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Abstract

Using contour integration techniques, we have calculated the transient response
of a lossy homogeneous isotropic plasma to a unit step and a step-carrier sine
wave, We have found that in the presence of losses the temporal step function
response within the plasma does not approach zero for large time as for the
collisionless case, but rather approaches unity. The rate at which the transient
approaches the asymptotic value of unity is strongly dependent on the losses,
being quite rapid for large losses and exceedingly slow for very small losses,

This resuit has an important impact on the propagation of EMP through the plasma
sheath around a reentry vehicle, and through the ionized region near a low altitude

nuclear fireball,

iii

]






Contents

1, INTRODUCTION 1
2, BRANCH POINTS AND BRANCH CUTS 2
3. NUMERICAL RESULTS 6

3.1 Step-Carrier Sine Wave 6

3.2 Step Function 13
4, DISCUSSION 186
REFERENCES 21
APPENDIX A ' 23
APPENDIX B 25
APPENDIX C 27

- - ’ i .
APPENDIX D ' 29
llustrations

1. Branch Cuts for the Functions (a) Y3 (b) Yo {c) Y3, (d) V4 3
2, Branch Cuts for the Function y When v, < 2up 4

3. Branch Cuts for the Function v When Ve > 2up 5

ey ———— e



10,

11,

12,

13.

14,
15,
16.
17,
18.

19,

1.

2.

Deformed Contour Integration for the Case When v, < 2w

Transient Response to Step-Carrier Sine Wave for v x/c =
and w /w =2

TranSLent Response to Step-Carrier Sine Wave for o x/c =5
and w /u =2

Transmnt Response to Step-Carrier Sine Wave for w x/c =10

and ""p/"’o 2

Transient Response to Step-Carrier Sine Wave for v /u =0.5
and w /u =2

Tran51ent Response to Step-Carrier Sine Wave for v /u =1,0
and Up/”o =2

Transient Response to Step-Carrier Sine Wave for w x/ c=0,8
and up/ w =4

Transient Response to Step-Carrier Sine Wave for w x/ c=2,5
and wp/ w =4

Transient Response to Step-Carrier Sine Wave for w x/ c=95
and wp/ Wy = 4

Transient Response to Step-Carrier Sine Wave for v x/ c=9
and w / Wy = 0.7

Transwnt Response to Unit Step for w_x/c

1

Transient Response to Unit Step for w_x/c
10

Transient Response to Unit Step for upx/ c

Transient Response to Unit Step for v / Wy

Response to a 10~ -6 sec Square Pulse for (ayv_=0,
Wy = 1.5 %X 1010and (b) v ¢=up=1.5X 1010

Transient Response of a Conductor or Lossy Dielectric
to a Unit Step

.

Comparison of Exact Results for the Transient E-Field With
the Approximation of Eq, (16) for v /u

Comparison of Exact Results for the Transient E-Field With
the Approximation of Eq, (16) for v / Wy =0.1

iHlustrations

10
10
11
11
12

12
14
14
15
15

19

19

Tables

17

17



Transient Signal Propagation in Lossy Plasmas

1. INTRODUCTION

There has been a great deal of research done (Haskell and Case, 1966a, b,
1967; Knop and Cohn, 1963; Knop, 1965; Lighthill, 1965; Felsen, 1969; Antonucci,
1972} on the transient propagation of electromagnetic signals through lossless
plasmas, and the results are quite appropriate for the calculation of EMP through
the undisturbed ionosphere, For transmission of EMP through the plasma sur-
rounding a reentry vehicle or through the ionized region near a low altitude nuclear
fireball, however, the theory is quite inadequate since hereche effect of collisional __ =
absorption on the transient propagation is quite significant, The effect of collisional
losses has been considered previously by Field (1971) using the method of char-
acteristics, but unfortunately he does not present results for the transmitted field
in the cases of interest to us. In this report, we will therefore extend the previous
theories to include the effect of collisional absorption on the propagation of tran-
sients in a cold*, homogeneous isotropic plasma. We shall consider only two types
of transient signals: the step-carrier sine wave and the unit step. The transient

* The cold plasma model is approximately valid in those regions near a nuclear
burst where the electron temperature is less than 30, 000°K, Also, in applying
these results to EMP propagation we must be sufficiently far from the fireball to
neglect nonlinear effects.,

(Received for publication 24 April 1973)



response within the plasma to the unit step is quite important since the response to an

arbitrary EMP can always be synthesized as a superposition of the unit step responses.
As a starting point for our investigation we consider the Maxwell equations

for the electric field strength E, and the Langevin equation for the electron

velocity v. If we write E in terms of the Laplace transform

E(x, t) = J E(x, prePt dp , (1)
B

it is readily shown that for x> 0

%:(x, p = %.(x=0, P e- ¢, (2)
where
v = (??T:) 12 (p2+ycp+w§)1/2 s (3)
wp = electron plasma frequency,
v, = electron - neutral collision frequency,

We have also assumed that E(x, t=0)=0 for all x>0. In order to evaluate E(x, t),
it is necessary to perform the integration along the Bromwich contour B in

Eq. (1), This may be accomplished either by integrating directly along the
Bromwich contour, or by deforming that contour into the left-ha]ip-plane. This
latter choice leads to integrals which rapidly converge, and will therefore be

pursued in this report.

2. BRANCH POINTS AND BRANCH CUTS

The function v in Eq. (3) can be written in product form as

Y = YY9Y3Yy s (4)

1/2 -1/2 1/2 1/2
where v, = p /2, vy = (pHY,) /2, 13 = (p-py) / » V4 = (P-Py) /2, For Ve < 2wp

we have
v
e 0222
Py = -3 tl(up vc/4) ,
2



while for Vc> 2wp we have

v

1/2
2 2
-—29- x (uc/4 - wp)

P =
2

The function Y1 has branch points at p = 0 and p = @. For this function we choose

the branch cut shown in Figure la, The function Yg has branch points at p = -V,
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Figure 1. Branch Cuts for the Functions (a) v;; (b) v,, (€} vq, (d) vy



and p = @, and we choose the branch cut shown in Figure 1b for this quantity.

For v,, which has branch points at p = Py and p =, we choose the branch cut
illustrated in Figure le, while for Vg which has branch points at p = P, and p = o0,
we choose the branch cut shown in Figure 1d., If we write p = Ty exp(iOl).

