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ABSTRACT

An expansion method for calculating the effect of dispersion upon electromagnetic pulses
propagating through the ionosphere is applied to a double-exponential pulse, It may, however, be
applied to any incident pulse that can be represented by a Fourier series. The phase angle intro-
duced by the transmission medium is expanded in a Taylor serijes,-which is truncated after the
second-order dispersion term, Unlike many treatments of ionospheric propagation, the large-
dispersion approximation is not made, In some cases the dispersed-pulse durations are greater
than the times between arrivals of the various frequency components. The components then inter-
fere to form quite complicated waveforms, It is found that the high-frequency, low-dispersion
components often add constructively to produce the maximum amplitude in the transmitted signal,
Equations are presented for frequency-domalin analysis of the signal, but results are given in the
time domain, Appendixes outline a rapid method for calculation of the Fresnel integral and its
auxiliary functions; present resulis for propagation of the double-exponential pulse through a series
of atmospheric ionizations; and illustrate the contributions of individual frequency components, as
well as the effect of correction factors to account for the possibility of low dispersion of some
frequency components.
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EXPANSION METHOD FOR CALCULATING DISPERSION
OF ELECTROMAGNETIC PULSES PROPAGATING
IN THE INOSPHERE

Introduction

In the past several years, interest has been growing in the vulnerability of satellites to
nuclear weapon effects, One of these threats is the electromagnetic pulse (EMP) radiated from a
nuclear explosion, The purpose of this report is to illustrate a method for calculating the effect
of ionospheric dispersion upon such an electromagnetic pulse, A series of results of this method

is also presented,

The problem of pulse propagation in an ionized medium has been considered by many authors,
In fact, a treatment of propagation in and reflection from the ionosphere is included in a classlc

work by Ginzburg, 1

Jones and Ring have recently found that dispersion effects dominate those of energy absorp-
tion for EMP-type waveforms propagating through the ionon:'.}:ul'xere.2 Messier, regarding the prob-
lem with the assumption of high dispersion, indicates that (1) the effects of the ionosphere are
more easily represented in the frequency domain and (2) in most calculations of coupling the energy
into a satellite, the frequency domain is the most convenient for analysis, Messier also presents
results in the time dommn,3 The present work differs from that presented in References 2 and 3
in that the time-domain-propagated signals are calculated with a series representation of the
incident pulse, without the assumption of large dispersion, The method illustrated here has also
been applied to other waveforms for use in a satellite vulnerability computer code developed by

Sandia Laboratories, 4

When one is calculating nuclear-weapon environments, a conservative approach is usually
taken to justify the conclusion that a certain system will survive, Hence, the ionospheric plasma
absorption of energy is omitted, and absorption effects are dominated by those of dispersion, By
omitting the real part of the ionospheric conductivity, one avoids the nonlinear effects of the
electric-field-dependent air conductivity., Linear theory can then be used and the wave can be

expressed as a Fourier integral,

Incident Pulse

Let us consider the incldent pulse

K
Ei(t) = 1c° + 2 ck cos(wkt +¢k)} [U(t) - Ut - T):l , (1)
k=1



where w, = 21rk/To, NlTo = T, and U is the Heaviside unit step function, Here N1 is an integer )

and T is the pulse duration, The coefficients and phase are readily evaluated by cy = |ac:[, .

¢ = 2|a.‘;| and ¢, = tan"} {Im 2, /Re a];], where

T -l T
a.é E% f Ei('r)e k dr , )
<)

An equivalent representation of the pulse is

K .i.mkt
E, (t) =E A, (e , (3)
k=0
where
AL l) = ckelwk [uw - vt - M. @)

. . . 1
As indicated by Ginzburg, this form is convenient for some of the mathematical manipulation.

