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PREFACE

The effect of ground reflections on EMP waveforms is considered,
with the incident pulse treated as a plane wave and the ground as a
homogeneous, isotropic conducting dielectric. Fresnel's equations are,
introduced and the reflection geometry is apprbximated for a sphericali
earth. General techniques for calculating the reflected and total signal
are discussed and, where available, currently existing computér codes
are noted. Commonly used approximations are described and compared with
numerical calculations and with a new approximation which should prove
quite useful. Emphasis is placed on the reflection of high altitude '
burst signals and an appendix is included which discusses their pelarity.
An approximation is provided which allows an estimation of this polarity
without the necessity of making an EMP calculation. Sample calculations
are provided which show the effect of a "typical" range of ground

parameters .
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SECTION I
INTRODUCTION

Radiated field time waveforms usually represent the direct
field, which, in the case of a medium or high-altitude burst, would be
seen by an observer in the absence of a reflecting ground. In this
report, the effect of ground reflections will be considered from the
limited, but useful, point of view that the ground is a plane surface
reflecting plane waves. After a somewhat general outline of theory and
methods, the discussion will be directed to the problem of the high-

altitude magnetic turning signal,

The purpose of this report is threefold: (1) to review the
subject of reflections, indicating current1y>avai1ab1e codes and techniques,
(2) to point out some misconceptions about the high-altitude burst signal,
which are causing some people to handle the problem of reflections in-
correctly, and (3) to provide and evaluate some useful approximations

which can be used to estimate the reflected signal.

The problem of reflections need only be considered for systems
on the ground or close enough to it to allow the reflected signal to
interfere with that propagated directly from the burst. The effects on

the.signal seen by a surface observer are quite pronounced and, in

'”general, involve a decrease in the horizontal electric field and vertical

magnetic field and an increase in the vertical electric field and

horizontal magnetic field. It is therefore quite important to know the

‘polarization of the incident field. 1In the case of the high-altitude

signal, many people have assumed the wrong polarity.

The following section will be a general discussion of plane

wave reflection as applied to EMP problems. This will include the

9




problem geometry, Fresnel's equations, various calculational tech- '
niques (exact and approximate), and estimations of '"typical" soil

electrical properties. Section 3 discusses pulse penetration into .
the ground. The information provided in Section 2 will be used in

Section 4 where several sample problems are considered with emphasis T
placed on the high-altitude burst problem. Appendix A shows the

signal polarity of a typical high-altitude burst. Y -

Figure 1. General reflection problem geometry.




SECTION II
PLANE WAVE REFLECTION - THEORY AND CALCULATIONAL TECHNIQUES

In this sub-section, the general problem of the reflection
of plane waves off of the earth will be discussed, with emphasis on the
types of problems encountered in the study of EMP environments. The
geometry of the problem will first be discussed, followed by the pre-
sentation of Fresnel's equations. Having seen the part that the
quantities conductivity, dielectric constant, and magnetic permeability
play in the determination of reflection properties, the range of values
found in natural soils and sea water, will be displayed. Currently
existing calculational techniques (Fourier transform and convolution)
will then be discussed. The existence of computer codes will be
disclosed where appropriate. Finally, some useful approximation

techniques will be shown.

2.1 PROBLEM GEOMETRY AND FRESNEL'S EQUATIONS

The general EMP reflection problem is that shown in Figure 1.
A spherical wave propagates radially outward from the direction of the
burst point. Some of the wave reaches an off-the-surface cbserver
directly while another portion of the wavefront reflects off of the
earth and arrives at the observer after some delay time, tD’ relative
to the arrival of the direct wave. An observer at the surface sees
both signals simultaneously. For purposes of this discussion ion-
ospheric and multiple reflections will be ignored. It also will be
assumed that the reflecting surface is smooth, the propagating media
are isotropic and that there is no refraction except at the air/ground

interface. If distances are large enough to allow the spherical
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wavefront to be approximated locally by plane wavefronts with appro-
priate geometric attenuation, the problem reduces to that shown in
Figures 2 and 3, where the incident electric field has been decomposed
into components normal to and parallel to the plane of incidence.
Since most common heights-of-burst (H) and interesting observer
altitudes (h) are much less than the radius of the earth (Re), the
following approximations may be used to calculate the parameters
necessary for determining the reflection coefficient and geometric
attenuation (assuming that H, h, and L, -the surface distance between

burst point and cbserver, are initially known):

L~ L |1+ (2
RNy
L 6 R
tan 6. ~ =L °
1 H 2 . 2
1- 2 Ly, oL (2
2 IR I,
e
412 ~ H? + L2 1+{-‘- (2
e
sz(H-h)2+L2(1+Hr:h) (2
e
L . h
L,  H
(2
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Figure 2. Simplified reflection problem. Electric field
normal to plane of incidence.
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Figure 3. Simplified reflection problem. Electric field
parallel to plane of incidence.
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L-l) (2.6)
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When the distances are small enough to allow a plane-earth approximation,

the equations reduce to:

Ly~ — (2.7)
1+
H
tanf;~ L (2.8)
1 H+h ‘
R~ (H-h)* + L2 (2.9) .
% = (d + d)? & (H + )% + L2 (2.10) ]
o i h ®
di ) H (2.11)
The delay between the directly propagated and reflected
pulses is
t, = = (d-R) (2.12)
D c :

where c¢ 1is the speed of light in air. The code which calculates the
pulse which the observer sees directly and the pulse which is to be
reflected off of the earth, may only carry the calculation out to some
distance where one can consider the pulses to be freely propagating.
The field seen by the observer can be calculated by appropriately
scaling the direct and reflectéd pulses. If the direct pulse is known
at the range R;, it must be scaled by the factor

14




s. =R
d “ R, | (2.13)

in order to calculate that seen by the observer. Similarly, if the A
reflected pulse is calculated from one which is known at the distance

Ry (see Figure 1), it must be scaled by the factor

- Rz
S, =3 (2.14)

In order to calculate the reflected pulse, the incident pulse
can be Fourier transformed and the reflection coefficient can be cal-
culated for pure frequencies. The reflected pulse would then be found
by an inverse transform. Alternatively, the frequency dependent reflection
coefficient can be inverse transformed and convoluted with the incident
waveform or its time derivative. The frequency dependent reflection co-
efficients are given by Fresnel's equations, which can be found in any

elementary EM text. Using the convention shown in Figures 2 and 3, and

assuming that the incident and reflected waves propagate in free space, the

reflection coefficients are

cos®
n t
] - —
Eor 0N cosBi
N VB = cos 0 (2.15)
o1 n t
1+ -
N H cosB.
T i

For the case of the electric field being normal to the plane of incidence,

and
L. Ebi cos8,
or n cosei
™ “\E. . M. cos@ (2.16)
o1 P 1 + X __t
n cosei

for the case of the electric field being parallel to the plane of incidence.

Here, the complex index of refraction of the reflecting medium is given by
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n? =€ W (1 - I-E?—w-) , (2.17)

where ¢ is the conductivity of the medium, o is the dielectric '
constant, ur is the relative permeability, and w is the signal A

frequency (radians/sec). The permittivity of the medium is given
by € = € ¢, where € = 8.854 x 10 2 Farad/m. The permeability of >

the medium is given by U = uruo, where uo = 41 % 1077 Henry/m. The trans-

mission angle, et, is given by Snell's law, in sin et = sin Bi. The wave -
convention assumed here is )
, -
N n -~ L )

E = E_exp I:—l(wt + x f e r)] (2.18)
for a wave traveling in the +r direction. The wave number, Xk, is
given by

k=3 , (2.19)

o

where io is the free space wavelength divided by 2mw. The wave
impedence is

. . ’

=

_ew T
Z =3 <z, (2.20)

where the impedence of free space is

My 1/2
Z= = ~ 376.7 ohms (2.21)
o : .
The transmission functions, which give the signal propagating Y.

into the ground are




when the electric field is normal to the plane of incidence, and

Eot 2
 F\EL] T T cose. (2.25)
o1 /p t

RLEA 5
cos®,
Hy i

when the electric field is parallel to the plane of incidence.

