Y)
                                                         001660
    COMMON AL, OM, XL, L, PI, ZO
                                                         0:1670
    COMMON/TT2/TT2
                                                         001680
    AA = SQRT(SQRT(4.0 - AL**2 + Y**2))
                                                         0u1690
    AB = SIRT(SQRT(Y**2 + AL*Y + 1.4) )
                                                         681700
    AC = SQRT(SQRT(Y**2 - AL*Y + 1.0))
                                                         001710
    R = SQRT(Y) + 4A + AB / 4C
                                                         001720
    AO = ZO / SQRT(Y**2 + 1.0 + 4L*Y)
    BO = (A. / 2.0 - Y) / SQRT(Y**2 + 1.J - AL*Y)
                                                         001739
                                                         u 01740
    CO = 2.0+Z0 / SQRT(Y++2 + 4.0 - AL++2)
                                                         001750
    C1 = SQRT( ( 1.ŭ + AO ) /. 2.0)
                                                         001760
    C2 = STRT( ( 1.0 + 80 ) / 2.0)
                                                         001770
    C3 = SQRT( ( 1.0 + CO ) / 2.0)
                                                         001780
    S1 = SRT( (1.0 - A0 ) / 2.0)
                                                         0.1790
    S2 = S2RT( ( 1.0 - B0 ) / 2.0)
                                                         001800
    S3 = S2RT( ( 1.0 - C0 ) / 2.0)
    CT = -(C1*C2*C3 + C1*S2*S3 - C2*S1*S3 + C3*S1*S2)
                                                         001810
    ST = +(S1*C2*C3 - S2*C1*C3 + S3*C1*C2 + S1*S2*S3)
                                                        001820
```

```
89183P
     SS3 = SIN(ZO*II2 - XL*R*SI - PI)
     CC3 = COS(ZO*TT2 - XL*R*ST - PI)
                                                                     0.1840
     SS4 = SIN(ZO*TT2 + XL*R*ST - PI)
                                                                     001850
     CC4 = CDS(ZO*TT2 + XL*R*ST - PI)
                                                                     001860
     SS1 = SIN(20*TI2 - XL*R*ST - PI/2.0)
                                                                     001870
     CC1 = JOS(ZO+TT2 - XL+R+ST - PI/2.0)
                                                                     1880
     SS2 = SIN(ZO*TI2 + XL*R*SI - PI/2.0)
                                                                     0.1890
     CC2 = 20S(ZO*TI2 + XL*R*SI - PI/2.0)
                                                                     u ú 1 9 0 0
                                                                     001910
     EXP1 = EXP(-XL*R*CT)
                                                                     001920
     EXP2 = EXP(XL*R*CT)
                                                                     001930
     EXP3 = EXP(-AL*TT2/2.u - Y*TT2)
                                                                     001940
     TERM1 = AL/2.0 + Y
     GO TO (10, 20), L
                                                                     06195C
  10 FUNK2 = 1.0 / (PI * (1.0 + 4L+Y + Y++2) ) * EXP3 *
                                                                     UU1960
    1(EXP1*(Z0*SS1 - TERM1*CC1) - EXP2*(Z0*SS2 - TERM1*CS2) )
                                                                     0.1970
                                                                     UU1980
     RETURN
  2u TERM2 = TERM1**2
                                                                     061990
                                                                     002000
     TERM3 = (ZO - OM)**2
     TERM4 = (ZO + OM)^{#*2}
                                                                     002010
     FUNK2 = OM / (PI*(TERM2 + TERM4)*(TERM2 + TERM3) )*EXP3*(EXP1*
                                                                     002020
    1 ((ZO**2 - OH**2 - TERM2)*SS3 - 2.U*Z)*TFRM1*303) - EXP2 *
                                                                     002630
       ((Z)**2 - OM**2 - TERM2)*SS4 - 2.0*70*TERM1*334) )
                                                                     002040
     RETURN
                                                                     002150
                                                                     0.42 \pm 69
     END
0.2.90
     FUNCTION FUNK3(Y)
                                                                     0.2100
     REAL <1, K2, K3, K4
                                                                     002110
     COMMON AL, OM, XL, L, PI, ZO
                                                                     032120
     COMMON/TI3/TI3
     COMMON/TERMS/TERMI, TERMISQ, TERM2, TERM2SQ, TERM3, TERM3SQ
                                                                     0.2140
   TERM1 = 9.0 * AL
   TERMISQ = TERMIFF2
                                                                     0.2150
                                                                     052160
   TERM2 = 10.0 + AL
                                                                     5,217 c
   TERM2SQ = TERM2**2
                                                                     002180
   TERM3 = 3.5 * AL
                                                                     u.2190
   TERM3SQ = TERM3**2
                                                                     002S00
     YSQ = Y**2
                                                                     002210
     BA = SQRT(SQRT((TERM2SQ + YSQ) / (TERMISQ + YSQ+) )
     BB = SQRT(SQRT(TERM3SQ + (ZO - Y)**2))
                                                                     062550
                                                                     002230
     BC = SQRT(SQRT(TERM3SQ + (ZO + Y)**?))
                                                                     662249
     R = 84 + 93 + 90
     AZ = TERM2 / SQRT(TERM2SQ + YSQ)
                                                                     J62250
     B2 = TERM1 / SQRT (TERM1SQ + YSQ)
                                                                     0.2260
     C2 = TERM3 / SQRT (TERM3SQ + (ZO - Y)**2)
                                                                     002270
                                                                     0,2280
     D2 = TERM3 / SQRT(TERM3SQ + (ZO + Y) + 2)
                                                                     002290
     K1 = SQRT((1.0 + A2) / 2.0)
                                                                     0.2360
     K2 = SQRT( (1.0 + B2) / 2.0)