In terms of the Fourier transform,

® .
E. (t) = f glwe't dy ®) 3\
i e !
with
gw =3 [ Ewme ¥ ar, ()
27 IR )
From Egs, (3)-(8)
glw) = L i c el‘gk exp[l(wk ST - Y9
2qi k (wk - w) ’
k=0
Thus, g(w) has the appearance of a series of quasi-monochromatic signals with angular frequency
wk. The spectral width of each frequency component is Aw ~ w - At o = @y
i
-1 Pk
g(wk) =@2m " T e . ‘
The specific pulse chosen here for analysis is the standard double-exponential pulse
E(t) = (e"“ - e'ht)U(t) ) (8)
™
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For this pulse, as found by Jones and Ring,2

e =4 (1-e-at)+ 1 (l-e-bT) ,

o aT bT
2
_3 -a (-aT_1)+ b (-bT_l)

kx ° T 2, 2 e 02, .2

a wk wk

© 2 1/2
2 2(—“'1)"2_3_2'(’-“'1) ’ (®)
a +wk b +wk

1 @y (b2 + wi)(e'a'r - 1) - wk(az + wi)(e-bT - 1)

o = tan~ -a(b2 . wlz{)@-aT . 1) + b(a2 + wi)(e‘bT - 1)

Obviously, however, Eq. (2) makes the method readily adaptable to an arbitrary incident pulse,
E, (7).

Possible Forms of the Transmitted Pulse

After transmission through the ionosphere, the pulse may be represented by

E@) - f g(w) Rw) et g, ‘ (10)
-t
where R(w) is the response function of the ionosphere, R(w) = |R(w)| e %) | Disregard of the
ionospheric attenuation gives |R(w)| = 1. If, as suggested by Eq. (7), it is assumed that glw)is a
superposition of quasi-monochromatic sources, the phase factor may be expanded in a Taylor

series about ¢ as follows:

k
(@ =olw) + w- w) o w) + ~lw- w)? e w) +2w- w ) o™w) + (11)
@ "f.DCbk W wk (/] tl.}k 3 w wk %) wk Bw El-k s wk Pae s

Combining Eqs. (3), (5), (6), and (10) yields

K o o
1 .
E®) =5~ ) ./_; j:, A ) explil(w, - w) n+ wt - 0]} dndw. 12)
k=0

Substitution for ¢ from Eq. (11), with = « - Wy » gives

K expiilw t - olw )]} © .

_ k k [ i’

E®) =) - f f A e dndn,
k=0 e



where

nz L 93 n
@ =Qt - n-en - -y

2
- 7 2 *
With pgiven by Eq. (11) and the substitutions 7£° = (9+ 1—:0,19’—) ¢” and T, = [7 o (wk)]” ,

the transmitted pulse becomes

K expfifw,t - olw )]} ,= n2
1 k k cp-t+o’)
E(t) =5 E T, f Ay () exp |1 0¥

k=

(=]

(13)

Y,

23,
exp[-l—ﬂzg—--m—s—w—i-...]dﬁdﬂ.

where

ﬂ=Tk§ -11+t-(p'(wk) .

In order to evaluate Eq, (13), it is most convenient to use as few terms as possible in both
the summation over k and in the expansion of the exponent in the integrand, Setting ¢" and higher
order terms equal to zero, with f_: exp(—ifrgle) dg¢=1-1i and nuzlz =(n-t+ ¢')212¢", gives the
approximation designated by the subscript al:

K ® .2
_1-i e o imu®/2
E 4 {t) = 5 Z expll[u.kt <p(wk)] lj_; Ak(t o'+ Tku) e du, (14)
k=0
If p# can also be disregarded,
K
Eaz(t) =Z Ak(t -@’) exp{i[a:kt - (p(wk)ll . (15)

k=0
From this form the group delay time is defined by Atgr = ', and the phase angle delay is (p(wk).