The waveform actually seen by an observer is the vector sum
of the direct signal and the reflected signal, each multiplied by the
appropriate scale factor, The total signal can be calculated either
in the time domain, by adding the reflected signal to the direct signal
with the proper delay, or in the frequency domain, by adding the re-
flected signal to the direct signal with the proper phase shift. An
interesting and simple case is that of a point observer on the ground.
In this case, the incident pulse is the direct signal so that the wave-
forms and scale factors are equal and the delay or phase shift is zero.
In the case where the electric field is normal to the plane of incidence,
the incident and reflected field vectors are parallel and the total

field is given simply by

E,on = B [1 + 1 (w, eiﬂ = Bty @n, ei) (2.24)
in the frequency domain. A caret over a quantity denotes the Fourier

transformed quantity. The transfer function for the total field normal to

the plane of incidence is:
Ty (0 8) =1+ 1y (0, ;) = &y (0. &) (2.25)

In the case of the electric field being parallel to the plane of incidence,
we must deal with the addition of two vector components. At the risk of
unnecessarily complicating matters, the transfer function for the total
signal will be developed in two coordinate systems. The first system

17




will consider the components in the vertical (z) and horizontal (x)
directions. This system facilitates coupling calculations. The '
second system will be parallel to the incident field component (0) and

the radial direction (r). The system is described in Figure 4. The
utility of this system is in comparing with the field that would be
predicted without including the presence of the earth. Then, there
would be no r component, all the field being in the 6 component
(and in the ¢ or y component which was dealt with above). By
simple trigonometry, one can see that the transfer function to the , -

Z component is

Tpy(w, 6;) = -[1 + 1, ei)} sind; (2.26)
while that to the x component is

Tpy(w, 81) = -[1 - rp(w, ei)] cos 64 (2.27)

Similarly, the transfer function which gives the 6 component (parallel

.‘ t

to incoming field) is
Tpg(w, 63) =1 - rp(w, 6;) cos (26;) (2.28)

and that which gives the radial component in the direction away from
the burst is

TPR(UJ, 01) = I‘P sin (2 ei) (2.29)

These transfer functions, times the Fourier transform of the
proper component of the incident pulse, give the transform of the g
orthogonal components of the pulse at the ground. In many instances,
the amplitude spectrum is enough for certain estimations of coupling

or the Fourier transform can be used directly as an input to a coupling

code. In other cases, an inverse transform or convolution must be used
because an incident time waveform is required. :

18




-1
7]
r A
T
- Y
N H‘ H,
6 6. |6,
i i N
E. E El’
! tx
> |
E
tr
E
t0 vE
fz

Figure 4. Two coordinate systems for calculating the total
electric field at the surface.

These transfer furictions are for 'point" observers. Most
systems known to this author have a finite size and can only be
approximated by point observers under certain circumstances. An
observer is essentially a point when its dimensions are much less than
a wavelength, in which case there is no significant phase change in
the observed signal over its surface. Real objects couple most strongly
to wavelengths on the same order as the object dimensions. Therefore,
it follows that a finite sized object couples best to combined direct
and reflected fields which probably add up with very different relative
phases over the surface of the body and one cannot simply integrate
the total field seen by a single point dbsérver. This fact will, of

course, be ignored.

During the remainder of this section only the electric field

reflection coefficients will be discussed. In free space, the magnetic

19




field is related to the electric field by

where c¢ and Zy have been previously defined as the speed of light
and the impedance of free space. Therefore, using the electric field
reflection coefficient, the vector convention described by Figures 2
and 3, and the above relation for the vector magnitudes, one can easily

determine the reflected and total magnetic field quantities,

2.2 Typical Soil Parameters

In order to use Fresnel's equations, we must be able to
characterize the earth, at the point of reflection, in terms of a
dielectric constant, conductivity, and magnetic permeability. As
one might expect, the subject is quite complicated and could not possibly
be treated here in the detail it deserves, The objective of this
section will be limited to giving the reader an idea of the range of
values that the parameters can assume. It will be seen that, for
naturally occuring soils, the dielectric constant and conductivity
are essentially a function of soil water content and signal frequency, -
not of mineral type. The magnetic permeability can be considered to

be that of free space, except in ores with high iron content. -

There have been earth impedance measurements made at specific -
sites of interest, e.g. the Malmstrom Minuteman site in Montana
(wmpub lished, performed by the United States Geological Survey for the
Air Force Weapons Laboratory), and sections of Wisconson and Michigan

(Reference 1), The most widely used study, however, is a general one

20
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published by Scott on the electrical and magnetic properties of rock

and soil (Reference 2). In this study, the conductivity and dielectric
constant of several types or soil and rock were determined as a function
of water content and frequency (10%Hz - 10°Hz). The magnetic per-
meability is known to be essentially constant over the range of parameters
considered. - It was found that one could usefully describe the conductivity
and dielectric constant as functions of frequency and water content

alone. A set of curve-fits was developed which became known as "Scott's
Universal Curves". Despite the awe-inspiring title, Scott's curves

are only intended to be a means of estimating the parameters of normal
types of rock and soil between 100 Hz and 1 MHz when better information
is not available. Usually, better information is not available. Even
less is available above 1 Miz, which is the region of most interest

for magnetic dipole signals and is above the region of validity for

Scott's curves.
Scott's curve-fit for conductivity is

K= -0.604 + 1,640W - 0;062F
+ 0.062W2- 0,070 FW + 0.021 F? (2.30)

and that for dielectric constant is

D= 4,905 + 1.308W - 0,971F |
+ 0.111W2- 0.168FW + 0.059 F2 " (2.31)
where
K = logi1p of coﬂductivity (millimho/m)
D = logio of dielectric constant (&/€o)
W = log;o of water content (percent by volume)
F = logyo of frequency (Hz) 7

Sample curves are plotted in Figures 5 and 6. The curves are extra-

polated out to 100 MHz and compared with other measurements., (References

21
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3 and 4). The measurements made by Carrol were on samples taken at a
Minuteman site and were graphically extrapolated above 10° Hz. ‘The
measurements made by Judy (Reference 3)‘were to test a new technique

which had been developed; only one data sample was shown in the report.

Scott's curves can probably be extrapolated out to 10 MHz
With reasonable success. The dielectric constant fit will start to

turn up for some high frequency because of its parabolic nature,

Judy's data, in which those authors expressed sufficient
confidence, show two significant features: (1) the conductivity curve
rises dramatically at ~100 MHz and (2) the dielectric constant also
rises quite noticeably for frequencies below 10 KHz. At 100 MHz,
the dielectric constant begins to decrease at a faster rate with
frequency. The behavior at ‘high frequencies should be of immediate _
concern because all surface burst codes and most operational reflection
codes assume constant conductivity and dielectric constant. This did
not seem to be a bad approximation for conductivity, whicﬁ varies very
little with frequency below 10 MHz. It may turn out to be a very bad
approximation all around. '

Longmire (In Reference 5) has developed a curve-fit procedure
based on a model of the earth as an RC network. This model seems
plausible in that with many fissures containing water, one would expect
to find ionic conduction accounting for the resistors in the equivalent
circuit. A fissure which terminates would be capacitively coupled to
nearby Fissures. One would not expect inductive coupling without
_helical current paths.- A model of this nature shows the relation
between the frequency dependence of -dielectric constant and conductivity
and, in paiticular, indicates tﬁat an increase in conductivity, with
increase in frequency, should be accompanied by a decrease in dielectric
constant. Judy's data is consistent with this model in that the

anomalous rise in conductivity with frequency near 100 MHz is accompanied

24
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by approximately the same decrease in dielectric constant as predicted

by theory.

