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SUMMARY

In this report we have
(1) changed the numerical code ONDINE into a numerical code RONDINE

to compute the EMP fields in a source region surrounding a
conducting wire whose axis is parallel to the y-ray flux, with
the average self-consistency deflection of the Compton current
shown to be an important effect and taken into account;

(2) analyzed the circular cylindrical source region problem and
obtained formal solutions and simple approximate formulas for
the conducting wire in a source region;

(3) obtained numerical results for a typical conducting wire problem
from RONDINE and from the simple analytical formulas and shown
their agreement when the self-consistency correction is ignored;

(4) and spelled out the very minor differences between RONDINE and
the coaxial source region case, and between the RONDINE and the
underground test EMP prediction.

These results apply when a cylindrical structure is immersed in the
source region and has its axis parallel to the y-flux of the nuclear
burst. Such analysis also applies to any structure of revolution when
the axis of revolution is parallel to the incident source flux and the
skin depth of the environment is much smaller than the axial length of
the structure. One interesting example of such a situation is a missile
flying away or toward an explosion in the source region. RONDINE is
applicable for the‘first one-tenth of a millisecond when the conductivity
is high and skin depth small. For later times,qz steady-state [8] T
analysis sets an upper limit to the charge and current induced on the
missile surface. For very early times with very low conductivity
(t - T, < 10_9
field Ezo(r) by the missile. But then the incident field and the Compton

sec), the problem is a scattering of the longitudinal

current are too small to cause any current or field compared with later



peak values. Other problems for which these results are applicable
include the EM coupling to power and communication lines in the source

region, underground EMP test geometries having cylindrical symmetry.
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SECTION 1
INTRODUCTION

It has long been recognized that the electromagnetic (EM) source
terms in the region close to a nuclear explosion consist of Compton and
photoelectric currents and collision-induced conductivity [1]. These
source terms create a pulse of EM field (EMP) both in the region itself
and outside the source region [2]. For an object outside the source
region, the EMP effect is produced through free-field coupling [3]. For
an object inside the region, the EMP effect should be obtained by solving
the boundary value problem using the current and the conductivity directly
as the driving source.

In this work, we determined the EMP effect on a circular cylindrical
structure oriented parallel to the source fluxes in the source region.
This analysis applies for the following cases: (1) a conducting wire
immersed in the source region; (2) a wire above conducting ground with
a height greater than the skin depth in the enviromment such that the
ground can approximately be considered coaxially wrapped around the wire;
and (3) any object of revolution when the environment's skin depth is
much smaller than the axial length of the object, when in the region of
interest the photon flux has negligible attenuation and the surrounding
medium does not change along the axis.

In Section 2, we first obtain a numerical code RONDINE for the
circular cylindrical source region problem by slightly modifying an
established and tested one-spatial-dimensional planar code ONDINE [4].
RONDINE is applicable to any circular cyllndrlcally—stratlfled dr1v1ng
current source, air conductivity, and geometry, subject only to the
limitation that the spatial variation along the cylindrical z-—axis and
the temporal variation t for the whole problem is through the dependence

of

t - z/c (1-1)

-
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where ¢ is the velocity of light in the soruce region. Physically, this
ignores the attenuation along the z-axis of the y-flux and x-rays, and,
therefore, such attenuation of the driving current and the ionization
conductivity. Thus, all points of different z are identical except that
they experience a time-shifted driving source and EM responses. Such an
approximation holds when the ionization conductivity o of the environment
is high enough to shield the EM effects at two points from each other if

they are spaced 3 ) apart, i.e., when

A>> 8 (1-2)

Here A = mean free path of the photons giving rise to the EMP source

terms and the skin depth § is

——JE— if o >> we
Ywpo
§ = (1-3)
—L if o << we
u/e o

In the above, w is the dominant angular frequency of the driving
current, and p and € are, respectively, the magnetic permeability and
the dielectric constant of the source region.

Next, we use RONDINE to compute the typical, case of the wire in a
source.region, without and with self-field correction to the driving
current, and show that self-field effects can substantially reduce the
current induced in the wire.

Then, in Section 3, we analytically solve the cylindrical wire
problem and the cylindrical coaxial wire problem. The analytical expres-
sions can be reduced to simple formulas under various approximations.
Such formulas for a wire are then evaluated and compared with the RONDINE

results in Section 2. These show very good agreement.



Finally, we briefly discuss the application of RONDINE to an

underground test and conclude with a short summary.