As discussed by Ginzburg1 the total phase in Eq. (11) must change sign for <0, The g(w),

however, is appreciable only in the vicinity of each positive w Hence, Eq. (12) may be replaced

)
by

K © ®
1 .
E®) = 5 > fo _/_; A, ) explilw, . win+ wt - @ldnda |

k=0

* # - " 1/2
When ¢” < 0, Tk=[7r|¢p (a.'k)|] .

g
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and with @ and ¢ as before,

K explifw.t - olw )]} = - n2
E@) =1/2 Z w};‘ “k f Ak(-q} exp[i QI_;_*F‘P_)_]
- k=0 k - ¢

® 2 .3,
of el et ] e,
51

where
_1 llll + ’
=g oo’ i+m-t o' ).
k

Again if (p”' can be disregarded, the resulting approximation is

expi{ifw, t - olw )]} L= n2
_ Kk Y L -t ]
B0 =Y L f A ) exp [1 rtied
k -co
k=0
{(16)
X [F*@) - F*(gl)]dn
where F* is the complex conjugate of the Fresnel integral,
z . 2
F(z) =f '™ /2 du a7

o]

and F (») = {1 +i)/2. The real and imaginary parts are identified by F(z} = C(z) +1i S(z}, With A

k
given by Eq. (4) and u as before, the approximation becomes
i
K ck e k
E, 4 =Z -3 exp{i[wkt - p(wk)]l
k=0
(18)
(T—Sk)/ Tk
2
iu™/2 {1 -1
X f e [—2—— F¥* (gl)]du ,
~9kl T,

where €, =u- oy Tk,lﬂ and ek =t-o ’(wk). The ek measures time from the arrival of the fre-
quency component wy For Bk < 0, the kth component has not yet had sufficient time to contribute
to the signal, If ~gl remaijns large and positive throughout the range of integration -F* (51) =

{1 - i)/2 and the approximation reduces to the simpler form,

. K
1-i
2

T - Ok Bk
Ea4(t) = ¢, exp {1 [wkt o - :p(wk)]} F(T—k) + F(T_) . (19)

k=0 k
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This is similar to the results obtained by Jones and Ring2 and by Ginzburg.1 The transmitted
pulse is given by the sum of its quasi-monochromatic~frequency components, With large dis-
persion the frequency components do not interfere with each other. At large Sk the sum of the
Fresnel integrals effectively reduces the signal to negligible values. The frequency components .
are shifted in phase by the original o obtained from the incident pulse plus the wkt and the phase

change caused by the ionosphere, q;(wk). It remains to be seen which of the approximations are

valid for an EMP propagating through a model ionosphere,

Model Ionosphere

In order to obtain a reasonable underestimate of the effect upon pulses propagating through "
the ionosphere, the electron density must represent a lower limit, Density data given by Price '

have been represented by the function5

N -3,4x% 105 expf(z - 90.)/5.] z <90 km,
6
N=10 x exp(yl) 90 <z <1200 km,
N = 4. x 107 exp[(1200, - 2)/400. ] 2z 21200 km,
where the altitude z is in km, N is in electronslma, and ¥y is given by the quadratic spline fit )

obtained from the UNFOLD program, 6
g L2 2
Yy Tag tepz tagz +) alz- B) UR-B). (20)
i=4 '
Here U is again the Heaviside unit step function,

The total electron content {TEC) is defined by

]
TEcsf N ds,
[o]

where ds is the element of path length. If the integral is evaluated along a vertically upward path

originating at the earth's surface, with N as given above, the TEC can be represented by

TEC = 1.7E12 x {exp[(z ~ 90,)/5.] - exp[-18. ]} z <90 km,
TEC = exp(yz) 90 <z <1200 km, .
TEC = 2.66321E16 + 1.6E15 x [1. - exp[(1200, - 2)/400, ]} z 21200 km,



where z is in km, TEC is in electronslmz, and Yq is given as in Eq. (20) with a; replaced by ¥;
and ’Si replaced by 51' The coefficients are given in Table I. The functions are illustrated in
Figure 1, The simpler character of the TEC allows it to be represented by 9 coefficients rather

than the 12 in Eq. (20),

TABLE 1

Spline Fit Parameters for Evaluating N and TEC

i o Bi(km) ”; Oi(km)
1 1,21272536E+3 - -9,48153500E+0 -
2 -2,.70199204E+1 - 6,60216709E~1 -
3 1,51221780E-1 - -2,67240111E-3 -
4 -1.79349489E-~1 90,5 2,70437824E-3 120,
5 4,83587886E-2 98, 8, 94020605E-5 180,
6 -2,03333842E-2 100, -3.54413041E-4 260,
7 8,56362240E-4 150, 2,22781492E-4 340,
8 -6.95992291E-4 175, 7.99615055E-6 500,
9 -6.16064716E-4 250, 2,347568B00E-6 800,
10 5,68932804E-4 300. - -
11 -7.82182710E-6 500, - -
12 -1,84230226E-5 1150, - -

|=Ieclrnns-'rn,l
—T—T T

"