One type of variation that is ignored here is the variation
of the earth's electrical parametefs with depth. This type of variation
depends very much upon geographical location and could make a signifi-
cant difference in the reflection of frequencies whose wavelength or
skin depth is of the same order as the depth of variation (or greater).
The reflection coefficient for multi-slab materials can be calculated

if necessary.

2.3 Fourier Transform Method

The most straight-forward method of obtaining the reflected
signal in the time domain is to Fourier (or Laplace)} transform the
incident waveform, multiplying by the frequency dependent reflection
coefficient, and inverse transform the product. The total signal is
found by adding the direct and reflected time waveforms vectorially
and accounting for the geometric attenuation and delay of the reflected
pulse. If one can allow the shape of the incident pulse to be held
constant, only a single transform will be required. The calculation
of the reflection coefficient takes a negligible amount of computer
time. An inverse transform must be done for each change in the re-
flecfion coefficient, e.g;, changes in incident angle or variation of
electrical parameters with frequency. This is one fact that warrants
consideration when comparing with convolution methods. The subject
of Fourier transformations is too complicated and general to be con-

sidered here. However, there :are some specific problems involved with

this type of operation. Both the forward and inverse transforms must

be performed very carefuily with a sufficiently large time and frequency
point density. If an analytical time waveform cannot be used, the

digitized waveform should be quite smooth. A spline-fit type of

25




transform can- be helpful. The fact that a giyen inverse transform .
computer code can return the original time waveform is no indication

that it will return an intelligible waveform after the transform has

been operated upon by a transfer function. Experience has shown that

the success of the inverse transform depends a great deal upon how the -
transfer function is treated. A single function over the entire
frequency span works best. The discontinuities present in a multipiece
fit, such as might be used in representing the conductivity or dielectric
constant, tend to cause gliches in the time waveform. The phase
convention used in deriving the transfer function must be the same as

was used in defining the inverse transform. The sum of the transfer
function phase and the incident signal phase should be set equal to

zero at the low end of the frequency range so that the phase at least
starts out in a well-behaved manner during the integration. This

normalization must maintain the phase convention.

There is at least one operating reflection code based upon
the Fourier transform principle. It is called PROGRAM RR and was
written by John Wood of Science Applications, Inc. under contract to
the Air Force Weapons Laboratory. Some results from this code are
presented in Section 4.3 for observers both above and on the surface. The
- geometry and output of this code was modified for presentation in this

report.

2.4  Convolution Techniques o~

The alternative to the Fourier or Laplace transform method
is the convolution method. If one knows the response of the reflecting
medium to an impulse, or delta, function and if the incident pulse

is zero for all times less than zero, the reflected pulse is given by
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t
Er(t,05) =‘/‘ E; (1) Qt-1,81) dt (2.32)
[o]
where E; is the reflected waveform, E; is the incident waveform, and

Q is the impulse response function. Given the medium's response to

a step function, the reflected pulse is found by

t
E.(t,05) i}f ﬁi(r) S(t-1,65) dt (2.33)
)
where S is the step function response. Note that the time derivative
of the incident pulse is convoluted with the step function response.

In the frequency domain, the impulse response is given by

Fresnel's equations. It is convenient to discuss the problem in

terms of Laplace transforms by making the substitution s = iw in

the frequency domain equations. The step function response is found
by dividing the impulse response by s. An inverse Laplace transform
must be made in order to obtain the time domain response functioms.
This is facilitated by using the step function response, since the

-1

s factor improves the convergence of the integral at high frequencies.

In the time domain, the two responses are related through
d

Qe) = 3= S(8) (2.34)

In general, an analytic inverse transform does not exist
and one must be performed numerically for each angle of incidence
and set of electrical parameters. A useful approximation does exist
for the case of large refractive index and frequency independent
electrical parameters. This allows one to find analytical response
functions in the time domain without a time consuming inverse trans-

form. Approximate methods are described in Section 2.5. Even
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with an analytical response. function, the convolution method is quite I

expensive, since an integral from O to t must be performed for each

t of interest. >

Previous to the development of the Fourier transform -
code mentioned in the last section, AFWL used a convolution type of code
based upon the work of Baum (Reference 6). The code, called PROGRAM » T
REFLECT (Reference 7), still exists and might be modified so as to
be as useful as its successor, PROGRAM RR, through the use of analytical
approximations for the step function response, instead of the numerical
inverse transform method now used to calculate the response function.
The basic problem with the full numerical calculation is the fact
that one convolutes the time derivative of a digitized waveform,
which can be quite noisy, with a response function calculated by a
numerical inverse transform, which can be just as noisy. After inter-

polating, multiplying, and integrating, the resulting waveform cannot

.. L

be guaranteed to resemble reality. However, immense improvement occurs
if either the incident waveform or the response function is analytic so
that one source of noise and the need for numerical interpolation is
eliminated. The use of an analytical impulse response function, so
that the time derivative of digitized incident waveform is not needed,

will further improve the results.
High speed convolution programs, like high speed Fourier

transform programs, can be written if constant time step size is used. )

This is not generally practical in EMP work.

2;5 Some Useful Approximations -

When one wants to estimate the effect of ground reflections on

an occasional high altitude burst pulse, it seems a little impractical to
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build a transform or convolution code or spend time getting someone else's
working on your machine. In this section, some methods for making estimates

of reflection effects in both the frequency and time domain are shown.

2,51 Dielectric Approximation

For frequencies such that the ratio o/ew is much less than

unity, the index of refraction is given simply by

n o~ /e (2.35)

If over these high frequencies, the dielectric coefficient, e,, can
be considered constant, than the index of refraction and reflection
coefficient will also be constant with respect to frequency. With
some relatively simple waveform, such as the magnetic dipole signal,
high frequencies can be associated with early times, so that if the
ground conductivity is low enough (and dielectric coefficient large

enough so that relaxation time
1. = &0 (2.36)

is large enough), the reflection coefficient can be considered constant
at early times. The reflected pulse is then just the incident pulse
times a constant. The total signal at an arbitrary observer is the
vector sum of the directly propagated pulse and the reflected pulse

with appropriate consideration given to geometric attenuation and delay,
Rewriting equations (2.15) and (2.16) (letting u. = 1), the

reflection coefficients for the electric field normal and parallel to
the plane of incidence are
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coset 1"

- VEr cos0, -
N = cosb (2.37)

cos0.
1

=

(a3
>

and 1 cose,c
Lo wse, -
— 1 7 -
Tp = T coset (2.38)
1+ nEr coséi
respectively. Snell's law gives
sing.
sind¢ = ——0>t (2.39)

Jer

The sign conventions are illustrated in Figures 2 and 3. If the

.‘ v

incident pulse is given by E;(t), the reflected pulse at the point
of reflection is

Ex(t) = r E; (1) (2.40)

where r 1is either Ty Or Tp, depending upon the polarity of the
incident pulse. A pulse with arbitrary polarity can be decomposed into

components which are normal and parallel to the plane of incidence. If

the angular distance between the observer and the reflection point is

small, as measured at the burst, the pulse propagated directly to the

observer will have the same time waveform, in this approximation, as -
‘the reflected pulse. The total signal is then