(p+vc) =1y exp(iez), (p-p;} = rq exp(ies), {p—pz) =1, exp(ie4), we can write

1/2 . ~-1/2 . 1/2 .
vy ® :trll exp(191/2), Yy = %T 2/ exp(-162/2), vy = j:r3/ exp(i6,/2) and

Y4 * :tr14/2 exp(i94/2). For each of these functions we then choose the Riemann
sheet corresponding to the upper sign, so that

1/2
r,r,r 6,-0,1+6,+8
v (Lﬁ) exp [(_1__#1)] , (5)

and the branch cuts for the total function v = V1Y9YgY, 2re those shown in
Figure 2 for Vo< 2w_, and in Figure 3 for v, > 2wp. The integral in Eq. (1) can
now be performed by deforming the Bromwich Contour B in Figure 2 into the

Im(p)

A A

Figure 2, Branch Cuts for the Function vy when v, < 2up
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Figure 3. Branch Cuts for the Function y When v, > 2wp

left-half p-plane, If we assume that 'ﬁ(x=0, p) has poles at S and S1» then Eq. (1)
can be rewritten

(pt-2X)

mw- [ +f +[ + ) Bacope ¢ (6)
€, G G & :

where the contours Cl' Cz, C3, and C4 are shown in Figure 4,

To illustrate how the contour integrals are performed, let us consider the

integral along C, 'in Figure 4, At a point A on C; we ha®r, =0, 1y = V-0, —ee e

_ _ . 2 2,1/2 _ _ _ .
rg =Ty = (up- v oto )%, and 91 =, 62 =0, 93+64 =0, AtthepomtBonCl,
r,, r,, r,andr, remain the same but 8, is now -r. Therefore at point A we find

o2 3 4 . 1/2 , 2.2 \1/2
upon using these results in Eq, (5) that v = i[o/(vc-a)] (w.+ao -vccr) , while
at point B, v = -i[cr/(vc-cr)] 1/2 (w12)+02-vc0)1 2. As a result the integral along

contour C1 can be written as [using the fact that p = o exp(ir) and dp = -do]
v -

1/2
1 pC A _ -ot xf o 2,,2 1/2.

0 - 1/2

1 A -ot . X 2, 2 1/2

- T'_ﬂl J; do E(O' p=-0’) ‘e exp|i T (U-co;o') (Up +qg -Vco) / ]
c L

1/2
_’:‘%—foc do ﬁ:(o, -0)e " sin %[(VG_U) (”12)+°2'Vc°)] . {7}

c
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Figure 4. Deformed Contour of Integration for the Case When v, < 2wp

The integral along the contour C2 is evaluated in the same fashion, while the m—
tegration along the contours C3 and Cy is trivial, For the interested reader “the
details of the integration along C2 are contained in the Appendix<4g to this report.

3. NUMERICAL RESULTS

3.1 Step-Carrier Sine %ave

We first consider the case when E(x=0,t) is given by
E(x=0,t) = u(t) sinwt (8)

where u(t) is the unit step function, For this case E(o p=w /(p +wg ) so that the

poles s and S1 shown in Figure 4 are so v, s, = -iw . If we defme r1 = Wos
2,.,2\1/2 2 1 2 A 1/2
B, = WI+oD2, 2y - (/2% + o - 207 / - (v 2%+ wor2r®p

and



A S | A -1 A -1
6, = 7/2, 65 = tan “(w, /v ), 85 = tan [2(w,-2)/v.] and §, = tan [2(w*Z) /v, ],

we get

AAA
; r.r,r .
_ id _ 1°3°4 ilA _a A A
v =Te (—--—-—r2 )exp - Eel 92+83+94)] (9)
so that the integral over C3 and C 4 yields

- X . X
C3+IC4-exp(-?I‘cos¢)sm(w°t-1"?sm¢). (10)

Using Egs. (6), (7), (10) and (A5), we have calculated the time response of the
electric field in the plasma for the step-carrier sine wave excitation of Eq. (8).
Figure 5 shows the response at 3.2_{ = 1 for an overdense plasma (up/uo = 2) for
different values of Ver We comment that the results for v N Jw_ = 0,01 are nearly
identical with those obtained by Haskell and Case (1966a) for the case vc/up =0,
For vc/q..;p =1, however, the respohr;s;:e is quite gif{ferent. This difference is even
more apparent for the cases when% = 5 and —2—- = 10, which are shown in
Figures 6 and 7. For large values of wox/c, even when yc/""’p = 0,1, the transient

-0.6 ] ] ] 1 1 ] 1 1 1
"

Figure 5, Transient Response to Step~Carrier Sine Wave for uox/c = 1 and

wpwo=2
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response is altered significantly, and for Vc/wp = ] the character of the response
is completely different from the collisionless limit, Figures 8 and 9 illustrate
how the nature of the transmitted signal changes as the distance into the plasma is
varied. We note from Figures 8 and 9 that for large w 0¥ /c, there is an oscillation
followed by a long wake in which the amplitude of the signal is nearly constant.

It is readily shown that in this wake region, E(x, t) can be approximated* by (see

Appendix B)

E(x,t}) exp ( -1"% cos @) sin (wot -1"30‘- sind) +

wp X ) ( :%i_) (11}
+ . exp\ - .
2u cv m/° Ik sc®v t

In deriving Eq, (11) we have assumed that t >> x/c and that ”c/“’p is of order
unity, From Eg. (11) we see that for large t the transient signal consists of a
sinusoidal wave at frequency w plus a component which eventually decays towards
zero as t 3/2,

Figures 10 through 12 indicate the nature of the response for up/mo = 4,
Figure 10 shows the transient response for wox/c = 0,5, where the effect of large
values of v, is to radically alter the signal amplitude, From Figure 11 we see that
when w x/ c = 2,5, both the amplitude and the character of the transient response
are rad1ca11y changed from the case of zero collision frequency, In fact, the
frequency of the oscillation for vc/u = 1 is quite drastically reduced from the
case when v /u = 0,01, Figure 12 illustrates the transient response at w x/c = 5,
At this dlstance for v /w = 1, there is hardly any oscillation of the trans1ent
response, but rather a slow buildup, and then an eventual decay (not shown in the 7
figure) in accordance with the second term in Eq, (11), since the first term in
Eq, (11) is quite small for this case.