K3 = SQRT( (1.0 + C2) / 2.0)
                                                                     0 0 2 3 1 0
     K4 = SQRT((1.0 + D2) / 2.0)
                                                                     u 12326
     T1 = SQRT((1.0 - A2) / 2.0)
                                                                     0ú2330
     T2 = SQRT( (1.0 - 82) / 2.0)
                                                                     0:2340
                                                                     0u2356
     T3 = SQRT((1.0 - C2) / 2.3)
     T4 = SQRT( (1.0 - D2) /2.0)
                                                                     0.2360
           <1*K2*K3*K4 - K1*K4*T2*T3 + K2*K4*T1*T3 + K3*K4*T1*T2</pre>
                                                                     U92370
     CS =
          - K3*K2*T1*T4 + K1*K3*T2*T4 + K1*K2*T3*T4 + T1*T2*T3*T4
                                                                     652386
     SS = - T1+K2+K3+K4 + T2+K1+K3+K4 + T3+K1+K2+K4 + T1+T2+T3+K4
                                                                     u02390
        - K1+K2+K3+T4 + K1+T2+T3+T4 - K2+T1+T3+T4 - K3+T1+T2+T4
                                                                     362400
                                                                     Uu2410
     PQ = EXP(-TERM2 * TT3) / PI
```

1 1 m

```
002420
     EXP1 = EXP(-R*XL*CS)
                                                                 002430
     EXP2 = EXP( R*XL*CS)
                                                                  002440
     BETA = XL+R+SS
                                                                  002450
     GO TO (10, 20), L
                                                                  002460
  10 THETA = Y*TT3 - PI/2.0
                                                                  002470
     SINM = SIN(THETA - BETA)
                                                                  0.2480
     SINP = SIN(THETA + BETA)
                                                                  002490
     COSY = COS(THETA - BETA)
                                                                  0.2500
     SOSP = SOS(THETA + BETA)
     FUNK3 = PQ / (TERM2SQ + YSQ) * (EXP1* (Y*GOSM + TERM2*SINM)
                                                                  U02510
                                                                  0u2520
            - EXP2 * (Y*COSP + TERM2*SINP) )
                                                                  002530
                                                                  002540
  2J THETA = Y+TT3 - PI
                                                                  062550
     SINM = SIN(THETA - BETA)
                                                                  002560
     SINP = SIN(THETA + BETA)
                                                                  002570
     COSH = COS (THETA - BETA)
     GOSP = GOS (THETA + BETA)
     FUNK3 = OM*PQ / ((TER425Q + (Y + OM)**2)*(TER425Q + (Y - OM)**2))*002590
         (EXP1*((YSQ - OM**2 - TERM2SQ)*COS4 + 20.6*Y*AL*SINY) - EXP2*((YSQ - OM**2 - TERM2SQ)*COS3 + 20.0*Y*AL*SINP))
                                                                  002610
                                                                  uu2620
     RETURN
FUNCTION FUNR(T)
                                                                  002570
     COMMON AL, OM, XL, L, PI, ZO
                                                                  u02680
     COMMON/IT 4/TT4
                                                                  052690
     TT4 = T
                                                                   u02700
     H = PI / 2.0
                                                                   002710
     N = 1
                                                                   002720
     TWO = 0.0
                                                                   602730
     FOUR = FUNP(H)
                                                                  002740
     ENDS = FUNP(0.0) + FUNP(PI)
                                                                   002750
     SUHO = (ENDS + 4.0*FOUR) * 4 / 3.0
                                                                   ü02760
  10 H = H / 2.0
N = 2 * N
                                                                  002770
                                                                   002780
     TWO = TWO + FOUR
                                                                   002790
     FOUR = 0.0
                                                                   002800
     Y = H
                                                                  0,2810
      I = 0
                                                                   002820
   20 I = I + 1
                                                                   0 - 2830
     FOUR = FOUR + FUNP(Y)
                                                                   002840
      Y = Y + H + H
                                                                  B02850
      IF(I .LT. N) 30 TO 20
     FUNR = (ENDS + 2.0*THO + 4.0*FOUR) * H / 3.0
                                                                  002860
      IF(ABS(SUMO - FUNR) .LT. 1.0E-5) RETURN
                                                                   002880
      SUMO = FUNR
                                                                   002890
      GO TO 10
                                                                   0 0 2 9 0 0
END
002940
      COMMON AL, OM, XL, L, PI, ZO
                                                                   002950
      COMMON/TT4/TT4
      COMMON/3/D
      SINE = SIN(Y)
      COSINE = COS(Y)
      RO2 = S1RT( (1.0 + D*COSINE) **2 + (D*SINE) **2)
      RO3 = SQRT( (ZO - 0+AL*SINE) ++2 + AL*+2*(0.5 + D*COSINE) ++2)
      RO4 = SQRT( (ZO + D+AL+SINE) ++2 + AL++2+(U.5 + D+COSINE) ++2)
```