SECTION 2
THE NUMERICAL CODE RONDINE

2.1 The Maxwell equations.
Figure 1 shows a perfectly conducting cylinder of radius R in a

source region with its z—-axis along the direction of the y-ray (and/or
x-ray) propagation of a nuclear explosion. Under the approximations
discussed for (1-1) to (1-3), the driving (Compton and/or photoelectric)
current is
= (2-1)
gdriving %sz(T’p) + ngp(T’p)
and the induced air conductivity is og(t,p). Notice that the Jp(r,p) =0
if we ignore the influence of the wire's fields on the driving current.
Now the ¢—symmetry makes E¢ = 0. Therefore, the only non—vanishing

fields are Ep(T,p), EZ(T,p) and H¢(T,p), which obey the Maxwell equations:

H
12 B g =429 (2-2)
¢ 9T Ep + ap Ez LT
E
1 934 2 ip -
c 37 By 0Ep+eaT+Jp (2-3)
E
1 93 _ 9z , -
T (pH¢) = o, + e +J, (2-4)
: _ -~ | N
These imply the "equation for H":
9J aJ E
9 1 o 90 +_p§g (2-5)

1 o ? _ =z 1 _ o 30
3p [p 3p (pH¢)] T WO H¢ Y to T T E, 3p ¢ ot

10



/t:(‘fu p)
-_-‘//H\::—" J (1, p)
O =

A
J (1, 0} //—\\ £, (xs )
AL A A

Ep(T’ 9)

T —-o

C

H¢(t, p)

Figure 1. The cylindrical geometry of a conducting wire in
tht_a source region for RONDINE, < zit - z/c.
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The boundary conditions for E, are

E (T,R) = 0, E (1,0%=) * Ezo(T) (2-6)
where
) T (x)
o (T ‘o (T "
0 v 1 T_o
_J: € a Jzo(T ) JE € a
E (1) 2 -¢e dt’ e
Zo 0 €
(2-7)

is the electric field, OO(T) is the conductivity, and Jzo(r) is the
driving current without the presence of the wire. The ¢ and g differ
from 9 and Jzo in that they are modified by the fields caused by the
presence of the wire. This effect is treated in RONDINE by a perturba-
tion or normalization at each time step. Also, from (2-6), the boundary

conditions for H, are

¢

13 - 1 3 -
(p 30 (0H¢))D=R Jz(TsR)s (p 3 (pH¢))p+m 0 (2-8)

2.2 The finite difference scheme.

To make use of ONDINE [4], the finite difference scheme used in this

report for the fields is precisely the same as that used in Reference 4.
Namely, it is an implicit 1/2, 1/2 scheme in tim® steps to obtain a set
of tridiagonal equations for H¢ [5]. This set of equations is inverted

with the help of the boundary conditions (2-8), where a p = p_ satisfying

p, >> minimum [chax’ maximum (§,R)] (2-9)

is used to replace the p + « theoretical outer boundary such that the

answer is not sensitive to any particular choice of p_. The tméx is the

12



maximum time elapse within which we are interested in the numerical
integration. The exact derivation of the finite difference equations is
almost the same as that in ONDINE. (We refer interested readers to
Reference 4 for such details.)

Now we change the notations in (2-2) through (2-4) and (2-8) into

the same notations that were used in ONDINE:

(ps0,2) > (z,-Y, X)

Ep - ez

Ez -+ e.x
H¢ > -hY
Jp > iy
Jz > jx (2-10)

Then setting the incident angle 6 = 0 in ONDINE makes the equations
for RONDINE the same as those for ONDINE, except the ones caused by (2-4)
and (2-8).

To obtain these changes, we first realized from analysis (see Sec-—

tion 3) that H, will behave approximately as ~ 1/p for p near the wire.

But from (2—5)? this results in a near cancellation among the large terms
of the spatial operator in the left-hand side of (2-5). This then demands
small time steps near the wire to avoid possible oscillations in the
results, and severely limits the maximum time in which we can carry out
the integration without using a set of elaborate épatially dependent
time-grid sizes. One way to overcome this probiﬁm is to explicitly™

extract the 1/p dependence and solve for

n
H¢ = pH¢ (2-11)

n
instead of Hy, and only in the output print out H¢/p = H¢. Incidentally,

solving for H, instead of H, tremendously simplifies the differences

b ¢

13



between the codes RONDINE and ONDINE into virtually trivial omes. The
resulting changes are replacing the lowest grid boundary condition at
p.35 of ONDINE by

i@ (a7, , ER S EE (2-12)