In Figure 13, we have shown the effect of collisions on propagation in an
underdense plasma., Here we note that no interesting or unexpected behavior
occurs, and we will not study the underdense case further, In addition, this case
has been previously considered by Case and Haskell (1967), We only comment
that our results do agree with the previous ones obtained by Haskell and Case

(1966a) in the limit Vc/wp -0,

*To check the accuracy of Eq. (11), let us consider the case when uc/up =1,
w /w =2and w L/c = 10, If we take a point in the signal wake at w t = 15, we

have from Eq. (11) that E = 2,54 X 10 3, while the exact calculation (see Figure 9)
gives E = 2,51 X 10-3,



10

o'oa 1 1 1 ] T T 1 T 1
(73733
oS —=<05
0.06 ﬁ/ W -
II w,
U ) .
3 we "2
0.04 -
002 -
E O
-002 J
-0.04f -
-0.06 1 1 1 1 1 | ! 1 1
%% 7 9 T 13 s 17 v 2 23 25

Wyt

0.08 T T T T T T T T T

0.06

0.04

0.02

E o

-0.02

-00af i

~00% 7 CRT 5 s w8 21 23 25
Wot

Figure 9. Transient Response to Step-Carrier Sine Wave for vc/up =1,0 and wp/uo =2



o's i I i I I I 1 1 1

N Wy
Y L = 4
0.4} / Sy W wp -
) \\ ”~ We x
A
4 v

|[NEaN

7/

Figure 10, Transient Response to Step-Carrier Sine Wave for uox/c = 0.5 and
w /w =4
p’ ‘o

0.08\- / \ /‘ W | ‘:;, R
0.04} \(w, TS §

rd
N
)\
[
1
b ,
I
’
’
>
[
]
1
'
J\\
\
\
\
]
|
]
’
-
’
! 8
[} a
1 []
~ @
\
\
\
[y
1
t
s
'I
'/;‘/
’
[
[
'
]
\
L
3 L

Ve
-0.02 |- “ 'u—,p"O-OI A
-004} i
-0.06 ! 1 1 l ) 1 | ! 1
0.08, 4 6 8 10 12 14 16 18 20 22
Wot

Figure 11, Transient Response to Step-Carrier Sine Wave for uox/c = 2,5 and
mp/uo = 4



12

04 T T T T T T T T T
X
I
3 Ve ¢ .
0.3 =
Wy 0.01 wyp
=4
4 Wo
0.2p T
Ve .
—
Wp

-

[}
T
==
"
s
13
T
]
L}
]
\
1
1
[}
[}
[]
b
[}
]
t
1
]
]
)
1
1
1]
\
1
-
]
)
\
\
\
P~ \
X

-0.3 ! ! 1 1 1 ) ! 1 L
4 5 ] 7 8 9 10 " 12 13 4

Figure 12, Transient Response to Step-Carrier Sine Wave for wox/c = 5 and
wp/wo =4

0.8~

04

S 9 13 7 21 25 29 33 37 4] 45

Fiﬁure 13, Transient Response to Step-Carrier Sine Wave for uox/ c =5 and
w./w. =07
p’ Yo



13

3.2 Step Function

We next consider the situation when E{(x=0,t) is given by

E(x=0,t) = u(t) ., (12)

For this case the pole S, coincides with the branch point at p = 0, while there is

no pole s Here, special care must be taken in performing the integral ICl' and

1
the integral in Eq. (7) becomes

1/2
.l fea -ot . x o 2 2
In =g +— f doE(0,-8)e " sing (Vc - (“’p to VCG) . (13)

C, @ 5 -

where Ié is the integral along a circle of radius 6 surrounding the origin in the

p-plane, That is

X -
T : -= v(p =5 exp(if))
1 =L f dg &0t exp(if) e © . (1)
5 27
-T
Using the result of Eq, (13), plus the appropriate expression for IC2 from
Appendix A, we have calculated

X
gt - J + [ Baoper 7 gp . 7 (15)
€1 G
_ S, : -
Figufes 14 and 15 show the transient responses to the unit step input at distances
w x/c =1 and 5 within the plasma for vc/u =0,01, 0,1, and 1,0, It is interesting
and important to note, from Figure 15, that when v, /wp = 0,01 the transient
response for u t < 40 is nearly identical to the results obtained by Haskell and
Case (1966a) for "c/"’p = 0. However, we now note that when vc/wp # 0 the
transient response does not approach zero as t -« as it does for vc/up = 0, but
rather approaches unity, It is clear from Figures 14 and 15 that the rate at
which the transient grows towards unity is highly dependent on the collision fre-
quency., For examplc—,i, if Vo /up = 1 we see from Figure 15 that the transient has
reached a value of e ~ by w_t =~ 16; for v /w, = 0.1 the e value occurs at
w t ~ 180; while for vc/u = 0,01 the signal has reached e'1 of its final value of
unity at w_t=~ 1600, Figure 16 illustrates the transient response at the larger
distance y_x/c = 10, The character of the response is essentially the same as
for upx/ ¢ = 5, except that the rate of growth is toward the asymptotic value and
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is even slower than for w_x/c = 5. This point is further illustrated in Figure 17,
where we compare the responses for wpx/c =5, upx/c = 10 and upx/c = 20, for
the case when vc/up =1,

The behavior exhibited in Figures 14 through 17 is just what is expected
physically since a wave of frequency w propagates as

L2 1/2
W
exp l-c—x (1 - mﬁy—c)—) .

The behavior near the leading edge of the responses is determined by the high
frequency components which propagate as exp (iu—:-), while the time asymptotic
behavior is determined by the low frequency components, which propagate as

. mzm /2
exp x(lc;l-)(—zg—) ,

which approaches unity as w - o .

