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SECTION 1

INTRODUCTION TO THE SOURCE REGION PROBLEM

1.1 INTRODUCTION

Tt is well known [1-3] that in a nuclear detonation the Y-rays generated by
fission and various nuclear scatterings and the x-rays generated by the
heated bomb materials can scatter electrons in the weapon and the surrounding
materials. These electrons constitute a current which, if asymmetrically
distributed and/or gyrating in a magnetic field, can coherently radiate an
electromagnetic pulse (EMP) of microwave frequency or lower. This EMP can
propagate much further than the Y~rays or the x-rays that create it, and
can couple into a system or a device at great distances. The EMP effects
depend, of course, on the location of the burst (such as high altitude, air,
surface, underground or underwater), the detonation material and materials
in its vicinity, the media along the Y-ray or x-ray paths, the presence of
a biasing magnetic field, and the location of the observer.
To calculate the generation of the EMP, we neced to estimate the photon
spectral flux from the burst, the different specieé and densities of materials
. o ) ' ‘. . -
present, and various electrodynamic interaction cross sections. A macro-
scopic model for the source current and the environmental medium cax be
constructed from these quantities, and then classical EM theory governs the
generation, propagation, and coupling of the EMP. For objects outside of

the source region the processes of propagation and coupling can be addressed

independently [4].



However, if a system of interest (such as a missile or a satellite) is
located in the region where the source current generating mechanism is
present, then the EMP generation and coupling phenomena are combined and

must be analyzed together.

.In this report, we examine the problem of a conductor immersed in an EMP
source region at_steady-state. This steady-state case is applicable when
the Y-flux illumination changes slowly and lasts a long time, the conductor
is small, and the skin depth of the source region enviromment is large. It
illustrates the physical process involved and may provide an upper bound
limit to the time-~dependent case. Typical numerical data considered are for
high altitude EMP threat exposures.

Essentially, the steady-state solution describes the effect on a concuctoer
that sees and responds to the instantaneous environment as a whole. The
other extreme case of a very short skin depth, which shields one part of the
conductor from the other part, and its time-dependent local effects are

treated in a separate report [5].

1.2 THE PHYSICS OF THE PROBLEM

Consider a conducting body at a height h > 20 km from the earth surface which
is illuminated by the photon-flux from a high-altitude nuclear burst at

100 km or above. Now the x-rays of ~keV energy in the detonation radiation

are absorbed in the surrounding materials predominantly by the photoelectric

interaction, with a mass attenuation coefficient ,ux/p ENZox/p~4.5 cmz/gm (6]



in air for 10 keV x-rays. Here N = # density of atoms in air, Z = average
atomic number for air species, Gx = photoelectric absorption cross section,
and p = density of air. Also the Y-rays are attenuated predominantly by the
Compton scattering with y7[955N207/p ~ 2.6 x 10—2 cmzlgm in air for ~ 1 meV

Y-rays.

Thus the ~1 meV Y-rays, with an attenuation mean free path AY—air approximately
173 times of the attenuation mean free path Ax—air for the ~10 keV x-rays,
become the dominant flux if the air content between the burst and the region

of interest exceeds (p/px)ﬂn(90/0.03) ~1.78 gm/cmz. Here we assume that the
x-rays and Y-rays respectively have 70 percent and 0.03 percent of the

original yield [7]. This assumption is satisfied if the region of interest

has a height h =< 44 km, the case under comnsideration. We therefore can

concentrate only on the effect of Y-rays.

Now consider a conducting body of length L and cross sectional width D at
h ~ 40 km in an EMP source region, with dimensions on the order of D ~ 1 meter
and L ~ 10 meters (see Figure 1). A 1 meV Y-ray has a Compton absorption

mean free path A )—l ~ 9,6 x 104 meter in the air with a density

Y-air = (“7¥air

-6 : - ) S . - -
~4x10 - gm/cm3 at ~40km. Also the mean free paths for aluminum and lead are

A 0.14 meter and A ~ 0.038 meter, respectively, and hence

Y-Ap Y-Pb

A

>1L, D> Av-conductor (-1

y-air
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A Conductor Immersed in EMP Source Region
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in the analysis. For simplicity, we thus can assume that the conductor

has a large density such that A = 0, and the Y~rays do not penetrate

Y-conductor

any depth into the conductor. Also the first inequality in (1-1) enables
us to assume the Y-flux to be spatially uniform (except in the shadow

region VS where it is zero) for the problem considered. Notice that the
y-thickness in most situations does hold, but its being all due to the

conducting surface is an idealization.