3

T

——=TEC telectronsim?)

b tkm)

Figure 1., Electron Density and TEC for a Vertically Upward Path
as a Function of Altitude Above the Earth's Surface

11
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Ag indicated in the introduction, attenuation of the wave is ignored, Hence, the index of

refraction for the ionosphere is a real quantity given by7

n= dl - wzlwz , (21)

where the plasma frequency is

= =3,18253x103 mSISZxN.

This expression also disregards geomagnetic complications, which should be taken into account
for w$ wy. Since wy = eB_/m_$5 x 10° rad/s, Eq. (21) is restricted to w> 5 x 10° rad/s. At
the peak of the modeled ionospheric electron density, N=1.4 x 1011 e1ectrons,"m3; the resulting
plasma frequency is ""p =2,1x 107 rad/s. Smaller frequencies result in an imaginary index of
refraction; hence, smaller frequencies cannot propagate through the ionosphere. The index of
refraction is illustrated in Figure 2. As indicated by Messierz3 and by Ginzburg, 1 other geo-
metrical factors occur in calculating the minimum frequency propagating obliquely through the
ionosphere. In that case the cut-off, or critical frequency, is w, = wp/ cos 90 where 00 is the
angle between the ray path and the vertical at entrance to the ionosphere (the angle of incidence).
Also, in the case of oblique rays, differing of the paths for the various frequency components will
result in slightly larger TEC values and larger delay (both because of the TEC and the larger
distance traveled) for the lower frequency components, For reflected rays the lower frequency
components travel less distance. Consistent with the conservative approach, however, these

variations of TEC and z are omitted from further consideration.

Figure 1 suggests that calculations of propagation in the model ionosphere should include
TEC values in the range 1014 <TEC<2,5x 1016 electronslmz. I-Iowevér, the definition of TEC
just below Eq, (20) indicates that for an oblique path through the icnosphere the TEC is increased
above the vertical path value by a geometrical factor, With 111 and 112 the altitudes of the lower
limit taken for the ionosphere and for the end of the propagation path, respectively, with 21 and 22
the distances from the origin as indicated in Tigure 3, and with 8 as defined in the same figure,
the increase in TEC caused by the geometrical factor is (J!2 - .Cl)/(h2 - hl)' as indicated in
Figure 4 for h1 = 90 km and a series of h2 values, In Figure 4 Re is the 6371 -km radius of the
earth, The formulas in Figure 4 assume straight-line propagation, inasmuch as frequency
dependence would have to be included in order to take path curvature into account. The figure
indicates that the TEC values considered should extend to —--1017 electrons/mz. In Appendix B the

TEC values are extended still higher in view of the minimum jonosphere chosen as a model,

Ny

—
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Figure 4, Geometrical Correction Factor for the TEC
in the Case of Oblique Propagation Through
the Ionosphere
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Terms in the Series Expansion of the
Transmitted-Pulse Phase Angle

The phase shift caused by propagation of the pulse through a material of index of refraction
n{w ,z) is given by

4

¢,=% _!)' wnlw,z )z’ , (22)

where ¢ is in the range of validity of geometrical optics;l i,e,,

72 <1,

¢ | din cos 9)/dz
Incose

w

with Snell's law, n(z) sin A(z) = sin 90. This approach is valid for the propagating (nonreflected)

waves,

The phase velocity is . e/n{w) = w/k’where k’ is the wave number, The "pulse” is
propagated at the group velocity vg = dw/dk’= ¢/[n{w) + wdn/dw]. If z is the distance the pulse
travels (group distance), the optical path length is given by

L =

o n(w,z}dz

O%—

m
It

>
+

L 4z
v
p

1]
O Yoy v

where Atp is the phase delay time, The group path length and group delay time are defined by

L =

o f— dz = cAt

=

0%y

a

When the pulse spreads in time, the shape varies with position and the group velocity must be

interpreted with care.