+x
|

and replacing the coefficients A,, Bl’ Cl’ C., in ONDINE by the following
- 4

. 2
A3 7 "W 7Y + 2GHD)
-KAT, 1 2
By > -(-e ") " Trar " Z@) + 2D
' -KAT, . c . 2
¢, >~(-e ") " Tiaz  Z() + 2(HD)

-KAT, . c . 2
Cy > +(1-e ) TRz Z(j) + Z2(3+1) (2-13)

Here K = o/e, and €° = e/eo and p~ = u/uo relative to vacuum.
Further, the consistent use of e, =0 at the lowest grid should be im-
posed, instead of calculating it from the difference formula which
involves discreetness and round-off errors.

2.3 Typical results for a conducting wire.

Figures 2 and 4 plot the numerical results frOm ‘RONDINE (see
Appendix B) for a typical wire with a radius R = 1 cm 1n the source
region at a distance of 300 meters from a 103 kiloton explosion.

Figure 2 shows the early rising time behavior. For comparison, the
curve from the first-order theoretical formula is also shown (see Sec-
tion 3 for an explanation). Figures 3 and 4 continue the later time
behaviors of Figure 2. Notice that the o(t,p) 1s field dependent and is

obtained from the air chemistry subroutine COND [4].

14
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Early time behavior Jz(t), o(x,R) and B¢(1,R)
without self-consistency from RONDINE.
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Notice that the late time B¢ or wire current increase is caused by
the slow decay of Jz(contributed by capture gamma rays from thermal
neutrons) at v 3 x 10“5 sec, the decreasing of o, and the fact that any
current on the wire after % = 0 decays extremely slowly (see Section 3.3)
for explanation). If we truncate the driving current JZ(T >4 x 10_5 sec)
= 0, then the backflow current on the wire

6 R (meter) * B (weber/meterz) (2-14)

B¢
I=2mR * —=5x10
H )

3 amp producing v 4 weber/meter2 on the l-cm

can reach a peak of 2 x 10
radius wire at about T v 4 x 10_5 sec,

2.4 Lorentz force turning of the Compton electrons and typical results.

Now let us examine the effects of the wire's field on the Compton
driving current, the effects we have ignored up to now.

First, the Ep deflects the Compton electrons toward the wire when
> 0 and away from it when < 0. To estimate such deflections, we examine
an electron moving with BO in the z-direction (see Figure 1). As a

result of Ep, the ratio of p-displacement to z-displacement in its life-

time is
Ao eEle - Bg t
K; it 2m V
o
~ e 5 = 0.98 x 10 -—2‘-‘— R, (meter) -
R 2m V B
£ v 2 o )
v
° 24 (volt/meter) (2-15)

Thus, for an electron of kinetic energy ~ 1 MeV and range Re N

1.5 meter in surface atmosphere, the deflection ratio

18



J
L0 o Lo, 0.4 x 10-6 E (volt/meter) (2-16)
JE Az o)

CZ

4

is very small for a typical Ep : 107 volt/meter even gear theEwire.

Thus, we neglect the deflection caused by Ep. Here Jc and ch are,

respectively, the E-field deflected Compton currents in p and z directions.
As to the magnetic deflection caused by B¢, we examine the averaged

path distortion of a Compton electron in B¢. If we assume that the

primary Compton electrons are making inelastic Coulomb collisions along

their paths in the z-direction when there is no B ¢-def1ection according

to
-z
Re
Probability {reaching distance > 2z} = e (2-17)
and that the no-deflection Jzo Compton current is obtained from
o e—-z/Re
Jzo N Az0 n average {z-distance travelled} = o z =g dz = Re, (2-18)
then with B¢ present we have the corrected primary current
, @ —S/R R
I = fds x ®r st r_e\
zZ Az _ o Re ° o _ o}
—— == = = (2-19a)
Y20 B2 - Re - s (Re)z T
' o) 1+ —
r
o]
® e _S/Re Re
Jp . fdsi- * (r -r_ cos E—) T
w—~do __Y% e ° © s _ \o (2-19b)
z = =
s Re R \2
o 1+-~J§
r
o

19



Here ro is the Larmour radius of the electren

mVO
ro = —; (2-20)
eB¢ V1 -~ Bo

and we have used the simple assumption that the electron is on a circular
orbit before it is "removed" from the primary stream by a probabilistic

collision. Again, for an electron with ~ 1 MeV and R.e v 1.5 meters, the

factor
Re 3 "L- 8, 2
i 0.587 + 10~ - —s . Re(meter) . B¢(weber/meter ) (2-21)
o o
is v 3,11 x 102 B,. For a typical wire of 1 ¢m, the peak B, near the

¢

wire is v 1 to 10 weber/meterz, and the Re/r0 which is ~ 103 to 103 is
not negligible., We thus include the B¢—correction to the Compton current
in RONDINE by using (2-19).