To describe the incident field and current without the presence of the

conductor, first the y-flux creates a convection current by Compton scat-
tering. Also, an ionlzation alr conductivity S, [8] is produced by the
inelastic Coulomb scatterings between the Compton electrons and the air,
at the average expense of 32 eV/ion-pair from the Compton electron's

kinetic energy [9]. The current is [10, ll]

Rmf -3
Jcomp = er . TE;.N'eEY x 2.5 x 10 amp (1-2)

where Fy = number flux of Y-rays in l/(m2 - sec), and Rmf = mean forward range

of electrons (~0.079 gm/cm2 for ~0.45 meV average Compton electrons) ~200
meters in air at h ~ 40 km. The electron air conductivity [12] is typically

% _ -

0,~3.4 x 10-8 N, mho/meter (1-3)



where ne = electron number density in 1/(meter3). Also a typical prompt
gamma flux Fy is, assuming the 1 meV Y-rays isotopically emitted claiming

~0.03 percent of yield [13],

dr
at t/r_— -
F. = I . e e Ay (meter2 - sec) 1 (1-4a)

where

a ~ 108 sec_l

L= 4.51 x 10°Tey
(1-4b)

Y = yield in kilotons

distance in meters from the burst point

Lo}
I

Now, the problem is, what are the electromagnetic responses of a conductor
if it is immersed in a source region as described above? Especially of
interest are the total charge and surface charge density, the electric field,
the magnetic field, and the current and its density on the surface of the
conductor. We analyzg phe steady-state situation in Efction 2, solve such

a steady stéte for a prolate spheroid in Section 3, oﬁtline.the formulation

for the time-dependent case in Section 4.1, and summarize the conclusions

briefly in Section 4.2.

&



SECTION 2

STEADY-STATE ANALYSIS

2.1 GENERAL REMARKS

Interesting EMP source region interactions are, of course, time dependent.

The motivations for looking into a steady-state solution are

1. to illuminate the physical processes involved;

2. to provide possible limiting estimates for the time-dependent
solutions; and

3. to establish a method of analysis which may be extended into the

dependent case (e.g., Helmhotz eq. instead of Laplace eq.).

Now the wavelength of the ~1 meV 7Y-rays {~1.24 x 10_12 meter) is much
shorter than the dimension of the conductor concerned, the Y-flux Fa, and
its accompanying primary Compton current can be taken to be zero in the

geometrical shadow region VS (see Fig. 1) as a result of p = » from condition
(1-1). Also from (1-1), FY and Jcomp can be assumed to be uniform in V.

Further, ignoring the Poir variation (the scale helght at 40 km is ~ 7 km

>> L, D) makes Oa_in the%steady—state to be unifo;g in V. But in VS we
cannot assume zero conductivity, although there are no primary y-rays in

Vs. This is because (1) the Klein-~Nishina differentilal cross section gives
the primary Compton electrons a forward angular spread Ae - 30° for the

1 meV y-rays, and (2) the ionized particles are diffused into VS. Mechanism
(1) limits the part in VS with conductivity appreciably different from the

= uniform oa to



|Az| < D cot 15° = 3.7 D (2-1)

from the bottom of the conductor's surface Eb (see Figure 1). Since in mech-
anism (2) the electron attachment is much faster than the electron-ion and

ion-ion recombinations, the ion recombination mean free path is roughly

v
A —£. - 0.2 meter

recomb k3Ni (2-2)

where the ion-thermal velocity v~ \/8kT/1rmi ~ 4.3 x 102 meter/sec,

) -12 3 18 15 3
T ~ 273K, k3~ 2 x 10 m” /sec [14], and N, ~ 10 ('oair/po) ~ 1077 /meter
are used. Therefore the low conductivity region of (2-1) is further reduced

by the inward diffusion erosion (2-2). We thus assume o0, to be uniform

a
everywhere in V and VS. That the error of such an approximation depends on
the "slenderness" of the conductor will be shown in Section 2.6. Finally

we notice that the assumption of Jc = 0 but O'a # 0 in VS is not inconsist-—

omp
ent, because the Jcomp in V5 (1) has no direct charge deposition effect and
(2) has its indirect field effect being accounted for by a charge separation

field Ep everywhere.