Let us now return to the expansion of the phase angle given by Iiq, (11), The frequency
interest is confined to a series of narrow bands centered at w - wy fork=1,2, ,, . K. From

Lq. (22), several factors in Eq. (11) are now evaluated, The phase shift at wy is
z 1

e “x
lp(wk) = ?{ niw, ,2z)dz = < Lo-* mkAtp . (23)



‘l
3

and the group delay time becomes

z
1 dn(w,z)
(O‘(“-‘k) =EI [n(w,z)+wT] dz .
o} w = wk

Since n is given by Eq. (21), the delay simplifies to

n . 2)dz. (24)

O = n

. 1
’ ) = -
® (u..k) =3
The dispersion at ) = Wy is given by
” = __
0 "(w) = [qo(w)]w_ W

Again, by use of Eq, (21),

z
wu(wk) =%J’ - l)dz . 25)
°

In a similar manner,

” -4n + 3
0" (wy) = » 2 j'[ ]dz, (26)

In a broad range of situations illustrated by Figure 2, the index of refraction is close to 1, In that

case, from Eq. (21)

T2 2 -1 2. 2
n=1-¢ N/2comem ,n =1+e N/2e°mew ,

and with the definition Ce = ezTECIZGOmec . Egs. (23) through (26) become
olw,) = u.-kzlc - Cluy,
fwy) =z/c+C /’w2
Py e/ %k’
27}

3
/i \ = - s,
qp’(a_k) ZCe/a,k ,

4
w - -
© (wk) = 4Ce/wk .

15
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Note that the explicit z dependence of the phase is contained in the p{w k) and w'(wk) terms, The
combined z dependence is wz/c, consistent with the propagation of a wave in the +z direction. If

this z dependence is suppressed,
o luy) = -Ce,wk'
R 2
<":“s(“"‘k) = Ce,wk'
p"wy) = 202 () w
ey ) = 20 "y wy -
The expansion becomes

2 2 3
olw) = wz/c - Ce/“’k +lw- ) Ce/‘"‘k ~w - wy) Ce"“’k
2 3 4
- -§(w - w) Ce.’wk + e
For analysis in the frequency domain, Eq. (7) and Eq. (10) lead to

i‘ok exp[_i(u:k - wT]-1
Ll.)k oW

K
1
E(w)=——.Z c e Rlw) .
2mi. k
k=0
Under the present assumptions, R{w) = e'lo(w), with the phase given as above, This representa-
tion of the transmitted pulse could be folded into a system response to determine a recorded signal.

However, the results presented here are confined to the time domain,

Transmitted Pulse Form

Rather than continue the extension to higher order terms, one may now examine the relative
size of the terms in order to obtain the simplest justifiable form for the transmitted pulse, Eq, (19)
is valid (1} if wkalfr - u>1 in the range -ek/Tk cus= (T - Qk)/Tk and (2) if the ¢’/ and higher
order terms are negligible, Recall that Tk W, 8, = t- o'(wk), and T is the pulse duration,
Thus, if @y is sufficiently large and ek and T are sufficiently small, use of Eq. (19) is reasonable.
If, for Eq. (8), Nl =1, T=1pus, a=4% pS-l, b = 476 ,_.3‘1 are the incident-pulse parameter choices,
then W = 2qk rad/ps. The ratio of the o ” term to the dispersion term in the phase is ;—(u: - u:k)l'wk.
Since Eq. (7) indicates that the incident pulse contributes only for each ¢ =~ wyer the ratio is small
when the kth component contributes to the transmitted pulse, This same Awlmk term appears in
higher powers for the ratio of higher order terms to the dispersion term. Hence, neglect of

higher order terms is justified, The other requirement of Eq, (19) is that
. "
Tk

—u>>1,

oy’



The largest value that u can become is (T - ek)ITk. Since ek measures time after the leading edge
of that frequency component starts contributing to the observed pulse, the largest u is TITk.
Hence, the requirement may be written
u;ka/n >>1 + TI'Tk .