It is possible to develop an accurate analytical expression for the field strength,
which predicts the time asymptotic behavior we have observed in Figures
14 through 17, Let us assume that t >> x/c, wpt >>1, and vc/up is of order unity.
Then it is shown in Appendix C that

w_X

E(x,t) - 1 - Erf ?(—L)n-z— . (16)
c(v t
C

This expression is quite accurate for t >> x/c and v_/w_ = o(1). To illustrate this
we have compared the results of Eq, (16) with the exact result in Table 1, for
vc/wp =1 and mpx/c =1 and 10, We note that the agreement is excgllent once we
are not too close to t = x/c. Equation (16) is not nearly so accurate for smaller
values of vc/u since then it is no longer legal to neglect ¢ in comparison with

L in the argument of the sine function in Eq., (13). A comparison of the exact
results with the approximation of Eq, (16) for "c/“’p = 0.1 is given in Table 2,

As expected, the agreement is not generally good,

4. DISCUSSION

The most interesting point we have noted in this report is the effect of plasma
losses on the transient response of a unit step. As pointed out in Section 1, this
result has important consequences for the interaction of EMP with the plasma
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Table 1. Comparison of Exact Results for the Transient E-Field With the

Approximation of Eq. (16) for Vc/up =1

pr

P -9y = 10
c T
wpt Eqg. (16) Exact upt Eq. (16) Exact
0,480 1,0 10 0.026 1,0
0. 682 0,685 30 0,187 0.197
0,753 0, 740 100 0,480 0.479
10 0.823 0.823 300 0,683 0,683
30 0.897 0.897 1000 0. 823A 0,823
100 0,944 0.844
300 0.967 0,967
1000 0,982 0,982

Table 2. Comparison of Exact Results for the Transient E-Field With the

Approximation of Eq. (16) for Uc/up = 0,1

wpt Eq. (16) Exact upt Eq. (16) Exact

1 10,026 1.0 10 0.025 1.0

3 0.195 0.396 30 0.196 0.0062""

5 0.315 0.410 100 0,480 0.0381

10 0.480 0.500 300 0. 683 0,199

30 0. 682 0. 666 600 0.773 0.361
100 0.823 0.818 1000 0.823 0,479
300 0.897 0.896 1300 0,845 0.535
1000 0. 944 0. 943
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surrounding a reentry vehicle™, For example, suppose the plasma sheath thick-
ness x = 10 em, @, = 1.5 X 10" sec™ and v_ = 1,5 X 1010 gec™!, fThen veluy = 1
and w_x/c = 5, Now suppose we had a square electromagnetic pulse of duration
T, = 10-6 sec incident upon the plasma sheath surrounding a reentry vehicle,
Then from Figure 16 it is clear that the nature of the signal present at the skin of
the reentry vehicle when v, = wy, is significantly different than for y = ¢, This
difference is illustrated qualitatively in Figure 18, It is possible using the results
we have obtained for the unit step excitation to calculate the transient response for
an actual EMP due to a nuclear blast, but in order to keep this report unclassified
we have not presented this resuit here,

The calculation of the transient response presented here is readily extended
to spatially inhomogeneous plasmas, by approximating the plasma by a series of
homogeneous layers, each with different values of Wy and v e Then in the nth

A
layer, E(x, p) has the form

X X
A "nc “Tne
E, = A (p)e + B (p)e an

where An and B are obtained by requiring that E and 3E/9x be continuous across
the interface between each layer, and n is given by Eq, (3) with the values of wp

and v, in the nth layer used,
The methods used here can also be readily extended to calculate transient

behavior in a lossy dielectric or in a conductor, For this case, it is readily
shown that the step function response at a point x within the material is given by -

E(x,t) = 1 %_/j 93-}1 e sin [1y1/2(1-y)1/2] . ' (18)
where 7= (o _/e)t, L = o x/(e v), v= (yoe)'l/z, € is the dielectric permittivity
of the material and ¢ ° it's conductivity, For 7 >> 1 we obtain as an asymptotic

representation for the step response

(19)

E(x,t}) =1 - Erf (ﬁ) ,
27

so that in a conductor or lossy dielectric, the unit step function response at a
given point in the material eventually approaches unity for large values of 7. A
plot of the transient response to a unit step in a lossy dielectric or conductor, as
computed from Eq, 18, is shown in Figure 19,

xIt ig of little consequence for the EMP propagation in the ionosphere since
there v is so small that yc/"’p << 1,
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Appendix A

Here we discuss the integration along the contour Coe Consider the peint C
shown in Figure 3. Here ri=py = (n2+ucn+w12))1/2, ry=p, = (n2-v0n+ug)1/2 ,
g SPg =M Ty =py = (4w§—vz+n2)1/2 and 8, sFl =7/2 +tan”? (v /2+n)/2Z],
1[ Z/(Vc/2 -n)}, 84 53?3 =m, 0,= ?4 =n/2 +tan” ! (n/22). At the

2

62 = 3 = tan
point D, all the above quantities are the same except 93 which now equals -7,

» ) - o _ 1/2 i
Defining 6 = 1/2 (91 92+93+64) and R = (p1p3p4/p2) , we can then write the

contour integral on the upper horizontal portion of C2 as
e Ve X
' 1 2 %% -(n+5=-iZ)t -T-R(cosé _+ising ), v, .
12 = -5 fo dne E(p—-ﬁ-—n+1Z)
Ve Y X
-5+ =(nt5+iZ) ZR(cosd +isin@ ) A v
+ —1 2 dn e 2 e® ¢ ¢ E(p = - an+iz). (A1)
27i 0 2

The integrals over the lower horizontal portion of C, can be performed in a

similar fashion, and yield
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4 v
< o+ S i X i
In S _2'+:g‘d . (n+2 +1iZ)}t ecR(cosec 1s1n9c)
2 2m'.f n
o

v
E(p = -5+ -n -i2) . (A2)

X .
-e-c—R(cosec-lsmec)] A

Combining Eqs. (Al) and (A2) we may write

v v
_c c
I +I” e 2t fz +§d -t -J-é-Rcos GCI % ) v, I i(Zt-gRsinec)
2 9 = " T 5 ne '"e m (p--f—n iZ)e
v
StE X Rcoso, AV i(Zt+Z Rsing )
- dne e E(p=-5--n-iZ)e . (a3)
0

Finally we must perform the mtegrals over the vertical portmns of Co. Consider

the point G, At this point r1 =T, = [{v, +£) +p2] 1/2 r2 =%, = (E +p2) /

1/2 /2

ry =T3= [ /2+E) +(Z-0)] g =Ty =llyg J2+8)° +(Z+) ]

8, = 8; = F-tan [.p/(Vc"'E)], 6y = 32 = r-tan” (p/E ), 63 = 93 = —1r+tam‘1
v v -
(Z-p)/( £+8)], By = §y = 7 - tan [(Z+a)/(F +E)].