~

e

o>

d

E&(t) = Ro [Eo(t) Tf-+ rEo(t - td)U(t _ td) 7%] (2.41)




where 3d and 8r are unit polarization vectors, U(t—td) is the
unit step function, ty is the delay of the reflected pulse relative
to the direct pulse (td = 1/c (d-R)), R is the radial distance from
burst to observer, d is the path length for the reflected pulse,
and Ep(t), is the pulse time waveform known at a distance Ry from
the burst point. The expression is simpler for a surface observer,
since d=R and ty= 0. For the case of the incident electric field
being normal to the plane of incidence, the reflected signal is

parallel and the total signal is

Ep(t) = T BRQ Eo(t) (2.42)

where

T,=1+r1 (2.43)

When the electric field is parallel to the plane of incidence, the
vertical component of the total electric field is given by

Ep (t)= Tp, RTQO- Eo(t) (2.44)

and ‘the horizontal (X) component is

-— h
Erx(t) TPx R Eq(t) (2.45)
where
TPZ = - (1.+ rp) sinBi {2,46)
and
TPx = - (1- rp) cosei (2.47)
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The Fourier spectrum seen by an off-the-ground observer - -
will be the same as the single pulse spectrum, except that oscillations
corresponding to the pulse delay time will be superimposed. If a time )
waveform is of the form

E(t) = Eo(t) + aE (t - tIU(t - t,) (2.48) '
its Fourier transform will be of the fornm

Bw = fol@ (1 + a e“i“’td) (2.49)
which has the amplitude

| Bw) | = [ E5(w ] (1 + a% + 2a cos u)td)ll2 (2.50)
The effect of adding two pulses is to redistribute the energy contained ‘
in the pulses such that frequencies equal to n/ty, where n 1is an .

even integer, get a maximum amount of energy (or minimum if a is negative)

while those corresponding to odd n have the energy minimized.

The dielectric approximation is currently being used by Tal
Wyatt at Harry Diamond Laboratory, »

2.5.2 Perfect Conductor Approximation

At the opposite extreme from the dielectric approximation is
the perfect conductor approximation, which is good to first order when

o/ew is much greater than unity. In this approximation,

N = -1 (2.51)




I . ‘

so that the low frequencies are totally reflected. In this approximation,
all electric fields parallel to the surface are shorted out there so

that the total field is only in the vertical direction. Obviously, this
approximation is not very useful when one needs to know the horizontal
component of the field for coupling electric fields into ground systems.
The horizontal magnetic field is finite, however, and this might be

used for coupling into vertical loops. In the time domain, the infinite
conductor approximation may not be considered valid when the relative

change in the field is large over a relaxation period,

Ty = E/O.

Fortunately, it is possible to use an approximation for large
values of refractive index which is normally valid over all frequencies.
A step function response can then be found in the time domain, assuming
that the conductivity and dielectric coefficient can be considered

constant in their effect on the reflection coefficient.

2.5.3 Large Refractive Index Approximation

An approximation which is almost always valid in real probiems,
except in the case of grazing incidence with the E-vector parallel to the
plane of incidence, is that in which the magnitude of the index of refrac-
tion is assumed to be much greater than unity. This is true at high fre-
quencies for /E; >> 1, and even more true at low frequencies because
o/ew >> 1. In this discussion, we will replace the frequency with the

Laplace transform variable

L]
t

iw _ (2.53)

so that certain transformations may be made more easily. Then the

index of refraction is
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- 12 g Y12
n = (ep)¥ (1 + g) / (2.54)
In the case that n>>1, the transmission angle cosine (cos6:) will

be very nearly unity. This is true for even 6j = 90°, to within

13% when | n | is as low as 2. It is a much better approximation
for smaller angles and more common | n I. Using these approximations

and a single term of a binomial expansion, the reflection coefficients

cos 0,
ry= -l -2 = (2.55)

n

become

and, for n cose.1 >1,

rm]____z_
P n cosei (2.56)

Assuming constant ¢ and £, the frequency domain step function responses,

§N and §P are found by dividing by s and the time domain responses
can be determined by an inverse Laplace transform to be (Abramowitz,
1964)

2 cosei 1 1
sy=-|1-—= ¥ (5 tr) U(E tr) (2.57)

1R

B 2
1 1
SP 1 - — F( 5 tr)] U(ftr) (2.58)

where

o+
11

m|qa
ot
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FOO = e X 1500
I5(x) is the modified Bessel function

U(ty) is the unit step function

Taking the time derivative, one obtains the impulse response

functions,
_ o 1 _2cosei Flt
Q = - 3 7 tr - 7 tr
vVor
2 co0s0.
1 i i 1
'U(itr)— F(Etr)
/e
Ir
1
2 F(— t
c 1 2 1
Q —6(—1: 1-
p 2€ 2 T £ cos0
T
2 FYL ¢
1 2
U(Z tr)
/€ cosb
T
where

F00 = - [L00 - T

G(tr) is the impulse function

(2.59)

(2.60)

Figure 7 shows the functions F(x) and F!(X). 1In the limit of large ¥,
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Figure 7. Plot of the functions F(x) and F'(x), which are used

in the calculation of the step and impulse response
functions.




F(y) e —— ' (2.61)

V2 TmYx

Flios - —1 (2.62)

2\/55)(3"2
For x<< J@j
F() =~ e X (2.63)
F1 (0~ - &X (1 - %x) (2.64)
As a check on the calculation, one can see that at late times, the

response functions are independent of €. and, at very early times,

independent of . This agrees with the low and high frequency be-

~ havior, respectively,

For the special case of a surface observer, the total fleld

transfer functions are approximately

T

RN

cos9, (2.65)

NT i

when the electric field is normal to the plane of incidence and

oy~ - % (2.66)

. 1
TPZ_ - 2 Sl’nei(l - m—se—i) (2.67)

for the horizontal and vertical components when the electric field is
parallel to the plane of incidence. It is interesting to note that
the horizontal component of the total field is independent of incident

angle when the electric field is parallel to the plane of incidence

(and n cosei >> 1). The corresponding time domain step function
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responses are '

2 cosBi 1 1
STN = _._;__ F (5 tr) U(7 tr) {(2.68) )
Vr

.. 2 1 1
STpy = - % F (2 tr) ul3 tr) (2.69)
T
F % t i
STPZ = -2 sinBi 1- U(.’_Z' tr) (2.70)
\/i cose:.L

Finally, the impulse response functions are

cosf,
_ ifo 1 1 1 1 -
Ty T (E) F(E tr) 5(5 tr) * Fl(ztr)u(z tr)
T

Moy = - —

1
<
ol =
——
m|Q
e
e ]
—
(ST
ot
N I
(07
—
N =
ct
\t’—/
+
—
——
N[ =
ct
la}
h ——
—
N =
t
B

fhe
o\ . 2 T 1
Qr,., = - (-——)51n9. 1 - 6(— t )

PZ € i m—_—— 2 T

NT 1
1 .
Fi{= t

2z U(l tr) (2.73)

_,\/qcosei

As previously mentioned, the convolution integral can assume

two forms, involving either the step function response or the impulse

function response (see Reference 8):
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T
E_(t) =f 1'31(1) S(t - 1) dr (2.74)
(6] L
T
Er(t) =J/P Ei(T) Q{t - 1) dt (2.75)
[o]

If the incident pulse is either very fast or very slow compared to the
response functions, the convolution integrals can be approximated by
algebraic expressions which, at least, provide a first order correction

to the assumption of frequency independent refractive index.