2.2 STEADY-STATE CRITERION FOR Y-FLUX AND GEOMETRY

The steady-state behavior will really be achieved if Y-flux duration satisfies

T, >> ==L -
L Tbody’ Trad® Tbuilt = 0z (2-3)

10



where Tbod; L/c is time for a surface signal to travel from end to end on

the conductor, ¢ = vacuum velocity of light, Tfad = typical time needed for

the conductor in some initial charge distributicn to reach its equilibrium

charge distribution by radiation, and T = typical build-up time for

built
the charge separation parallel to field to reach its saturated value Jcomplaa.
W ly esti b
e can roughly estimate Trad y
& ~&
Trad ~ e - (2-4)
P
rad
where
é;, é} = initial, final electrostatic energy of the respective
charge configurations, and
P_q = Power radiated by the conductor when it is redistributing
its surface charges into equilibrium.
i - - - % ) -— - e e e
We will find that the T is also the typical time needed for the conductor

built

to accrue its equilibrium charge (see eq. (2-13)).

The condition (2-3) dictates physical situations in which the steady-state
results directly apply. Essentially the condition requires a small conductor
and a long-duration Y-flux (such as might be provided by delayed or secondary

Y-rays).

11



2.3 SEPARATION INTO TWO BASIC EFFECTS

The electromagnetic effects of the Y~-rays on the conductor are determined

completely by the driving current J [15] and the charge separation field

driving
Esat’ except the direct deposit of Y-rays on the conductor. This direct
deposit of the Y-rays only dissipates into heat near the front conductor
surface, through Compton scattering and successive multiple Coulomb colli-
sions (ignore the backscattered electrons leaving the conductor), and does
not produce current or electric field because of the P =« and T=- condi-
tion for the conductor. With the approximation o= constant, the effects
of and E can be separated into the following aspects:

J, .o
~driving ~sat

1. The Compton electrons of the’gco o (1-2) collide with the

m
conductor's front surface and essentially are stopped in a thin
layer near that surface because of the high density of the
conductor (e.g., Rmf ~1.6 x 10_4 meter for conductor density of
~5 gm/cm3 and for ~0.45 meV electrons). The conductor

thus receives a net deposited charge.

< _ .

2. The driving Compton current gives rise to an induced parallel

electric field@P due to charge separation. The Ep = Ep L, is

12



limited by the air conductivity's backflowing air conduction current

and builds up according to

+ o

0
T ot (¢ Ep) JCom.p a Ep

_JCo ‘Oat —JCom
E E (t) = —m'R 1 -e € bl P = E (_2"5)
P Ua £ € Ua sat

where ¢ = dielectric constant of the air and is = € of the vacuum.
The conductor is immersed in this external parallel electric field

E

. That the external saturated field is -J /o and
~sat Comp’ "a

constant everywhere, even in the shadow region VS, is really
justified by its physical origination: it is caused by charge
separation layers at large distances from the conductor and large

in their horizontal sizes compared with the conductor.

The separation into these two effects (see also Section 2.4) enables us to
view the overall steady-state situation in a simple way. The perfect conduc-

tor, immersed in an external field Esat’ maintains on its surface an induced

surface charge distribution Py which is a balance between the conduction loss

rate aag caused by the surrounding air conductivity 9, and the polarizing

1

influence of Es This balance provides a surface current density 51. Also,

at”
the total amount of charge Sf;pzda deposited by the Compton current on the

conductor is released by the balance of another alr conductivity current anZ’

13



where E, 1is the static field caused by the net charge deposition. This

2
balance also gives rise to a surface current 52 (see Fig. 4 on p. 26). The
superposition of these two effects gives the total electrostatic field,

surface charge and current density. Then the time-independent current

distributions determine the magnetostatic field.