At the pomt H, all the above quantities remam the same except
g3 =m+ tan” [(Z p)/(-—+ g}, Defmmg 'I/ = —(6 -62+93 +84) and R,

~~~ . — e

(r1 3Ty / rz) 1/2 , the integrals on the vertical portion of C2 can be written as

-(Ye+elt X

s A ) ilpt-2R_siny )
1'2" -£ f dpe © ° °Re{E(p=-vc-§+1p)e ¢ e °

-—-Ro cos ¢

f Q A _ .
dp e Re{ E{p=~-%, ~-£+ip)e

ipt+XR_sin¢ )
P Cc (o] (o] }. (.A.4)

The total integral on the contour C, is then given by

1
C2 2+12+I2. (A5)
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Appendix B

Here we outline the derivation of Eq., (11), We consider the limit when
X

<
the integral along the contour C, is negligible so that

t>> w_t > 1 and vc/wp is of order unity, In this case it can be shown that

E(x, t) IC +1., +1 (B1)
1

where IC is given in Eqg. (7) and IC + 1. is given in Eq, (10). Now in Eq, (D

C
1 3 4
it is clear that for t large, the principal contribution to {he integral must come
from o near zero, Therefore IC may be approximated by expanding the integrand
1

in Taylor series about o = 0. We get

v
c 1/2 v x
~ 1 -ot _. [+ P
IC pa- Tl'_w f do e Sln(—) —_—

1 o 0 Uc ¢
[+ o]
- w_X 1/2
~ —lu- f doe ot sin % (VL) . (B2)
T Yo c

The integral in Eq, (B2) is a standard Laplace Transform and yields

5] ‘Uz x2
I Land

~ __P__ X exp( b ). (B3)
€ 2uoc(vcw)1/2(t3;2) sc?y
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Finally, upon using Eqs, (B3) and (10) in Eq, {B1), we have

E(x,t) = exp (- 1"% cos ¢) sin (uot - I‘lé- sin ¢) +

2.2
W, w. X
+ P x ex - (B4)
% (e —g——) .
Zuoc(l/cvr) (t ) 4c Vct
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Appendix C

For a unit step when Vc/“’p is of order unity and t>> x/c we may neglect ICy
so that the transient response is given by ICI' which from Eq. (13) withé - 0

is

1/2
R e [ Ay (S
Ekx,t)=1 - A 5 e smL[ oy (1+y AY)] , (C1)

where T = upt, A= Vc/wpl L= wpx/c. When T>> 1, it J‘i clear that the principal
contribution to the integral comes from y near zero., Eicpanding the integrand
about y = 0 and extending the range of integration to  then yields

1 £ ay _-yT _. ( L ) 1/2
E(x,t) =1- — e sin y . (C2)
m fo y 72

The integral in Eq. (B2) is a standard Laplace transform (Erdelyi et al, 1954)

and upon evaluating it, we get

(C3)

L
E(x,t) =1 - Erf .
[2&1‘)1;2 ]
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Appendix D

Here we include a Fortran listing of the computer program used to calculate
the transient response of a lossy homogeneous plasma, The program inputs are
XL = w x/e, AL = vc/up, OM = ""o/"’p' D = the radius é of the contour in
Eqs. (13) and (14) (D is usually set to 0.01), M = number of different values of
T = w_t at which calculation is to be carried out, and L = 1 for a unit step input,
while L = 2 for a step-carrier sine wave input. The program outputs are
E E = E(x, t} = electric field strength, F F = contribution to E from poles,

FU = contribution to E from integral along Cy and FUNC,._': FUN. = contribution
to E from integral along C2.
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OROGRAY RON(INPUT, OQUTPUT) Quulld
REAL 42, “3, Mi4, N1, N<, N3, NG 600119
cCoMvON AL, OMy XL,y Ly PI, ZI2 000120
COMMON/TERMS/TERML, TEIMLS1, TERMZ, TEIM2SQ, TERM3, TERY3ISQ go0130
CIMYON/I/0
5 REAJ 1), Js AL, OMy XLy Ly M
IF(AL .EQ. 0.0) STOP 000154
tu FORMAT(4F1lu.4,21I4)
PRINT 24y AL, OMy XL, L c00170
2u FOIMAT(LHL,49%, *AL = ¥F1U.4/50Xe*0Y = *FLULL/50Xy*XL = »T10,4/5uX 000180
14 L = 'IS///QX,‘T‘,13X,’EE‘,16X,‘FF‘,16X,‘=U‘,15X,‘FUN‘,15X. 000130
2*FUNC*,7X,*CP SFZONDS®*/)
PE = 3.14159265353373 0002uu
TERM1 = 9,0 * AL ua0219
TERML13] = TERMLI**2 000220