Consider first, the case where E(t) is rapidly changing
compared to the response functions, such that the major contribution
to the convolution integral comes from a limited region of time deter-
mined entirely by the electric field waveform. This situation is
emphasized by the form of the convolution integral in which éi(t) and
S(t) are used (Equation (2.74)). 1If Ei has only one significant
peak determining the evaluation of the convolution, then it can be

approximated by
Er(t) ~ S Ei(t) (2.76)

where S is the mean value of S(t-T) over the period of time that
Ei(T) is significant., If Ei(t) has multiple peaks, the convolution

can be represented by a summation of the form

N-1
Er(t) = §N Ei(t) +Ei(§n'1 - §n) E, (tn) (2.77)
n=

where the §n are representative values of S(t-T) mnear the times
when the largest contributions to the integral are being made. Figure 8

is a qualitative example of a double pulsed waveform being convoluted

with a response function which asymptotically approaches unity. The

time, t, to which the convolution is being performed, is in the decaying
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Figure 8. Qualitative example of how the parameters used in the
convolution approximation (fast E-field) are chosen.

.‘

part of the second pulse. If a single pulse is being considered, a

first order approximation for S could be S(t).

A similar approximation can be found when Ei(t) varies much
more slowly than the response functions. In this case, we use the
second form of the convolution in order to emphasize the slowness of
Ei(t) and the relative speed of variation of S(t) by using the impulse
response function (Equation (2.75)). In this case, we use a mean
value of Ei(T) and integrate the impulse response function to obtain

the step function response:
E (t) = E; S(t) (2.78)

The reflection coefficients yield step function responses which asymp-

.to any waveform. The transfer functions for the horizontal components
40

totically approach unity so that they eventually look constant compared 8




of the total surface field asymptotically approach zero at late times.
‘ As a first order approximation, Ei(t) can sometimes be used for Ei' Thus

- Equations 2.76 and 2.68 both yield Er(t)2 Ei(t),S(t) as a first order

approximation. This approximation is tested in Section IV.

The accuracy of the approximations for the step function
- responses can be estimated by comparison with the response functions

calculated by Baum using a numerical inverse transformation (Reference 6).

2.5.4 The Constant Electrical Parameter Approximation

It is often quite convenient to make the assumption that
o and € are independent of frequency. Comparisons between cal-
culations which use this assumption and those which use Scott's curves
with some type of extrapolation (Section 4), indicate that the frequency
dependence of the reflection coefficients is quite small despite the

fact that the € can vary several orders of magnitude over an interesting

frequency range. It is important to know whether this is a general
property of the reflection coefficient or whether it is more a property
of Scott's curves, Beginning with the equation for the index of

refraction,

n = /e (1 - i EU‘(E) 12 (2.79)

we see that at high frequencies,

n~ e (2.80)

i.e., the refractive index depends upon the square root of the dielectric

. coefficient. At low frequencies,
g
A o 2.81
In |~ [ (2.81)
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i.e., the magnitude of the refractive index depends upon the square ‘
root of the ratio of conductivity to frequency. Scott's curve-fits
indicate that at low frequencies, the conductivity varies very slowly
with frequency and is essentially constant. Hence, a constant con-
ductivity approximation is quite valid and, since Scott's fits should
be reasonably accurate at the low frequencies of interest to EMP
work, one does not expect this situation to change drastically. Judy's -
data (Section 17.8.2.2) indicates a large increase in conductivity
above 10 MHz, but at those frequencies the refractive index is no
longer sensitive to changes in o. At those frequencies, n is deter-
mined by \fE;. Judy's data and Longmire's theory indicate that this
increase in JE; is accompanied by a decrease in conductivity. The
frequency dependent calculations have extrapolated Scott's curves
(which are not valid above 1 MHz) in such a way that the curves, which
approach a minimum because of their parabolic nature, are forced to

remain constant at their minimum value. Therefore, it is this artificial

device which made the constant € approximation look good. If Judy's
data is a reasonable representation of the behaviour of & above

-1/3

10 MHz, € might be expected to vary as w or w'y&. The refractive

-1/s

index would then vary as w or w¥ at high frequencies and still

be considered constant.

At intermediate frequencies, where g& ~ 1, the magnitude of
n is dominated mostly by qE;, which varies roughly as w‘lh. It
can be concluded, then, that the approximation of constant ¢ and ¢
will be good, even with foreseeable changes in the dependence of ground
parameters. The constant values should be chosen at an appropriate ‘.
low frequency and € should be chosen at an appropriate high frequency.

These conclusions are not necessarily true for "abnormal' media such -

as saturated and leached earth or sea water.




SECTION III
PULSE PENETRATION INTO THE GROUND

In this section, the nature of the pulse which penetrates
into the ground, when a signal reflects off of the surface, will be
briefly discussed. The general subject of wave and pulse propagation
in dissipative media has been thoroughly explored (see, for example,
Malik, Reference 9) as a one dimensional problem involving homogeneous
media, For the purposes of this discussion, the problem will also
be viewed as one dimensional in nature, and the ground will be approx-

imated as a single homogeneous material.

The wave that initially penetrates the surface is given the
two Fresnel equations for the transmitted component. In the reflection
process, the low frequency components are removed from the transmitted
electric pulse because the surface appears to be a good conductor. The
behaviour of the magnetic field is somewhat different, however, as is
demonstrated by the fact that at the surface of a perfect conductor,
the horizontal component of an incident magnetic field is doubled, while
the horizontal component of an electric field goes to zero. Then, because
the tangential components of E and H are continuous across the inter-
face and because the transmitted field is nearly horizontal in the case
of a medium with large |n|, one immediately sees that the low frequency
magnetic field will not be attenuated in the same manner as the electric
field.

Using equations (2.22) and (2.23) and the large index of

refraction approximation discussed in Section 2.5, the electric field




transmission coefficients are approximately

2
tN ~ = cosBi (3.1)

-3
when E is normal to the plane of incidence, and

~ 2 .
tP— o (3.2) -

when E is parallel to the plane of incidence and n cosE)i >> 1. In
this approximation the penetrating plane waves are parallel to the .
surface, The relative magnetic permeability (ur) is assumed to be

unity. The magnetic field is related to the electric field by
> 1 > >
B =2 18] =2 | %] (5.3)

so that the magnetic fields which penetrate the surface are approximately

independent of n. Here, Z 1is the wave impedance and Zp; 1is the

impedence of free space (~ 377 ohm).

After penetrating the surface, the waves propagate as plane

waves with the spatial dependence

Ft(-?.) = Fto exp(-ik£) (3.4)
where Ft is either the electric or magnetic field, Fto is the field -
amplitude at the surface, k = n/x, is the wave number, X, is the
free space wavelength divided by 2m, £ is the distance along the .
downward ray (-z in the large n approximation), and n is the index
of refraction., The real and imaginary parts of n =1, - i n, are »
given by

3 1/2
. |z LAY
By = JT jl +(ew) +1 (3.5) 3
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€ : . 2
. | n, = /7r 1.,(55) -1 S (3.6

The imaginary part of k, which determines the attenuation -
_ with distance, is fairly constant for gﬁ =1, i.e., for high frequencies,
and has the value

k, o , = s 1 , (3.7)

For continually decreasing frequencies, the real and imaginary parts

become equal to each other and decrease as

a
ky= 1/8(w), = -> 1 - . (3.8)

where the skin depth is given by

2
HoG W C

S(w) = (3.9)

Thus, after initial penetration, the ground acts as a low pass filter,
with the high frequencies being increasingly attenuated with increasing
depth. The low frequencies roll off as exp(-a~N®), with "a" a
constant, , e
We now combine the transmission and attenuation coefficients
in order to relate the field incident at the surface with the fields
- seen at some distance Z in the ground, using the "large n" approx-
imations. For purposes of penetration study, .z will be measured
- with the positive direction downward, We will use the incident electric
field as the irnitial condition. The electric field components at the
depth z are then
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exp (—1 — z)
A ~ 0 Pay
EtN[u),z) ~ Z cosei - EiN(w,O) (3.10)
! . n )
N expi\-t XD zZ ~
Etp(m,z) ~ 2 o Eip(w,O). (3.11)