Before going into detail, we must emphasize that the conductivity o, does not
alter any electrostatics, except by requiring a "driving source" to maintain

the static charge and current configurations, if and only if,

Vo -E=0 (2-6)

is satisfied. Here E is the static electric field before o, is introduced.
Eq. (2-6) simply guarantees no new spatial accumulation of charges by the
introduction of the conductivity O, Physically, the o, introduced should be
constant along the E field lines. Trivially, the approximation o, = constant

in V and Vs satisfies (2-6).

We label the quantities associated with the parallel saturated field ESa
o - ’ =
by the subscript 1, and the quantities associated with the net charge

t

deposition by the subscript 2 in the following analysis.

14



2.4 THE ELECTROSTATIC FIELD

From Maxwell eqs., the total electrostatic field E satisfies

where El’ the effect of the parallel field Esat’ obeys

-
2 .
Vq?l—O in V and V_
4 @l =0 onZ
—— . ——t
@l Esatz as r—oo
.

and EZ’ the effect of the charge deposited by :IComp’ obeys
r
2 .
v e =20 in V and V
2 s
< <I>2 = Const., on %
Q
total 1
@2 X IT3 +0(r2) as r—oo.
.

15

(2-7)

(2-8)

(2-9)



Here X is the conductor's surface, and 0(_1/r2) represents a quantity whose

. 2, . ..
ratio to (1/17) is finite as r — oo,

The total charge Qtotal on the conductor is determined by the charge

conservation

-
c'}pg-dg =ﬂ(> J+da = 0 (2-10)
z z

where To=2 closed surface at r = = and

= 2_
< C'aE +3~]-'driving (2-11)
From (2-10) and (2-11), we immediately have
= £ . -
Qtot:.':).l c j gComp dz . (2-12)
a 5 -

Notice that the total éhérge on I is determined only b)?‘the gComp and 0,5 but T

not by the parallel Esa which induces no net charge on the conductor. Here

t

Et is the top illuminated part of Z.

16



2.5 THE MAGNETOSTATICS

The current density J and surface current density Es chtained in the

electrostatics determine the magnetostatic field B, except B influences

the air conducting current through [16]

b}

u
e 4
.

~cond. air 2 (2-13)

where o = electric conductivity without magnetic field, T, = mean

collision time, m,

. th . .
S mass, ei = charge of the i— charge species in
the ionized air.,

So if

Bre eB 1
bTe = &5 = = 2-14
~ <Ilor VvV, = - <<<ZT-— vc (2-14)

where VB = gyration frecuency in B and VC = collision frequency of the

ionized charge species, we can ignore the influence of B on o, and main-~

tain o, = constant as if no conductor exists. In fact this assumption

17



has already been used in that the induced E does not change the incident
air conductivity. This assumption makes the present analysis a first-—

order linear model.

Within the above accuracy, the magnetic field is determined by the currents by

"
= = - in V d V
Y' E s Z x Lj.driving in an s
nx B = uES on X. (2-15)

Notice that the only contributing volume current is the "shadow Compton Curreat".

This shadow current flows in the shadow region VS just to cancel the Compton

current which would have “een there if no conductor were present (see Fig. 1) [17_-).

The surface current density Es onY is determined by the surface charge

conservation in steady state

Vo = -1 -n - -
@) %S Jn oo Te o (2-16)

where p, = surface charge density and (g) is the two-dimensional del operator
on 2 (notice (g) differs from the 2-dimensional-part of the 3-dimensional 2) [18].

Also notice that (2-10) and (2-16) imply

CJ‘ED K- +ﬂ€. K-d = 0 (2-17)
2

2

18



where X has been divided in two arbitrary parts, zl and 22, and d! =1n x d
Nn I~

~

with df =enclosing line segment of El or 22.

2.6 INHOMOGENEOUS CONDUCTIVITY

The effect of inhomogeneity in air conductivity would be to pile up certain

space charges to the constant 0, solution at the places where voa - E # 0.