Before showing the B¢—corrected RONDINE results, we must point out
that the probabilistic distribution (2-17) is very crude. It may not
accurately represent the electron penetration in matter, especially near
the beginning of small z/Re, as some readers may have recognized. However,
we are only interested in the average displacement an electron travels in

its lifetime, with and without B¢—deflection. Since the correct R_ is

used in the collisional loss to give a sénsible'?;o by the distance-="
averaging process (2-18), it must also give a relatively sensible B¢—
correction to the current by a similar averaging process (2-19). In fact,

if we use a more realistic distribution

Probability {reach > z} = e (2-22)

20



the resulting correction

2

T - (2-23)

does not differ too much from (2-19) if the R.e/ro is not much greater

than one when the corrected B, is used for the ro.

¢

The same typical problem for a wire in Section 2.3 is computed
again by RONDINE, but with the B¢—correction (2-19) included. The
results are plotted in Figures 5, 6, and 7. The current on the wire and
H¢ field are smaller, as they should be, because from (2-3) the deflected
Jp(< 0, electrons turning away from the wire) reduces the effect of the
oEp(> 0 when building up) and reduces the growth of H¢. The B¢ has a
weak relative peak of ~ 0.35 weber/meter2 on the wire at T ~ 8.1 x ].0_8 sec,
and clearly reaches its peak (because of the * fluctuation of Ep) earlier
than the without B, -correction case with a peak B¢ v 3.0 x 10_1 at
v 2.0 x 1077

by the slow diminishing of J, combined with the decay of ¢ (see Section

sec. Again, the late growth (tr > 3 x 10-5) of B¢ is caused
N

3.3). The peak B corresponds to I v 1.5 x 104 ampere on the wire.
Thus, the effect of turning reduces the wire currents by about an order
of magnitude.

Finally, a remark on when RONDINE predictions are valid. It is
correct for and up to times such that (2-9) hold$s that approximations
(1-1) and (1-2) are valid, that the height of the wire above the ground
is greater than the skin depth such as to justify the cylindrical
structure, and that one has confidence in his input driving current and
conductivity. Further, possible effects of electric breakdown of the
air or insulation surrounding the wire are not included in the present

study. Such breakdown may occur at extremely early times for thin wires,

21
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anal

and would probably give a larger effective radius of the wire than its

real size and reduce the fields and backflow current on the wire,
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SECTION 3
ANALYTICAL RESULTS AND COMPARISON FOR A CONDUCTING WIRE

In this section we solve analytically the wire problem in a source
region, evaluate the simple formulas so obtained, and compare them with
the previous numerical results from RONDINE. The B¢—correction is ignored

in the analysis.

3.1 Simple approximations based on intuition.

We first examine the wire problem intuitively and obtain some simple
and crude formulas--to be justified later more carefully. Consider
Figure 1. The conductivity ¢ makes an effective depth ~ A around the
wire such that most of the wire's EM effects are confined within this A.

Physically, this A is approximately the skin depth (1-3). If we simply

assume that the Ez goes from O at p'= R linearly to Ezo v -JZ(T)/U at

p >R+ A, then (2-4) with displacement current ignored gives

3 3 5 R+ A
_17z(0) o _ p (RHD) _
H¢(T,p) =52 [—5 2 ] » R<p <R+A (3-1)

p

where the JZ(T) " Jz(r,p a, R) is assumed to be approximately constant in

p. Thus, for R >> A we have

-JZ(T)A

5 (3-2)

H¢(T,R) =

= -
This gives an intuitively clear interpretation that approximately
half the Compton current within A flows back through the air conductivity
o, and approximately half flows back on the wire.
For R << A, from (3-1) the H¢(T,p) near the wire varies as 1/p.
Thus, similarly from (2-4), we have for p near R

E,vinp " 2n(p/R)/n(R+4) /R (3-3a)

26



and therefore

RGN JZ(T)zn(p/(RM))/ zn(R/ <R+A)) = ) (3-3b)

Thus, for R << A

JZ(T)Az
H¢(T’R) = T ZR n(A/R) (3-4)

Thus, the intuitively clear backflow within A onto the wire is
reduced by the factor [R.n(A/R)]_l * AJ(2R).