For easy reference, we rewrite n

5 1f2
n= /er (1 - i EE) (3.12)

The magnetic field corresponding to ﬁtN is

~ 2 . N a~
HtN(w,z)_ i cos.ei exp (-1— z) E.lN(m,O) (3.13)

Ao
and that corresponding to g «p is
i (0,2) = 2 exp (-iZ z| B, (w0 (3.14)
tP? Zg )\0 iPY?
For high frequencies, g(ﬁ << 1, the field magnitudes are approximately
] 2 Zo o S
|E,  (0,2) | = -—= cosb. exp(— z) |8, (w,0)]
tN \]Er i 2.\/€r iN
(3.15)
~ 2 ZO A
|E, j(w,2)| = —— exp (- 2} |E.,(,0)} (3.16)
tP - iP
/er 2 o
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A Z ™
- |HtN(w,z)|= é;_cosei exp( 0 9 z)lEiN;m,o)| (3'17),
o €. e
lﬁtp(w,Z)Iz _2 exp (- Zog z) |E,p(@,0) ] (3.18)
- Z 2,
r

. o
For low frequencies, = 1, they are

g 1= 2(22) costy e /B 3} [0

(3.19)

pwale 2(52) on (B2 Bywol o

|H @,2) |~ 2 cos®, exp(— = z)|EiP(w,0)| (3.21)
Z
(o]

| p@,2) | Ziexp(-/%ﬂ z) I, p@,0) | (3.22)
(o]

In the time domain, which will not be discussed in detail
here (see Reference 10 ) , the filtering action of the conducting
medium causes the propagating pulse to become drawn out in space and
time, falling. off exponentially with what is sometimes referred to
as the "residue" signal. This behavior is characteristic of the

diffusion equation, which describes the low frequency problem.

Impulse and step function responses have been calculated
g for constant o and € by Malik, (Reference 8). These do not include
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the reflection portion of the total transfer function, but assume the ‘
field to be defined at the upper boundary. Such response functions

can be used directly with the magnetic field in the large n approx-

imation since the transmitted electric field is related to the incident

. electric field by a constant. .

In the case of a surface burst, which has been ignored, the
fields in the ground are usually calculated as part of the normal
numerical calculation. The lower boundary is normally on the order
of 100 meters. For deep penetration studies, one can do a diffusion
calculation rather simply in the frequency domain or use a transform
or convolution technique to calculate the time domain. A deep penetra-
tion code (Reference 11) is available at Mission Research Corporation.
Examples of electric and magnetic field transfer functions for penetration

to several depths are shown in Section IV.

A
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SECTION IV
SAMPLE CALCULATIONS

In this section, selected calculations are made in order
to illustrate the use of the equations and approximations presented
in previous sections and to give the reader a 'feel" for the effects
being discussed. In 4.1 the reflection coefficients and surface
observer transfer functions will be discussed in terms of their
frequency dependence for '"typical" soil parameters. Most calculations
will assume constant conductivity and dielectric coefficient, but one
comparison with an extrapolated Scott's curve-fit will be made.

The polarization data used in this sectlon is taken from Appendix A.
There, formulas are introduced which allow one to estimate the
fraction of the total field oriented parallel and normal to the
plane of incidence, given the observer position with respect to

the burst and the geomagnetic field. In section 4.2, time domain
calculations are shown for various observers and a 100 km altitude
burst. Then results from using approximational techniques and

machine calculations are compared.

4,1 Freguency Domain Calculations

In this section, examples are given using the complex re-
flection coefficients for several values of conductivity (o) and
dielectric coefficient (Er) which bracket the most 1likely values to
be encountered in realistic situations, In all but one example,

constant values of o and o are used. This is justified (1) because

of the analysis of the constant parameter approximation given in
49




Section 2.5, (2) by the comparison with an extrapolated Scott's curve- ‘
fit show later in this section, (3) because the high frequency be- -

havior of o and €. is not well known, and (4) the average application

L

of reflection techniques to actual systems analysis probably will not N
be sophisticated enough to allow a representation of frequency depend-

ent electrical parameters. -

In each case, the amplitude and phase of the two complex -

reflection coefficients, TN and Tp will be shown. The coefficient

r, describes the reflection of the electric field component normal to

N

the plane of incidence while Tp describes the reflection of the

electric field component parallel to the plane of incidence. The
coefficients are shown as a function of frequency for various angles

of incidence (0°, 30°, 60°,80°, 85°, 87°, and 89.9°). The coordinate
systems and geometry are described in Section 2. In general, the phase

of 1y, is mear m and that of r, is very small, so that they are

N p
essentially real quantities given by the amplitude times -1 or +1

.Q ’

respectively. The exception to this is r, for near grazing incident

angles (~ 90°), In this case, the phase i: small for low frequencies,
but passes through m/2 (dashed line in Figures) and asymptotically
approaches 7 for increasing frequency. Thus, the real part of Ty
changes sign as a function of frequency for fixed angle of incidence.
In the case of a pure dielectric, where the frequency dependence can be

ignored, the angle of incidence at which r_, changes sign is known as

the Brewster angle and devices utilizing thgs property are used to

polarize light. The property will also be important in one aspect of

the ionospherically propagated satellite environment. It has been

suggested that the worst case environment might be that due to a -
grazingly reflected signal with vertical polarity, combining with a
nearly parallel pulse that does not reflect. It was proposed that this
would effectively double the available field strength, as would be

the case for low frequencies. However, because of the Brewster phenom-

enon, what really would happen would be the partial cancellation of the
high frequency components of the pulse and a reduction of the threat. :
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Two sets of electrical parameters were chosen to represent
the expected variation of soil reflection properties: 0 = 1.15x10" 2
mho/m, €, =41.1 and 0 = 6.03x10™"* mho/m, € = 16.0. These
values are predicted by Scott's curves at 1 MHz for water contents
of 10 percent and one percent by volume. It was desirable to choose
values which enable a direct comparison with the reflection coefficients
"predicted through Scott's curves and 1 MHz is the highest frequency
at which they are valid, Values of conductivity near 10 "2 gho/m and
10”2 mho/m are desirable since typical values of conductivity lie
within this range and constant values within this range are commonly

used as representative values in surface burst codes.

Scott's curve-fit for 10 percent water content is used to
calculate reflection coefficients which can be compared to the 1.15x1072
mho/m calculation in order to indicate the errors involved in assuming
constant electrical parameters. The results are inconclusive however,
because Scott's curves are not valid above 1 MHz (see Section 2.2).
They were extrapolated by simply continuing the conductivity function
(increasing with frequency) and by allowing the dielectric coefficient
function to reach its minimum and preserving the minimum value for

all higher frequencies.

In addltlon to the typical soil parameters, the reflection

coefficients for seawater are calculated using © =5 mho/m and €. = 81,

After the reflection coefficients are shown, the transfer
functions for the total field seen by a point surface cbserver are
illustrated for the representative soil parameters. These are easy
to calculate since no delay time is involved. When a finite delay
exists between the arrival of the direct and reflected pulses oscillations
appear in the spectrum such as described under the dielectric approxi-

mation in Section 2.5. These oscillations correspond to a redistribution

of energy such that it is concentrated in frequencies equal to even
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multiples of -1/td, where ty is the delay of the reflected pulse
relative to the incident pulse. Total field transfer functions can

be rather simply calculated when the reflection coefficient is a
constant, e.g., in the dielectric and perfect conductor approximations,

Otherwise, it is easier to work in the time domain.