If the conductor is thin, i.e., the cross—sectional area of the shadow 1is
small compared to the total surface area, then the inhomogeneity of conduc-
tivity has a small effect on the total field and can be treated by nertui™a-

tion. Such a small perturbing space charge is

p = (2-18)

where E is the unperturbed field of uniform 0, The total perturbing spatial

charge is

= : -~

3
= ~ - -1¢C
9sp f Psp d” X ¢ (EA)shadow, near Zb (2-1%)

Qbottom

L — o
Thus the qsp’ located in ‘s near“zb, is Qbottom as expected. The rough

errcr estimate for the whole solution is thus-~ Qbottom/Qtotal ~ (Eb/Z)l/Z

19



This justifies the validity of the approximation for a '"thin" or "slender”

conductor.
If the conductor is not thin, or aa(X) is badly inhomogeneous, we should
re-solve the whole steady-state problem replacing the Laplace eqs. in (2-8)

and (2-9) by

vle + VLX@ = 0 (2-20)

and keeping other requirements as before (of course still with aa_-c-uniform as

r — ).

20



SECTION 3

A PROLATE SPHEROIDAL CONDUCTOR IN STEADY-STATE

3.1 GENERAL REMARKS

If the conductor's surface coincides with one of the eleven separable coordinate
systems for the Laplace equation, the electrostatics can be solved easily.
Otherwise, special techniques have to be employed for different problems. In
the following we solve the problem of a prolate spheroid conductor immersed in

a source region with its axis parallel and perpendicular to the incident Y-flux.

3.2 PARALLEL TO Y-FLUX ILLUMINATION

Referring to Figure 2, consider a prolate spheroidal conductor with its axis

being the z-axis and parallel to the 7Y-flux incidence as illustrated. In a
prolate spheroidal coordinate system (7, 6, ¢)[19] with infinitesimal length
ds? = 1%(sinh’7 + sin’6) [(dn)2 + (de)z]_+ 1% sint®g sin®9d®)?  (3-1)

where 0 < n<o, 0 0<m and 0 < ¢ < 2m,

the conductor's surface Z is described by

(3-2)

21



Figure 2.

A Prolate Spheroidal Conductor Parallel to
Y -« Flux ITlumination
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The dimension of the conducting spheroid is

L = 2t cosh ng
(3-3)
D = 22 sin h g
with the ratio of diameter to length
D
T tanh L (3-4)
With the ¢-independent symmetry, the general potential @ is
oo
@ = I (o8 0) [anPn(cosh 2) + B_Q_(cosh n):l (3-5)

where Pn(X) and Qn(X) are respectively Lengendre polynomials of first and sec—

ond kind, and a.s Bn are arbitrary constants.

3.2.1 The Electrostatic Field E, Caused by E
L ; -1 7 ~satg,

Imposing the boundary requirement (2-8) on (3-5), the potential @l and

electrostatic field E. caused by the parallel saturated field E are
~sa

1 t

jcom Ji cosh n,
@l(ﬂ’ﬂ ) = 5;2—'[cosh n - aI?EEEE—E;Y‘Ql(cosh n)] cos 0 (3-6)

23



cosh n,

4 , 2 . 2 1/2
a Ql(cosh no) [51nh n, + sin B]

{é'ﬂ sinh g Q]'_(cosh n cosf - g, sinf Q, (cosh 17)] (3-7)

where the Ql(g) = (§/2) in [(g + 1)/ (§ - l)] -1 — (3§2)_1as§ — oo,

That there is no net charge on n = N, associated with this E. can be

1
seen easily from either f'fl El da = 0 or the induced potential (the second
-2 ° 2 2 ,.1/2

term of (3-6)) — r as r = f(cosh p - sin” @) —oo. Also we rewrite
El as [20]

E. = —“comp e cos § sinh [1 20°h 1y & (cosh n)]

20T £ nfL-

1 0_(sinh “g + sin? 9)1/2 |77 Q) (cosh 7))

(3-8)

cosh n, Ql(cosh 17)]

-e,. sin € | cosh -
=8 [ n Q (cosh "13)

to reveal more clearly its surface charge density which is Ggig_n at ¢ = R
= : -

3.2.2 The Electrostatic Field 'EZ Caused by the Charge Deposition of fg«comp

Using (2-9) in (3-5), we obtain

- Isinh? n
(¢ = — 9 -3 - Qo(cosh n ) (3-9)