TERMz = 10.0 * AL 03G230
TERM231 = TERMZ**Z udo2ud
TERM3 = 3,5 * AL Qquast
TERM33) = TERM3**2 000250
70 = 52T (L. 0 = Js25%AL**2) Dyuern
FZ = SAT(AL**2 + 0OM**2) 0Gu280
M2 = AL / F2 060299
F3 = SAITL (O™ - Zo)**2 + (AL / 2.0)%%2) 0003u0
M3 = g.3%aL / F3 gu0210
Fiy = SAITL (OM + ZO)**2 + (AL / 2.0)%%2) u00320
MG = J.5%AL / F4 000330
6 = SAAT(OM) * SART(FZ) * 3AT(4) / SART(F2) 600340
Pt = l.u / SQRY (2.0) 60350
N1 = l.u /7 SQRT(2,0) 0003690
Pz = SA|WT(U.5*(1 ~ M2} ) Duwd 370
Ng = 3IRT(0.5%(1 + M2) ) 0Ggu380
N3 = SAT(J.5%(1 + HM3) ) 050396
P3 = 33RT(U.5%(1 - M2) )} . goosoo
IF(OM LT. ZO0) P3 = =93 000410
N = 3IT(0.5%(1 + ML) ) 00uL20
Py = SAAT(J5%(1 - M4) ) oCcu&30
CP = NL*NZz*N3*N4 + N1*N4¥P2%¢P3 = N2*N4FPL1*P3 + NJ*NG¥ 0L¥22 Cul&4D
1 - N2*N3*P1%¥0P4 + N1I¥NI*P2%24 - N1*N2®*P3*PL = P1*P24PI*OL 000450
SP = DL*NZ2*N3I*NL - P2*NLI*NI*N4 + DI*NL*N2*NG + Pl‘PZ‘ﬁS‘NH . 0du4b0
1 + OLENL¥NZ¥NJ + N1®P2FP3*Py = N2®P1#P3*PL + NI*¥DL¥02%24 Ouub?70
00 30 J=1,M Goo480
XX = FLOAT(J) o0o0490
IF(XX JLE. 6.0) T = XL 4 Jo02%(XX = 1.0) 0005u0
IF(XX o3Ee 70 «ONDe XX oLZ. Zli.u) T = XL ¢ Uel # 042%(XX = 6.0} goG510
IF(XX «53E. 22s0) T = XL + 3ol + (XX = 21.0) £G0520
IF(L .22. 1) FF = FUNU(D) guus39
IF(L .£Ed. 2) FF = EXP(-G*X_*CP) * SIN(OM*T - 3*XL*SP) guusuo
FUNFU = FU(T)
FUNFUN = FUN(T) aous570
0yu580

FUNFUN3 = FUNCI(T)
€EE = F= + FUNFU - FUNFUN + TUNFUNC 000590
SPTIMZ = SECONI{A)

30 PRINT 40, T, EE, FFy FUNF', FUNFUNy FUNFUNC, CTPTIMZ

40 FORMAT(S5X,FB8e3y1Py5(3XyEL53)sUP33X,F3,3)
GO TO 5 000620

END 000630

FEBRLLREEER LG LSS 3 EET !I‘l!!."'l!"‘l‘l‘#.!.Ol.lll'!.l'5!!..!‘!'!‘!‘.'#‘uuusl‘,a
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[ Y Y Yy Y Y Y Y I Y YRRy F Y Y I P Y RS P XSRS F SRS RS RS S R E SR R 22 L E il nE-Y 1]

20

FUNSTION FU(T)

SOMMON AL, OMy, XLy Ly
COMMON/TT1/TT4
COMMON/3/D

TTL =7

N=1

TWO = 4§, 0

GO TO (5, 6), L

H= (.999- D)¥*AL 7/ 2.
FOUR = FUNKL(D*AL + H)

PI, 20

ENDS = FUNKL(D*AL) + FUNK1(0H93%AL)

GO TDO 3

H = 0M3%*AL 7/ 2.0
FOUR = FUNK1 (H)
ENDS = FUNK1(G.uduul)
SUMO =

+ FUNCL (0 A39%AL)

{ENDS + 4. ,U*FOJR) * 4 / 3.0

H=H/ 2.0

N=2*N

THWO = THO + FOUR

FOUR = 0.0

Y =H

IF(L +EQ., 1) ¥ = D*AL + H
I =0

I=1+1

FOUR = FOUR + FUNK1(Y)
Y=Y 4+H+H
IF(I LT. N) 50 TO 2u

FU = (ENDS ¢ 2.0%THWO + 4.LU*TDJUR) * H 7 3,0

IF(ABS(SUMO - FU) LLT.
SUMO = FU

GO TO 10

END

1.08-6) RETURN

000660
030670
00u680

Guubsr
0007u0.
000710
goU720

0c0760
guo770
000780
000790
060830
040810
00G820
006830
008840
0.0850

000870
05uL8so
000890
000900
0uu9Ln
opfg9z20
0009330
000940
0uv0950
Gud9s0

FEVFLFLFEIFFEFAFRSAFREERFRNFR SRR AR R SRS FRFEERFRERFELTI RSV IEEFR¥RIN 070
l"!!l""l'll!l#‘#l'!".ll"‘!'ll.U'l‘lO&!’!‘#'.l#l“!l!lll!l’l¥‘¥!¥l!l000980

10

20

FUNSTION FUN(T)

COMMON ALy OM, XL, L,
COMMON/TT2/TT2 .

72 =T

H = 9.,5%AL /7 2.0

N =1

THWO = 0.0

FOUR FUNK2 (H)

SUMO (ENDS + 4. J*FOU
H=H/ 2.0

N=2%N

THO = TWO + FOUR

FOUR = D.0

Y = H

I =20

I =1I+1

FOUR = FOUR + FUNK2({Y)
Y=Y+ H4+H

IF(I .LT. N} 30 TO 20

FUN = (ENDS + 2,0*TW0 + 4,0*FOUR) * H 7 3.0
e 1.02-6) RETURN

IF(ABS{SUMO - FUN) .LT
SUMC = FUN

GO TO 10

END

PI, 20

ENDS = FUNK2(0.U) + FUNK2(3.5%AL)

RY * 4 7 3.0

000990
0019uo
0wi01d _.
001020
DuiulD
Culouud
Juluso
Gulub0
001070
001uvd0
001030
0uvi10D
001110
001120
001130
Dulisl
001150
001150
0uli7o0
001180
01190
0ui200
gu1210
01220
001230

"“‘FI#.!F!“‘U"G‘;"l#‘l'l'l‘l"II!#!¥¥l¥¥l¥li!ll*‘!'¥¥l‘¥$l¥lll¥¥¥.#0012k8
-t

! ]
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FUNCTTIAN FUNC(T)

COMMON AL, OM,

JOMMON/TT3/TT3

T3 =7

H=20/7 2.u

N =1

THO = U0

FOUR FUNK3 {(H)

ENDS

SUMO
16 H=H /7 2.0

N=2"%"N

TWO = THO + FOUR