Figures 9 and 10 show Iy Figures 11 and 12 show Tp for

0=1.15x10"2 mho/m. Figures 13 through 16 show the same for Scott's

10 percent water content curves. Note that there is less variation
with frequency at high frequencies in the case of constant parameters .
The discrepancy is not large except in the case of Tp with large
incident angle. Figures 17 through 20 show the reflection coefficients
for ©0=6.03x10"" mho/m. Note the  large high frequency region in which
the ground appears to be a dielectric. Figures 21 and 22 show Tp for

seawater. The other reflection coefficient, r is not shown since

N’
it is so close to -1, An idea of how close can be gained from
Figure 29, a graph of the magnitude of the surface observer transfer

function, TN’ where T + 1.

N~ N
An especially interesting observer for which one might want

to know the total field, is an observer at the surface. Such observers
might be cables, hardened UHF antennas and circumvention or warning
detectors. Using the equations in Section 2,1, the electric field
transfer functions TN’ TPX’ and TPZ were calculated for the cases
0=1.15x10"2 nho/m, €.=41.1 and 0=6.03x10"" mho/m, €,=16.0. The
amplitudes of these quantities are shown in Figures 23 through 28,

The phases are not shown since they were very small in the case of

PX and TPZ' Thus, the real

parts of the transfer functions (which is really what one is interest-

TN' and close to T in the cases of T

ed in) can be approximated by |TN| and -|Tpx[, -ITPZI' The reference

coordinate systems are shown in Figures 1.2a and 1.2b. Figure 29

shows |TN| for seawater.
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It would have been desirable to show the transfer functions
for the magnetic field also, but space is limited. However, as a
general rule, the magnetic field components add constructively where
the electric fields add destructively and vis versa. The relation
between the magnetic and electric fields is shown in the last paragraph
of Section 2. The reflection coefficient for the component of the
magnetic field normal to the plane of incidence is Ty and that for
the parallel component is Ty
the total field is different, as shown in Figures 2 and 3, so that

However, the vector addition to find

for example, the horizontal components add constructively at the

surface instead of partially cancelling.

Finally, in Figures 30 and 31, the transfer function for
fields penetrating into the ground are shown. The angle of incidence
chosen for this example is 0° so that all electric and magnetic
field components are tangent to the surface. The 1.15x10° 2 mho/m
ground conductivity was used. In the case of the electric field, the
reflection of the field at the surface (which filters out low
frequencies) has more influence on the spectrum which penetrates to
several meters than does the attenuation caused by propagating through
the conducting soil. The attenuation has the most effect with high
frequencies. When penetrating to depths on the order of-tens of
meters or more, both the high and low frequencies are severly atten-
uated, leaving a band of frequencies in the megaheitz region. Time
waveforms have not been calculated, but one could probably expect it
to be a slowly rising pulse, decaying into a megahertz and lower type
of oscillation. Figure 31 shows the magnetic field transfer function
for the same problem, The transmission coefficient causes a very
slight loss of the high frequency content (relative to the “low
frequency content, all are almost doubled); For all practical purposes,
however, one can simply double the spectrum of the incident field and
consider only. attenuation when calculating the spectrum of the

penetrating pulse. At depths of tens of meters, the high frequencies
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are severely attenuated and the pulse diffuses downward with an exponen-

tial tail, sometimes called the "residue" (see Section 3).

4.2 Time Domain Calculations

In this section time domain calculations are presented
which (1) show the effect of reflections for observers near the ground,
(2) compare the results from several calculational methods, and (3)
indicate the impoftance of representing the ground with frequency
dependent electrical parameters. The geometry chosen was that of a
100 km burst in a geomagnetic field of about 70° dip angle. Observers
at altitudes of Om, 3m, and 10m were placed 100 tan 60° = 173 km to
the magnetic west so that the component of the electric field parallel

to the plane of incidence is taken to be 34% of the total magnitude

~ (the normal component is 94%). An analytic function was used to re-

present the incident waveform:

E,(t) = Eq (e‘Bf - e‘“t)

where
B = 4.0x10° sec,
a = 4,76x10° sec.
Eo = 1,033

The function is normalized to a peak value of unity. Since the observers
are so far away from the burst and close to each other, the change in
geometric attenuation was ignored. The normalization to unity seems

more useful thén displaying actual field strengths since the quantitative

changes become more obvious,

Four methods are used to calculate the reflected signal.
The first method was the full Fourier transform method using a code

i




developed by John N. Wood and modified by Stephen J. Dalich® for the
Air Force Weapons Laboratory and given to the author for purposes of
this comparison. The code, Program RR, did not include reflection of
the component of electric field normal to the plane of incidence
(being developed primarily for air burst calculations) and assumed
plane earth geometry. The code was again modified by the author and
Robert M. Marks+to include all electric field components and a
spherical earth approximation. The results of these calculations
might be considered base-line calculations when comparing techniques.
The second method used was the dielectric approximation and the

third method was the perfect conductor apprdximation (see Section 2.5).
The fourth method was a combination ''large n" approximation and convo-

lution approximation as discussed in Section II.

In the convolution approximation, the reflected field is
equal to the incident field times the step function response of the
ground (calculated with the '"large n'" approximation). At early times,
the step function response looks like the dielectric approximation,
while at late times, it approaches the perfect conductor approximation
(which becomes valid at very late times). Therefore, even though the
convolution approximation might not always be accurate, it has to be
better than the other two approximations which are currently being
used by some workers in the community. The additional time required
to use this approximation will hardly make any difference in computer

cost and the results are far superior.

All of the calculations assumed a plane earth geometry and
an incidence angle of 60°, except the Fourier transform code which

had spherical geometry build into it. At the observer, the angle of

* Science Applications, Inc., Albuquerque, New Mexico.

t Mission Research Corporation, Santa Barbara, California
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.the direct ray was also assumed to be 60° since the observers were

close to the ground. The spherical geometry gives an actual incidence
angle of 61.57°. Plane geometry gives delay times of 1.001 sh and 3,336
sh for the 3m and 10m observers, while spherical geomefry calculations
yield delays of 0.979 sh and 3.265 sh respectively. When used, the ground
conductivity was assumed to be 1.15 x 10°2 mho/m and the dielectric
coefficient was assumed to be 41.1. One comparison was made with fre-
quency dependent parameters given by a modified Scott's curve-fit for

10 per cent water content. The modification is described in Section 4.1.

The constant parameters correspond to the values of the curve-fits at 1 MHz.

Figure 32 shows the normal (to the plane of incidence)
electric field component, calculated by Progfam RR for thé three -~
observers. The incident field is also plotted for comparison. The
horizontal éomponent of the parallel electric field is qualitati#ely

similar but much smaller. Figure 33 shows the vertical components.

" Crosses (X) on the curves indicate negative values,

Figures 34 through 36 show comparisons of all three electric
field components as calculated by the four techniques for a surface
observer. The worst approximation is the perfect conductor approx-
imation which predicts'no horizontal field component. The dielectric
approximation is good for a few shakes in predicting the horizontal
components, but does not allow the reflected pulse to build up and
become comparable to the incident pulse. At 12 sh, the dielectric
approximation is too large by a factor of 5 for the normal component.
The large n/convolution approximation, on the other hand, follows the
general shape of the signal predicted by Program RR, but diverges
slightly (by a factor of 1.7 at 12 sh for the normal component). The
vertical component of the electric field is not too badly effected by
any approximation, but the superiority of the large n/convolution-
approximation is obvious. Figure 37 compares the techniques for a 3m

observer height and the normal componenit of the field,
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In Figure 38, a comparison is shown between the horizontal ‘
field predicted under the assumption of constant ground parameters
and that predicted with a modified Scott's curve-fit. The results
are quite similar and, since the frequency dependence was fudged

above 1 MHz anyway, it hardly seems worth the effort to use frequency

dependent parameters for the high altitude burst signal at this time. -
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Figure 32. Horizontal component (normal to plane of incidence) of electric

field to west of a high altitude burst with reflections pre-
dicted by program RR. Double exponential used as incident wave-
form. Observers at various altitudes, 173 km surface distance
from 100 km burst.
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~ EPZ (NORMALIZED)

"~ Figure 33.