The above results, (3-1) to (3-4), hold only when ¢ >> e3/37, with
A being approximately the skin depth of the main frequency component of
the driving current Jz(T). Also, the function f(p) in (3-3b) approaches
[p-(R+A)]/A as R >> A and indeed becomes linear and makes (3-1) self-
consistent.

To check the detailed analysis, we can also use another simple

formula. If we assume

Ii

9
(g EZ(T,D)) K(t) E (™ = (3-5)

p=R

with K(t) ~ A-l for R >> A and K(t) ~ (R ln(A/R))-l for R << A, then (2-1)

and (2-2) give
% . PO,

e T

uH¢(1,R) =<E?;S-K(T) Ezo(r) +J£'K(T) Ezo(r)dr (3-6)

Equation (3-6) reproduces (3-2) and (3-4) if either of

od (1) > ¢ % 3 (0 (3-7a)
o2 s> ¢ §—$ (3-7b)

27



is true. Equation (3-6) only uses the assumption that the field be linear,
and uses the instantaneous skin depth as the scale. It should be more
accurate than the fully instantaneous results (3-2) or (3-4) when the
"main frequency'" of Jz(%) is changing with time. This is seen in the
numerical comparison in Figure 2.

3.2 The constant conductivity.
If the conductivity does not vary much in the time period considered

and does not vary radially, we can treat ¢ = const. and solve the wire
problem by a Laplace transform. For such case, (2-5) for H¢ becomes
2 [ 1 s ) 1 3 |
0 ( B—’——-p ¢])- Wo —r = 3o I, (1,0) NPT J (t,p) = S(t,p) (3-8)

Notice that this is a heat diffusion equation with a dissipation or

loss term H¢/p proportional to the "temperature' H¢ and the (radial

dlstance) Now the Green's function for (3-8) in the Laplace domain s
satisfies
-
d |1d o 0y | - 12 o ary = =80 -
P [p o PG(s3p,p )] k™ G(s;p,p7) = 0 (3-9a)
ﬁ l.%_.(pg) =0 _ (3-9b)
p dp =R
G(s3psp") 55 0 : (3-9¢)
\
% _ e

where k2 pos. By a straightforward construction, the Green's function

G(s;p,p”) 1is

I (kR)
G(s;p,p”) = K (ko) [ I, (ke ) + TRy K R K, (ko) (3-10)

28



L

where P, and p. are, respectively, the larger and smaller of the two
radii p and p”, and K, I are the modified Bessel functions.

Thus, the Laplace transformed H¢(s,p) in the Laplace domain s is

=]

ﬁ¢(s,p) = —‘/ﬁ dp“p” §(s,p‘) G(s;p,p”7) — RG(s3p,p~) 3z(s,p) (3-11)
R

If the JZ(T,p) is uniform in o and the Jp(T,p) due to deflection 1is
ignored, then S = 0. In such case the only source of H¢ is caused by

the boundary condition-~the last term in (3-11):

K, (ko)

H¢(S,D) = ii;?ﬂﬁf . JZ(S,R) (3-12)

As a simple case, consider a p-independent current

JZ(T) = Jzo e (3-13)
Then
N K, (kp) 1
Bo(5:0) = Gy * a0 " 5w (3-14)
and the ﬁ¢(s,p) in time domain is _ < _ -~
| (Vuoa p)
H¢(T,p) =-3 & Kl + J (3-15)

ZOo f——. — Zo
ucaKo(/hoaR) Branch cut

where the branch cut integral is given in Appendix B.

The limiting expression on the wire for Rvuca >> 1 is

-J e(!'l.'
Hy(T,R) = —29 (3-16)

oo
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and for RYuco << 1 is

oT
J e
zZ0

R(uoa) &n (RYuoa)

H¢ (.T sR) = (3“17)

These check with the intuitilvely obtained results (3 2) and (3-4),
respectively, if we use A = 2//uoa = /2§ there.