```
G1 = COSINE
 G2 = (1.0 + D*G1) / R02
 G3 = AL + (u.5 + D*G1) / R03
 G4 = AL + (0.5 + D+G1) / RO4
                                                                        003450
 RC1 = SQRT((1.0 + G1) / 2.0)
                                                                        003460
 RC2 = SQRT((1.0 + G2) / 2.0)
RC3 = SQRT( (1.0 + G3) / 2.0)

RC4 = SQRT( (1.0 + G4) / 2.0)
                                                                        003670
                                                                        003080
 RS1 = SQRT((1.0 - G1) / 2.0)
                                                                        603090
                                                                        003100
 RS2 = SQRT((1.0 - G2) / 2.0)
                                                                        0u3110
 RS3 = SQRT((1.0 - G3) / 2.0)
 RS3 = -RS3
                                                                        003120
 RS4 = SQRT((1.0 - G4) / 2.0)
 ACT = RC1*RC2*RC3*RC4 + RC1*RC4*RS2*RS3 - RC2*RC4*RS1*RS3 +
                                                                        003130
       RC3*RC4*RS1*RS2 - RS1*RS4*RC2*RC3 + R52*RS4*RC1*RC3 -
                                                                        003140
       RS3+RS4+RC1+RC2 - RS1+RS2+RS3+RS4
                                                                        003150
2
                                                                        0 4 3 1 6 0
 AST = RS1*RC2*RC3*RC4 - RS2*RC1*RC3*RC4 + RS3*RC1*RC2*RC4 +
       RS1*RS2*RS3*RC4 + RC1*RC2*RC3*RS4 + RC1*RS2*RS3*RS4 -
                                                                        003170
1
                                                                        003180
       R02*RS1*RS3*RS4 + RC3*RS1*RS2*RS4
 ARR = SQRT(0 + RO3 + RO4 / RO2) + XL
                                                                        003200
 ARC = 4RR * ACT
                                                                        003210
 ARS = ARR # AST
 FUNP = (1.0/PI) *EXP(D*AL*TT4*COSINE - ARC) *COS(D*AL*TT4*SINE -ARS)
                                                                        003240
 RETURN
                                                                        003250
 END
```

```
CRL SCOPE 3.3
                                CDC308A
                                            02/01/72
  03/16/73
16.25.56.TAYLXD1
16.25.56.TAYLX, 3M10000, T10.
                          TAYLOR
16.25.56.
                  7286
                                                                            ----
16.25.56.NOSULL.
16.25.56.COPYSBF, INPUT, OUTPUT.
16.25.57.MASS STORAGE= 000062 PRJS
                  .057 SEC.
16.25.57.CP
16.25.57.PP
                  .518 SEC.
16.25.57.IO
                  .09 U SEC.
```

ι⁵ ³, 5^m