FOUR = 0.0

Y = H

I
20 I

FO

Y

IF(I

FUNC =

- o

+ 1
R =
Y +H ¢+ H
T N)

ncun

IF(ABS(SUMO - FUNG)

SUMO = FUNC
GO0 TO 10
END

YT EY YNSRI RS R RS LR L E R 2] AUSEERLXRE B FFLELEFXTIRPFEERRS

XLs

FOUR + FUNK3(Y)

50 TO 20
(ENOS + 2,0*THO + 4,J%FOUR)
i-UE-G)

Ly

PT,

LT,

9

TUNK3 (0.0} + FUNK3(Z])}

(ENDS + 4.,0%*FOUR) * H / 3.0

*H/7 3.0
RETURIIN

Uul2bu
Qu1270
poi280
0v12910
0ul30G
0ui3ig
001320
4013230
001340
L1250
001360
0.1370
001330
4e133¢
Oul4uo
uoitl
u0Li420
ud142n
Oulbyn
Dul&so
bLl1460
0nLaz7o
001480
Juison
061500

FERRNRAT LR IBRREEREEY 151 ]

PEBTEEEINEFERFLE RN LS TRS IYSYYSRPSIS AR TR RS L 1 SRR BGFIVELEEFFINE """""""“0u1520

FUNCTION FUNK1(Y)
COMMON AL, QM,
COMMON/TTL/TTL

TERM = SIN(XL*SQRT(Y*(l.u + Y**2 -

GO TO (1lu,
10 FUNKL =
RETURN
20 FUNK1 =
RETURN
END

XIS XSRS TSR LR L AL LR g

20, L

FUNSTION FUNK2(Y)

COMMON AL, OM, XL,
COMMON/TT2/TT2
AA

%

XLs Ly

PI, 22

~EXP(-TTL1*Y) * TERY 7/ (PI * Y)

AL*Y) /7 (AL - Y)

)

)

0M * EXP(-TT1*Y) * TERM / (PI * (Y**2 ¢ oM*%2) )

0.1529
ug1540
061550
0ui560
31570
Cul580
L01590
ouibul
G01610
uGie2d

PR T T T T T T TY TY I Y PR TS C Y R RN R YL L L L LS SRS LRSI IR L]
T T PERY T TR Y IS E XYL L AT LRSS R AR Rl et e P Y-LY

Ly

PIL,

+

Z0

SART(SQRT( 4.0 = AL®®2 + Y**2) )
SAAT(SARTLY®**2 & AL*Y + 1.4) )

(Ae 7 2.0 = Y) 7 SQART(Y**2 + 1,J = AL*Y)

%0 - AL**2)

/- 2.0)

NN NN N

2.0)
2.0)
2.0)
2.0)
2.0)

-{31%C2%C3 + C1%32%S3 =- (2*S1*S3 + C3*S1i%52)

AB =

AGC = SQRT(SART(Y**2 - AL*Y + 1,0) )
R = SQIT(Y) * 4A * AB /7 AC

AO = 23 7/ SQRTLY**2 + 1.0 + AL*Y)
BO =

CO = 2.d%*Z0 /7 SQRT(Y**2

Ci = SARTC ( 1.0 + AOQ )

Cz = SIRT{ ( 1.0 + BO )

€3 = SAT( ¢ 1.0 + CI)

S1 = SIRT( ¢ 1.0 - A0 )

$2 = S_T( ( 1.0 - B8O )

$3 = SARTC ( 1.0 - CO )

CT =

ST

~(S1%C2*C3 - Sz*CL¥C3 + S3I*CL*C2 + S1#52%53)

001650
0C1660
Gul670
ug1680
Culp90l
u01700
001710
001720
001739
01740
0917540
001760
Q01770
6d1780
guivan
poiaoe
001810
go1320



Y- XPS*(EXPL*

§53 = SIN(ZO*TT2 - XL*R*ST L)

CS3 = 32S{ZO*TT2 - XL*R*3T PI)

SS4 = SIN(ZO®¥TTZ2 + XL®R¥ST PI)

CCu = SOS(ZO*TT2 + XL*R*ST - PI)

$S1 = SIN(ZO*Tr2 - XL*R*SY PI/2.0)

CC1 = 30S(Z0*TT2 - XL*R*ST PI1/72.0)

SS2 = SIN(ZO®TT2 + XL¥R¥ST PI/2.1)

CC2 = Z0S{ZO*TT2 + XL"R*ST PI/2.0)

EXP1 = EXP{-XL*R*CT}

EXP2 = ZXP{ XL¥R*CT)

EXP3 = EXP(-AL¥TT2/2.u - Y*TT2)

TERM1 = AL/2.0 ¢+ Y

GO TO (10, 20}, L

10 FUNKZ = 1.4 /7 (PI * (1,0 + AL*Y + Y*®2) ) * EXP3 *
L{EXP1#(Z0%SS1 - TERM1I®*CCLl) EXP2%(Z0%*3552 - TERM1*C52) )
RETURN
2u TERMZ2 = TERMLi**2

TERM3 = (ZJ - OH)*¥*2

TERM4 = (Z0 + OM)*¥#2

FUNK2 = 04 / (PI*(TERM2 + TIRML)*(TERM2 + TERM43I)

1, ((ZJo**2 - OM**¥2 - TIM2)*SS3 - 2.U*Z)*TFRML*IC3) - EXP2 ¥

2 ((zo**2 -
RETYRN
END

OM**2 - TERM2)*554 - 2.u*Z7*TERM1*304) )
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034830
Gul8h0
091850
un18670
gc187n
0ul1880
0.1898
uo1900
poieig
001920
0(i193n
gri9oug
ugi1ase
vuL1i960
B.197C
UJ1986
06193990
0G20ul
dd2uil
gt202v
dn2c3n
002040
po2use
0.,2ub0

SEFREF N R R ESEF AL R REE TR ALYV EFE RN CACR AN B RR AR N ERE RN LN C U AR R P AR IR RO RFRA {207
FRRE AL H N E R AN S E AP SRR F LR RS FRE BB AN S N LS KF P X AR L ER PR RN MR R A E pE Rt 32) )28

FUNSTIIN FUNK3(Y
REAL <1, K2, K3
COMMON AL, OM,
COMMON/TT3/TT3

COMMON/TERMS/TIRML,

TERML = 3.0 * AL

)

’

XLy Ly

Kb

TERM1S52,

PI, 20

TERM2, TEIM2SN,

TFIIM3,

1+ + +

TERM3SAQ

KI*KL*T1%T2
TL*T2*T3*Ty
T1*T2%T3¥Ky
K3*T1*T2%T4

c
C TZIAM1SQ = TERMi**2 B}
C TERMZ = 10.0 * AL
S TIRM25Q = TERM2%*2
C TERM3 = 3.5 * aL
C TERM3SQ = TERM3**2 i
¥YsSQ = Y**2 .
BA = SART(SQRT((TERM2SQ + Y32) /7 (TERYLSA + YSHR ) )
88 = SIIT(SART(TERMISY ¢ (22 - Y)I**2) )
8C = SART(SQRT(TERM3ISA + (ZI + Y)**2) )