For arbitrary J (t,p) and J (t,p), the Laplace transformed J (s,p)
and J (s,p) must be found and 1nserted into (3~11). Then the task is to
find the inverse transform of (3-11). Unless J is extremely simple, such
an inverse transform is very difficult to evaluate analytically. To
simplify the integration procedure for numerical work (3-15) at the sur-

face of the wire can be rewritten as

L S

o0

T

-4 e R uo ( )
H (T,R) = J/ndu J[ J R,T”
$ anuo o uHo(l)(u) Ho(z)(U) o 2

Tu (3-18)

2
eR Wo o, gqr-

where Ho(l), Ho(z) are, respectively, Hankel functions of the first and

second kind with zero order [5]. 1f JZ(T) is simple enough for the t7-
integration to be carried out, it leaves only alg?e-dimensional integra-
tion over u to be done numerically. For examplé, a constant JZ(T) =

JZOU(t) where U(t) is a step function, gives

(l— )du
H ,RY = J 3-19
___—_—E__+ -21J
‘T >> R” wo
uRoln
Ruo
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which increases without limit as it should when T + =. As another ex-

ample, if JZ(T) only lasts from 0 < T < At, then for T > At

-Tu o 2
2 u

-4 o o R uo At Rzpc
B, (t,R) = du dt” e J (t7) (3-20)
¢ anuduL; uHo(l)(u)Ho(z)(u) J/; 2

which goes to zero as T + « as

2
® Ruoin ; (s]
Ruo

T >> AT, Rzuc

H, (1,R)— dt” e’ J (%) (3-21)

This shows that the decaying of H¢ after the elapse of JZ(T) is
extremely slow. The test case of a constant JZ(T) with short duration
AT and a constant 0 is used to run RONDINE as a check. The RONDINE
numerical B¢ value shows a remarkable agreement, as predicted by (3-20)
and (3-21). This test case is plotted in Figure 8.

Also, it is important to notice explicitly- that there are two dif-
ferent effects caused by a time varying conductivity o(t) on the B¢ or
the backflow current I on the wire. First, a slowly decreasing (increasing)
) has passed makes~the

S
. early
rate of decay of that part of B¢ caused by that Jz(r

o(t) long after a source driving current'Jz(T

) become faster
early

(slower) logarithmically, according to (3-21) and the following (3-24).

Second, a smaller (larger) o(t) while the source driving current

I Cuhile
ally stronger (weaker) B¢(T

) is producing its magnetic field makes an inversely proportiom-

) produced by that JZ(T )}, according

while while
to (3~-19). Thus, by linear superposition, a late-time sustained source
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T T ™1 1 — ! T T
For t - g4 o R0 = 1.2 x 10712
4 4
107 f(3-19) =>8,~ 28 ‘T‘(:’T -2 "‘T(j - ! —fo
- Roln °) In 9 -
- Ezuo 1.26 x }0—12 .
i PR ’
—~ / For ¢ - 1, >> A1, . -
< 2A 6 -
: = , (3-21) :>B¢~——-—:_— = x 10 4 4.
2 / Ro'ln( AR g
; ! ‘ R%uo / 1.26 x 107'¢/ | |
S | THIS CURVE OBTAINED FROM RONDINE IS ALSO GIVEN =
| BY THE ABOVE FORMULA (3-19) EXCEPT THE NEGLIGIBLE kS
| 1 scarwing wwen ¢ - ¢ ¢ 10712 sEC
107 fp——at 0 1
= ™~ J_(7) _
i z OBTAINED FROM RONDINE THIS CURVE INDEED ]
- BECOMES THE ONE GIVEN BY THE ABOVE -
1 FORMULA (3-21) WHEN v - ©  >> &% -
H NOTICE THE EXTREMELY SLOW DECAY OF 4
1 B, (THE WIRE CURRENT) AFTER J, = 0. 1
|
4 N
|
! 10
g X -
1078 - : : 107
ALL UNITSTIN MKS SYSTEM + -
x, =-3% 1078 sec .
ar = 3 x 1078 SEC
R = 1072 METER
{ | { 1 { { L ! | I '
~20 0 20 20 60 80 100

Figure 8.

RETARDED TIME, v {nano - seconds)

Comparison o

the test problem.
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current J (1), combined with a decreasing late-time o(T), can produce a
La

A ' early)
and makes the total B, increase. This explains the late-time B¢ increases

¢

of RONDINE output nmoted in the previous section as being caused by Jz(r)

larger B to offset the faster decay of the B left by early Jz(r

and o(t) at late times| > 3 x 10_5 sec ) [7].