2 40a comp

24



2
-sinh
s1n ‘no en

sinh g - [sinh?' n + sinza]llz

E =

~2 4o, ’ Jcomp (3-10)

where Qo(g) = (1/2) an [‘é + 1)/ (¢ - l)] — g_l as ¢ — oo, and we have made

£ -
use of (2-12) to relate Qtotal to Jcomp by

) 2
omp (£ Sinh 707w, (3-11)

total c

= —€
Q = 5 J
a

Incidentally, (3-11) togethér with (3-9) gives the capacitance of the spheroid

4TeE R
C = S coshn) ° (3-12)
Qo (cosh 7)0)

3.2.3 The Total Electrostatic Field E and Charge Density

Superimposing El and EZ’ the total E is just

> + E | (3-13a}
E"g‘n 6~0

=
I

25



' ., 2
- h
E. = comp cos 8 sinhn [l - cos To Ql(COSh n)]-+ o T
n Ua(sinhz’n + sin2 9)1/2 Ql(COSh no) 4 51nh, n
and (3-13k)
Eg = Jcomp * sin 8 [cosh n ot %o Ql(COSh T'I)il.
g = -
Ua (Sinh2 n + sin2 9)1/2 Ql(cosh 170)
(3-13c)
The surface charge density pS(B) is
1
- i =+ 6 -C
) ! . € omp  Sinh n0{4 cos 8 [1 0]}
P (0) = €Lyl ) = —5— " 7 2 172
a (sinh™ 7 + sin 6y
(3-14)

where C0 = cosh n_* Ql(ccsh 'no)/Ql(cosh 170) < -2.

% -

The behavior of. Prg) is sketched in Figures 3 and 4. For Jcomp > 0, we have

PS(6)<0, 0§9<6N
(3-15)

Ps(ﬁ)>0, 6. < 6 < 7

26



P (B)o

Comp €

90°< On<94.8°
1
—Cosh L Q {(cosh Mo) >2

-C. =

° Q (cosh 7,)

Figure 3. Surface Charge Density
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SURFACE CURRENT K0 (@) or Hp (170,0). and VOLUME CURRENTS

PAOLO

{
-

Charge and Current Distributions on the Prolate
Spheroidal Conductor Parallel to Y- Flux,

Figure 4.
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where BN exists for all n, such that

(3-16)

(E

o .
Co ]+ T — 94.8 if no oo
o .
— 90" if ﬂo 0

Thus the charge "node'" 8 = GN lies on the prolate spheroid at 7/2 < GN

<94.8° and does not vary much with the shape of the gpheroid (see

Figures 3, 4, and 6).

3.2.4 The Surface Current Density X

From symmetry, K = Lp K(6) and obeys (2-16) which now is

(

1 T
—_ - é g-_
7 Co cos 6, 0 3] 5

a 2]
v : = . . : - Y
36 [s:.n 6 K(B)] Jcomp sin 8 - sinh n,

29



and gives

Al

(]

A
R

1 - cos B 0
4 sin 8

KO = Jogmp - 1 S10 M T 2 %

1- cos'fJ-Z c052 6 T <g <
L 4 sin 6 2
J
(3-18)

Notice that K(0) = K(w) = 0, as it should, is implied by (2-16) and (2-17).

From (3-17), the total surface current

I(6) = 2misinh "o sin 8 K(8) (3-19)

clearly has a maximum at 8 = GN where the surface charge density P(GN) =0

and the electric field g(qo, GN) = 0. This is sketched in Figures 4 and 5.

% _ -

3.2.5 The Surface Magnetic Field Eﬁno’ 8)

The Eﬁno, 9) is simply K(8) x g, = - K(9) g4 The maximum Ejﬂo, 08) does not

N
occur at GN where I(®)is maximum, but at © = GM >‘9N where 1(8)/sin & has a

maximum because of the smaller circumference there. This is also sketched i

Figures 4 and 5.
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™
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The GM is a solution of

3 3. -1
cos” O [l - COJ - cos © [2 Co] > 0

(3-20)

NS

and is very close to GN.

3.2.6 Remarks

From (3-14), we see that in the steady state there are always more saturation
field induced charges on either half of the prolate spheroid than the total

Compton current deposited net charge. Their ratio is (see Figures 3, 4, and 6):

no —_— 00

95aturation field induced, half — 33, (sphere)

= 1-¢C
o

qdeposition—total (3-21)

n—2ao
o—q:uo, (thin needle)

where the minimum is for no—* w, i.e., the limiting case of being a sphere.