R = BA * 33 » 3C
A2 = TZIM¥2 / SARTLTERYM25Q + YSQ)
Be = TEIML /7 SIART(TERMLSY + YSAQ)
C2 = TSIM3 7 SAIRT(TERMSSA + (20 - Y)*¥*2)
D2 = TERM3 /7 SART(TERM3ISQ + (Z0 + Y)**2)
Ki = SART{ (1.0 + A2) 7 2.0)
Kz = SART( (1.0 + B2) /7 2.0)
K3 = SART( (1.8 + C2) 7 2.0}
K& = SART( (1.0 + D2) 7/ 2,0)
TL = 32T( (1.0 - A2} 7 2.2)
T2 = SARTL (1.u = BZ) 7 2.}
T3 = SIATL (L.u - C2) 7 2.0
T4 = SIRTC (1.0 - N2) 72.0)
CS = <C1%*K2*K3%Kiy = K1*K4¥T2*T3 + K2*<4*T1+T3
1 - K3IPK2¥TL%TY4 + K1%K3%T2%T4 + K1#X2*T3%#Th
SS = - T1*K2%K3%K4 + T2*K1¥K3*Ky + T3I*K1*K2*¥Ku
i - K1*K2¥K3*T4 + KL1PT2*T3*Th = K2*T1*T3*T4
Pq = EXP(-TE’AM2 * TT3) 7 PI

Bu2L90
bu2i00
gca211c
guz212n
(L2130
N.2140
gv215¢C
Du216C
u2i7e
po2ast
v 2190
du2ibn

goez2i0 -

vib2ezn
(-]
bo224"
jcz2asce
0.2260
pr2275
2.228¢G
002230
0u23.0
pu2sit
un232¢
032330
Lv23sn
gu2350L
0.2:00
unz37e
Lu2l8y
ubz2s90
bu2b4iG
Uu2410
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EXPL = EXP(=R*XL¥CS)
EXP2 = EXP{ R*XL*CS)
BETA = XL*R*SS

GO TO (18, 200, L

THETA = Y®*TT3 - PI/Z.0
SINM = SIN(THETA - BETA)
SINP = SIN(THETA + BETA)
COSY = COS(THETA - BETA)
20S2 = ZOS(THETA + BfTA)
FUNK3 = PQ / (TEIM2SQ + ¥S1]
1 - EXP2 * (Y*(JQSP +
RETJRN

THETA = Y*TT3 - PI

SINY = SIN(THETA - BETA)
SINP = SIN(THETA + BETA)

COSM = COS(THETA - BETA)
30SP = COS(THETA + BETA)
FUNK3 = OM*PQ 7 ((TERM2SQ +
1 (EXPL1®((YSQ = OM®**2 - T
2 EXP2*((YSQ - OM**2 - T
RETURN

ENOD

FUNCTION FUNR(T}

) * (EXPL* (Y*30SM + TERM24SINM)
TERM2*SINP) )

go2420

‘002430

002440
002450
vo24ue60
002470
Qw2480
002490
fu250io0
Uu2510
0u25290
002530
002540
02550
002560
002570
vi2580

(Y + 0M)*®2)*(TERY2SQ + (Y - OM) **2))*002590

Z3M235Q) *COSY + 20.0*Y*AL*SINY) -
ERM250) *COS? + 20,U*Y*AL*SINP))

COMMON AL, OM, XL, Ly PI, 29

COMMON/TT W/ TTH

TT4 =T

H =PI 7 2.0

N =1

THO = J.0

FOUR = FUNP{H}

ENDS = FUNP(D0.0) + FUNP(PI)
SUMO = (ENDS + 4.0%*FJUR) *
H=H/Z 2.0

N=2?%*N

TWO = THO + FOUR

FOUR = 0.0

Y =H

I =210

I =1¢+1

FOUR = FOUR + FUNP(Y)

Y=Y +H+H

IF(I .LT. N) 30 TO 20

FUNR = (ENDS + 2.0F%THO + &4,
IF(ABS(SUMO - FUNR) .LT. 1.
SUMO = FUNR

G0 To 10

END

FUNCTION FUNP(Y)

COMMON &L, OMy XL, Ly PI, Z
SOMMON/TT4/TT4

COMMON/D/D

SINE = SINLY)

COSINE = COS{Y)

RO2 = 32ART( (1,0 + D*COSINE
RO3 =
RO4 = 3ART( (ZJ + O®AL*SINE

4 /7 3.0

Q*FOUR) * H /7 3.0
0E-5) RETURN

J

y**2 + (D*SINE)**2)

SART( (Z0 - O%AL*SINE) **2 + AL¥*2% (0,5 + D®*COSINE)**2)
Je#2 & AL®*2%(U,5 + O*COSINE) **2)
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G1 = COSINE
G2 = (1.0 + D*G1) / RO2
G3 = AL * (u.5 + D*G1) / RO3
Gb = AL * (0.5 + D*Gi) 7/ RI%
RC1 = SQRT( (1.0 + Gi) 7 2.1)
RC2 = SART( (1.U + G2) 7 2.0)
RC3 = SART( (1.0 + G3) 7/ 2.0)
RC4 = SQRT( (1.0 + G&) 7 2.0)
RS1 = SQRT( (1.0 - G1) 7 2.0)
RSZ = SART( (1.0 - G2) 7 2.0)
RS3 = 32ART( (1.0 - G3) 7/ 2.0)
RS3 = - RS3
RS4 = SART( (1.0 =~ G&) 7/ 2.0)
ACT = RL1¥RQC2*RC3I*RCY + RCI*RCLU*RS2*RS3 - RIZ*RIL*RSL¥RS3
1 RO3*ACH*RSL*RS2 ~ RSL*ISL*RC2*RCI + RIZ*ISLARCLI*RT3I
2 S3*RSL*RCLI*RC2 - RSL1¥RS2FRSI*RSY
AST = RWL*RC2¥RCI*RCG = RS2*RCIFRCI*RCH + RSI*RCL*RC2*RTH
1 RS1¥RS2¥RS3I*RCL + RC1*RC2*RS3*RS+ + RI1*¥S2+#RSI*RSYH
2 R32¥RS1*RS3I*RSH + RC3I*RSL*RS2*RSH
ARR = 3QRT(D * RO3 * RO&4 / 02) * XL
ARC = ARR * ACT
ARS = AR * AST
FUNP = (1.,0/PI)*EXP(D®AL*TT4*COSINE - ARC)*COS(O*AL®TT4*SINE -ARS)
RETURN
END
03/16/73 CRL SCOPE 3.3 cl23084A 02701772
16.25.56., TAYLXD1
16425,56.TAYLX 43M1000U,T104
16.25.56. 7286 TAYLOR ,
16425456, NOSULL. ' - .
16.25.56.30PYSBF,INPUT,OUTPUT,
16+.25.57.4A53 STORAGE= 000062 PRJS

16.25457.CP
16.25.57.PP
16.25.57.1IC

«057 SEC.
+518 SEC.
«09Uu SEC.
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