3.3 Large and slowly changing conductivity o(t).

If the conductivity o(t) is time dependent, but is large and changes

slowly, the equation for H, reduces to the diffusion equation, with an

b

equivalent "sink loss" term. There are two physical situations that

satisfy the '"largeness" and "slowness" of o(t1):

o2 >> lo“e|, o* = do/dr. (3-22a)
or
(3-22b)

The first one is satisfied when the fractional change of the con-
ductivity is small during the relaxation time of that conductivity, and
the second is satisfied when the driving current is changing much faster

than the conductivity. The source region problem satisfies (3-22a) all

the time.
Under the condition (3-22a), (2-5) becomes
J (1,p)
_2]1_3 _ 8, .3 a(t) 3 |{’p _
9p [p 3p (pH¢(T:p))} UU(T) 97T H¢ = 3p JZ(T’p) + e 31 { O'(T) ](3 23)
- i ) - - - - -

The condition (3-22b) yields the same equation except that the source
(3-8) replaces the right-hand source term in (3-23). The solution for
(3-23) can be easily obtained similar to the constant ¢ case, except that

we first change the time variable

_dr ot (3-24)
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where Oy is a convenient constant conductivity in the problem for the
normalization purpose. Then in terms of the new independent variable

(T,p), (3~23) becomes
3 f1 3 3 .. _
50 (p %0 pH¢) WO o H(15 = 5;(Tsp) (3-25)

and can be solved exactly as for the constant ¢ case in Section 3.2.
Notice that (3-24) simplifies (3-23) into (3-25) only when ¢ = o(t) =
o(t-z) but is uniform in p.

As a simple example, consider a conductivity

o(t) = g, eBT (3-26)

with its accompanying time variable change

_BT
T=eB,-m<T<w,—°°<T<O (3-27)

and 2 simple rising source current

5 _
J(r) =J et = —2— = (D) (3-28)
2 " (pn®/®

Notice, of course, this includes the case That o(t) and J (1) Tise
with the same pace, i.e., the a = B case. Now Equations (3-13) to (3-17)
can be used immediately, except with the replacement o - o, and o > aeq

A rough estimate for the aeq is obtained by using the instantaneous deriv-

ative of J(T)

3 - e -
35 (0 = I(D) g7 (3-29)
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which gives

@ o 4B _
eqo =BT ae (3-30)

o

Using this o, and 9 is exactly substituting the instantaneous o(t)

qo
into the results for the case of constant ¢. The result so obtained for
|H¢[ is larger than the actual one, because the instantaneous aeqo is too
high. A better approximation is achieved by averaging down the value of

deq for Tt > 0 by

T
w1 [ I et
eq T + = -BT! e -1 (3-31)
B
-8
The aeql and the g, can be used in (3-13) to (3-17) under the con-
ditions
Oo << Be (small initial 00) (3-32a)
Bt ¥< 1 (non-early time) (3-32b)
g(t)>> ae (large conductivity) . (3-32¢)

where o, = o(t = 0) is chosen at the earliest time that both o(t) and J(1)
start behaving as .(3-26) and (3-28), respectivelygand satisfy (3-32)... .
3.4 Comparison with RONDINE.

Using (3-17) and (3-31) for the rising period of the RONDINE current
and conductivity, the B¢ obtained by this simple theoretical formula is

plotted in Figure 2 in the time duration when it is applicable. It shows
very good agreement with the RONDINE computed B¢. At the time (3-32) does
not hold, we continue the curve by formula (3-6), using 1/t for the fre-

quency in the skin depth and neglecting the first term at its right-hand side.
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Now the rising period behavior and the late-time behavior of RONDINE
show agreement with analytical predictions. Evidently, it is a valid

numerical code for cylindrical source region problems.

36



SECTION 4
OTHER CIRCULAR CYLINDRICAL GEOMETRY

4.1 Coaxial region,
To account for the ground's effect roughly when the wire is many

skin depths above it, and for future references, we include here the
solution for a source region between two coaxial conductors at cylindrical
radius p = R and p = Rout’ and with a constant conductivity. The Green's

function, instead of the (3~10) for a bare wire, becomes

Ko(kRout) Io(kR)
L oko) TR T RGe )| [ Tike) + g qry K ke
L > 0 out o
G(SsDQQ’) = )
I (kR) K (kR_ ) (4-1)
1 0 o) out

Io(kRout) Ko(kR)

in the Laplace domain s, where k = Yuos as before.