Also, the peak surface current I(GN) is always larger than the total deposition

Compton current J A (see Figures 5 and 6):
comp
(6 )
N - 1. 1 5. L.
- =271 2Co)+32(1—co)]>2+4a
Jcomp w(k sin T]o) (3-22a)
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On the other hand, from its definition the total surface current I(8) is
I(0) = I,(6) + 1,(8) (3-22b)

where Il(e) > 0 is the backflow electron current caused by Es and Iz(e) < 0

at

is the forward flow electron current caused by the direct charge deposition
by Jcomp' Therefore, we can conclude from (3-22) that the peak backflow cur-

rent 11(0 =7/2) (= Il(BN)) always dominates the peak Compton deposition

current [I_{@= ﬂ/z)]E{.JcomPA/Zl by at least a factor of 5.02. In fact,

2

because BN is always near m/2, the peak I, is at least 6 times the peak I

1 2°

These results are obvious for a thin spheriod. Such a result even for a thick
(almost spherical) prolate spheroid is not so obvious, but can easily be
expected by reviewing the familiar spherical case which demands a charge
separation three times that of a parallel plate to offset an externally

applied electric field.
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3.2.7 Numerical Data

Using the typical values of

2
comp 200 Amp/meter

Oa‘~ 2 x lO_3 mho/meter
(3-23)

D = 1.5 meter

L = 10 meter

we get the results in Table 1.

Also,we obtain various normalized numerical curves in Figure 6. Figure 6
shows the normal electrical field En(e) on the spheroidal surface Z, normalized
with respect to the saturated immersing electric field Jcomp/aa’ as a function
of 6 for various D/L ratios. This E /(Jcomp/;) is also the surface charge
density normalized to the.incident charge-separatign surface charge density...

Figure 7 shows I(B)/(Jcomp A), the total surface current versus 8, normalized
to the intercepted Compton current, for various L/D ratios. Figures 8, 9,
and 10, respectively, show the null angle BN’ the peak surface electric field,

and the peak total surface current as functions of L/D ratio.

35



Table 1. Typical Numerical Results for Data in (3-23).

QUANTITY SYMBOL VALUE
-7
TOTAL SURFACE CHARGE QroTAL 1.56 x 107 COULOMB
-9
PARALLEL FIELD BUILD UP ToUILD-UP 4.43 X 1077 SEC
TIME
CONDUCTOR POTENTIAL ABOVE Vaopy -7.3 X 103 voLT
INFINITY
SATURATED PARALLEL ELECTRIC E 10° VOLT/METER
SAT
FIELD
MAXIMUM ELECTRIC FIELD EMAX(O) “2.69 x 10° VOLT/METER
ON SURFACE (EXCEEDS BREAKDOWN VOLTAGE
OF AIR AT 40 KM)
MAXIMUM SURFACE CHARGE PMAX 2.38 X 107° COULOMB/METER2
DENSITY
SURFACE CHARGE NODE Oy 90.54 DEGREES
MAXIMUM TOTAL CURRENT ON IMAX(BN) 9.06 x 10° AMP = (25.6 X
SURFACE AJCOMP)
MAXIMUM SURFACE CURRENT KMAX(GM) 1.92 X 10° AMP/METER
DENSITY (6,, ~91 DEGREES)
M o _ -

MAXIMUM SURFACE MAGNETIC H¢-MAx(9M)
INTENSITY
MAXIMUM SURFACE MAGNETIC BMAX(GM) 24.2 GAUSS

INDUCTION
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3.3 PERPENDICULAR TO Y -FLUX — A COMPARISON

Similar to Section 3.2, but with y-flux incident along positive X-directionm,

we find

-J. 2 [Qo(COSh n - Q%q]
Com ] ) sinh™ 7
Qi = ———a——R sinhn sin@ cos¢ {1 - cosh ;i; (3-24)
a [Q (cosh ) - ———*—“—]
o} ) L .2
sinh™ n
o
Jcomp £ cosh qo
QE = 403 sinh n, " Qo(cosh n. (3-25)

Here we want to compare the effect of the parallel ESat to that of the

charge depositing Jcomp by examining the ratio

qparallel induced,
half spheroid _ 2
qtotal coshnp +1
cosh n cosh - l-sinh2 n —c
o To 7 2 Mo coshnq -11
’ S . -—
Jyn. — @
o _. (3-26)
25 ng 0

as was done in (3-21) for the parallel induced case. From (3-26) and (3-21),
we conclude that for the prolate spheriodal conductor of any shape and orienta-
tion, the backflow current caused by the parallel charge-separation electric

field always dominates that caused by direct charge deposition.