INCIDENT ' ‘

TIME (SH)

Vertical component of electric field to west of a high altitude burst
with reflections predicted by program RR. Double exponential used as
incident waveform. Observers at various altitudes, 173 km surface

distance from 100 km burst. _ :
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Figure 34. Comparison between horizontal components (normal to
plane of incidence) predicted by various methods for
a westward observer on the surface.
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Figure 35. Comparison between horizontal components (parallel to
plane of incidence) predicted by various methods for
a westward observer on the surface.
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Figure 36. "Comparison between vertical components predicted by
various methods for a westward observer on the surface.
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Figure 37.
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TIME  (SH)

Comparison between horizontal components (normaT to
plane of ‘incidence) predicted by various methods for
a westward observer 3m above the surface.
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Figure 38. Comparison between horizontal electric field predicted by
program RR using constant electrical parameters and that
predicted using a modified version of Scott's curve-fit.

Observers at Om and 3m altitude, 173 km south of 100 km
burst. Double exponential used as incident waveform.
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APPENDIX A
HIGH ALTITUDE BURST SIGNAL POLARIZATION

The high fréquency radiated electric field will be polarized
in the direction parallel to that in which a radially moving electron
would be initially deflected by the geomagnetic field near the base of

the gamma deposition region. Define the polarization vector

p=-—7TxB (A.1)

where B is the geomagnetic field vector and T is a unit radial vector.
The polarization vector is oriented in the direction of the radiated
electric field (early time) and has a magnitude equal to or less than
unity, the value unity occurring in the directions where T oo § = 0. If
the base of the deposition region was a flat surface over a flat earth

(so that the geometric or Ro/R attenuation was constant as a function of

. position) and if the currents were constant over this surface area

(assumlng high enough conductivity to attenuate any flelds generated

within the deposition region), then the magnitude of p could be used to
scale the early time fields as a function of position. These conditions
are approximately met by a large, high altitude burst when the observer

is not too close to the earth's tangent.

When calculating E, the value of B must be chosen in the re-
gion where most of the radlated signal is generated If the region is
so large that there is a significant variation of B within it, the results
of the polarization calculation will be inconclusive. This problem
would be important in regiohs of low condustivity, e.g., near a tangent

ray or in the upward direction.
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For the purpose of making a useful approximation, we assume
. > . . .
a two dimensional B such that it has a vertical (Bz) and one horizontal
component (Bx). The coordinate system is shown in Figure A-l. Magnetic

north is in the -x direction. In cartesian coordinates then,
> 1 2 . . A .
P=- TET [1(BZ51n6 sing) + 3(Bxcose - B251n6 cos¢)
~k(B, sin6 sin¢)l (A.2)

With GB defined as the magnetic dip angle measured from the horizontal

(downward and northward being positive), such as over the United States,

Bx = -|B| cosGB
B, = -|B] sinfp
so that
> 1 PR . . S . 7 . !
p = -m [1(51neB sinb sing) + j( cosBB cosb - 51nGB sin® cos¢) .
- K(cos,, siné sin¢)] (A.3) ®

One can see that |p| = 1 for 6 = 180°- eB and ¢ = 0 corresponding to the
line of sight normal to the magnetic field lines. When the polarization
vector is resolved into its spherical polar components, the T component

will be identically zero, the 8 component will be the component parallel
to the plane of incidence, and the $ component will be the component

normal to the plane of incidence:

B, = 0 (A.4) _
Pg = cosOB sin¢ - (A.5) .,
p¢ = —(sineB sinf - cosBB cosf cos¢) (A.6)

It is clear upon inspection that Py (the component parallel to
the plane of incidence) is identically zero along the magnetic north-
south 1line passing through the burst, and it has maximum magnitude to

the east and west. The magnitude of p¢ has a maximum, with respect to
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Figure A-1. Geometry for polarization calculation.
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variations in ¢, in the north-south direction. The absolute maximum
occurs at 6 = 180°- g0 ¢ = 0 and 0 = g, ¢ = 180°. One of these will
be in the upward direction and of no interest in this probliem., The
magnitude of ; is zero when T is parallel to B, i.e., ¢ =0, 6 =90° M
and ¢ = 180°, © = 90°- GB.

The GB of interest is actually a function of position, but for
many first order approximations, the value near the earth's surface directly

below the burst can be used.

The maximum and minimum electric field magnitudes should cor-
respond roughly to the maximum and minimum Ip[. However, other factors
influence the location of these fields and the polarization vector should

not be relied upon too heavily for this information.

Since ]p[ varies with position, the components Pg and P¢
must be divided by |[p| at each position in order to determine the
fraction of the total field with each polarization. One can define the

relative polarization by

-

T%l' (A.7)

-
P

where

[p|2

2 2
pe+P¢

C°5293(51D2¢ + cos?0 cos2¢)

. 2 .
* sin”Qp sin*¢ - %—sinZBB sin26 cos¢ (A.8)

Each component of 3, i.e. Pe and P¢ is the fraction of the total field

magnitude oriented in that direction such that

_ p2 2
l—Pe+P¢

Before looking at the polarization predicted by an actual

computer code, consider the case of a 100 km burst over the United States,
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" The magnetic dip angle is roughly 70°. ‘The magnetic declination varies
from about 15° W to 15° E, but we will use a coordinate-system oriented-
along the magnetic north-south line through surface zero (below the
burst), and stay close enough to that line to ignore significant varia-
tions. For a large enough burst, then, the maximum field strength

will occur about 100 km ¢ tan 70° or 275 km to the south (& = 0). The
minimun will occur 100 km * tan 20° or 36 km to the north (¢ = 180°).
The distance to the earth's tangent is about 110V 100 or 1100 km. The
polarization will be in the $ direction with the maximum Pe being about
+0.34 in the magnetic east and west directions, i.e., at most, the
component in the plane of incidence will be about 34 per cent of the
total field. The sign of Py will be positive to the magnetic east
(downward vertical component) and negative to the magnetic west (upward

vertical component).

Figures A-2 and A-3 show the electric field polarization
~over the United States from a 100 km burst using equations A.5 through
A.7. These contours use GB equal to 70°. Figure A-4 shows Pe for a
burst in which GB equals 30°, e.g., near Johnston Island in the Pacific.
The last contours show a situation in which a large fraction of the
electric field is oriented in the plane of incidence. In each case,
only the contour lines in the magnetic east half-plane are shown. Pe
changes sign upon reflection across the north-south plane, while P¢
is symmetric upon reflection. The importance of Figure A-2 is mainly
in showing that over the United States, most of the electric field is
oriented normal to the plane of incidence and, hence, that the incident
and reflected pulses tend to cancel. Thus, one can expect lower high
altitude burst fields, after the reflected signal lag time, than one

might expect from the incident field calculation alone.
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Figure A-2. Contours of Pg for a 100 km burst and magnetic
dip angle of 70°. Contours in magnetic west
half-plane have opposite polarity.
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