If the driving current JZ(T) is independent of p, then instead of

K (kR )
o] ocut -~
_[K oy L (k-o)] 3 (s)

(3-12), we have

ltko) + Io.(kRout)
I (kR) K (kR )
k K (kR) 1- [o] [e] out }
o { 10(1_<R0ut) K‘g(kR)

A
H¢(s,p) =

(4-2)

For the code RONDINE, the only difference the coaxial region makes
is to replace the boundary condition B. 7 at p. 35 of ONDINE for p = p

(§ = J for the grid number) by

. ) CZ(3) +2(J-1)
Fii -~ Jx(J'l) AZJ—l,J 2 (4-3)

HJ =
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as a result of replacing the second of Equation (2-8) by

(% e pH¢('c,o)) - Jz(r,Rout) 4-3")

= AY
P Rou

4.2 Underground test EMP predictionm.

For an underground test, the EMP in a circular cylindrical air
conduit surrounded by coaxial concrete layers and parallel to the incident
y-flux can be obtained by RONDINE. The only change needed is to replace
(2-12) at the wire by

F, =0 (4-4)

at the center, and use (4-3) at the outer conducting enclosure that
encloses the concrete. Also, of course, the driving Compton current is

now in the center air conduit only.
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APPENDIX A
RONDINE GRID SIZES

Concerning the increment grid sizes, we use an exponentially increas-
ing grid for both AT and AZ to take into account the fast change of the
fields in the early times and near the wire. The scheme we used for Z is

G-Dny

Z(j) =R + (AZ)0 (10 1) (A-1)

=1, 2, vee, (Nair + 1) Nair = number of layers in the air

where the scale factor Mz is determined by the farthest distance p_ of

Equation (2-9) such that

N M
b, = R+ (42), - (10 aiz/ Z)- 1 (4-2)

which gives

Nair
M_ = (A-3)

Z P - R
log10 -—(EETE + -1

This increment scheme yields a successive ﬂfid size ratio

Az _ ) P=-Rr| 1 (A-4)
AZ(5-1) (AZ)0 Nair

that is a constant greater than or equal to 1, and controls the first grid

size for j =1 to j = 2 to be
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AZ(1)

1
poo-R N .
(AZ)O [(l + —(A—Z")—o) air - ].]

P—R
In (1 + @ )0)

N_.
air

PR ) (A-5)

(AZ)O if Nair >> 1ln (l + _(AZ)O

The advantage of this scheme is that we can first fix the p_ where
the integration is desired to be carried to, then we can choose any "basic"
size (AZ)0 and number of grid Nair and always have the integration carried
to the fixed p_. Further, the basic size (AZ)o controls the monotonically
increasing grid size from being almost uniform to being highly non-uniform,
as (A~4) clearly shows.

The time increment is treated similarly. We use

n-1
T(n) = T+ (aT) | 10 -1 (A-6)
n =1, «os, (nsteps + 1)
where n is the total number of time steps and MT is the scale factor
steps
given by
. ) — e
4]
MT = steps (A-7)

Tmax - To
logl0 ——-———(AT)O + 1)
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APPENDIX B
INTEGRAL (3-15)

The branch cut integral in (3-15), with sl/2 = rllzeielz, T< O <

along the negative real axis, integrated on the path shown in the sketch

below has the value

f i foo -TT 1 Hl(l) (/uoTo) H1(2) (:/uorp)-l
= 5= dr e —— -
Branch cut 2 Jo (e + @)fuor Ho(l)(/iEER) HO(Z)(/;E;R{I

(B-1)
\
S-plane
N
.
\/
. ) < .
On the wire surface p = R, then
I = f = —-%— j- ul 1
Branch cut Ror Ho(l) (Yuor R) H(()Z) (YUoT R)
onop =R
2
— X
= _% f dx
x(x% + R? uoo) H, L (x) B, (2)( ) (B-2)
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Now the H (1)(x) Ho(z)(x) = Joz(x) + Yoz(x) a [ﬂ.n(x)]2 as x + 0 and

0

~v 2/(mx) as x >> 1 can be used to approximate (B-2). Thus, we can

approximate I by

I

2
2 X
4R fme RO ax d ,__-em [1 - erf (am)] (8-3)
212 J x(x® + RPuoa) Hoe
o]

Thus, for RVuoo >>-1, (B-3) gives (3-16) if at is not << 1. For
RV/uca << 1, (B-3) contributes a term of the order Rvuoc 1li (Rvuoo) smaller
compared with the limit of the first term of (3-15), and results in (3-17).
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