41



SECTION 4

REMARKS AND SUMMARY

4.1 EXTENSION TO TIME-DEPENDENT PROBLEM

Conceptually, the time-dependent problem is quite similar to the steady-
state one. First, without the conductor's presence at all, we have

J &, t), 0(X, t), and E-(X, t) and B"(X, t) (= 0 if symmetr
~driving St s g oivkd E n = 1ot n =2 ik y y

dictates so) all produced by the Y-rays in the environment (air and other

surrounding materials). Second, the presence of the conductor introduces

sc sc sc
= —+ -
B - 5% 4k, (4-12)
sc sc sc _
g =48 +E (4-1b)
R, (X, t) " U (X - X ) (4-1c)
~ © ~driving ~’ ~ ~shadow & body’.

sc ., . .
Here, the J =~ is the geometrical shadow current that is caused by the

Y-thickness of the conductor and the step funct-ion U (g“— zSB) =1, 0 if

sC SC

XeV, VS + vV ,respectively. The E. and 'EZ are the fields caused by

body 2
sSC

J°7, without any boundary condition imposed, in the medium with ik, ¢, 0 (X, t).

SC

1 and H S are fields that satisfy the homogeneous field equations

E
Then the E 1

in the volume V + V_ and the inhomogeneous boundary condition on I such that

S

n X E =-nX (E"+ E,°°) on = (4-2)
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and radiation condition at Z%o(it therefore must have a singularity in Vb d ).
oay

i that if - F., = - i i
Notice that if a plane Y-flux v Fy (c z/c) is considered, the Jdriving(i't)’
sc i i
J7(X, ), E}n X, t), 8 n (X, t) can be easily obtained, with the
o{&, t) fully taken into account for the E}n (X, t). But the,gzsc, caused by

the simple J°C, is difficult to obtain analytically if the full o(X, t)
is used for the medium. Even more difficult to get analytically is therglsc,

with the geometrical shape of Z further complicating the process.

Thus for time-dependent problems, we need special analytical techmniques and
justified approximations to simplify and/or decouple the problem. But if we
are only interested in quantities on the conductor's surface Z, we are askihg
for considerably less than the whole field, and some simplification may be used.
A time-dependent solution for the prolate spheroid will be presented in a

separate report.

4.2 SUMMARY

In this work, we have formulated and clearly analyzed the EMP source region

problem for a conductor immersed there and in steady State.  We analytically

golved for the case of a prolate spheriodal conductor, found that the backflow of
field-induced fields and currents are always greater than those effects of the direct
Compton charge deposition, and plotted the results. The steady analysis is

directly applicable to the case of long Y—duration, small conductor, and slowiy
varying air conductivity. It also provides a clear way of analyzing the time-
dependent problem and probably gives the upper limit when the incident field is
rising for those frequencies whose skin depth in air is much larger than the

conductor's dimensions.
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fd(a.t) — 3t =f
)

3
1+e 2 ! 1+X2
ind 1 -1 1
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The influence of the conductor's field om-the driving Compton current

is completely ignored in this work.

When B = 0, assuming an average collision time T gives

and
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Now when B # 0, still assuming the same 1 gives

DG .
my
T =eE+tyxB)
which yields (2-13) by solving v in terms of the fields.
17. To depict it, one can think:
= +
/[T for the volume current.
18. See any vector analysis table on curvilipear coordinates, e.g., Ref. 19

19. P. Moon and D.E. Spencer, Field Theory Handbook, Springer Verlag (1961).

20. Notice that
1

e = [e sinh n cos 6 - e, cosh n sin e] .
~z ~n ~9 2 2
/sinh n + sin 8
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