Since Ce = ez(TEC),’Zcomec =5.3042 x lo-smzls x TEC, Eq, {27) indicates that wka/ﬂ =
[2Ce/(rr wk)] 1/2 can be large only for restricted values of TEC, The term is unity at TEC =
L x'1012/(10.86 mzlyS). Thus, for TEC (electrons/m?') >1012 x u,\k(rad/ps) the wkaIﬂ is large,
as required, The wy of interest ranges from 1 to 2 20 times 20 rad/us; hence, the lower limit for
TEC is TEC = 5 x 1014 electrons/m?. At TEC = 5 x 10°? electrons/m? and w = 20 rad/ps, then
Tk = 1.4 ys and the requirements of Eq. (19) are easily satisfied, With Wy increased by a factor
of 10, however, the requirement on Tk fails unless the TEC is increased by a factor approximately
equal to 100. Since 10 terms may be necessary in the pulse expansion, at least as a check upon a
sufficient number of terms being present, Eq. (19) does not have sufficient generality for calculating

the transmitted pulse. The equation is not adequate to describe strong spreading of short pulses,

Large dispersion is sometimes® quantified by |rp . >>1/(Au:)2, where A is the band pass
being received or propagated, This is equivalent to Wy Tk/‘rr >> wkl( V7 Aw). For the kth component
of the quasi-monochromatic wave, the Aw ~ W Hence, a restriction of large dispersion is con-
sistent with the restriction for validity of Eq, 19 (the T!Tk is then a ratio of the order of 1) for each
individual frequency component. It has been noted that at higher frequencies Eq, (19) is no longer
valid, This is consistent with failure of the large-dispersion approximation, For TEC = 2.5 x 1016
electrons/mz, large dispersion is questionable for k2 40. With the present choice T = 1 gs,
wy = 2 k rad/us; hence, the index of refraction ~1 for k 210, The'k = 10 component arrives
>30 ps after the k = 40 component; hence, the approximation ¢ < w is valid for the first 30 us of

the calculated signal if K 240 and if TEC = 2.5 x 1016 electrons/mz.

In the present case, where the incident signal is a series of quasi-monochromatic pulses,
large dispersion requires the propagated signal to be a sequence of dispersed pulses., If the dis-
persed pulse duration is greater than the time between pulse arrivals, the pulses interfere to form
quite complicated waveforms. For increased generality, one may now consider Eq. (18). Here,
it is assumed that ¢ and higher order terms may be disregarded, with no restriction on the dis-
persion,

K ¢ elmk
LIRS kz exp [i(o;kt - (g(u:k))]x L. (28)
k=1

17



where

(T - ek)l'rk

N L S

-8,/ T,

and 51 =u- wkalw. Since relative values of TEC and w, are not restricted, this form is justified

for the ionosphere and the pulse models chosen for cases when K is extended to larger numbers,

The integration limits span the time the pulse can contribute to E{t), with corrections for the
delay of various frequency components, The delay is¢’=z/c + Cel "‘]3 As expected, the higher
frequency components are propagated with the least delay. The phase angle for the carrier wave
is wk(t -z/c) + Ce/w . The ewk' could be considered as adding an angle to the carrier phase; Oy

does not affect the delay of the kth frequency component of the signal,

In evaluation of Eq, (28) 51 is often < -10; therefore, F* (El) ~ ~(1 - i)/2. Hence, in order

to increase efficiency, the integral in Eq. (29) may be written as

T-86 8
. k k

I =(1 -1) F( )+F(—)]
k [ Tk Tk

(30)
(T -8)lT, )
- LA | P L .
f exp( 5 )[C(EI) +3 15(51) 2]du.
—elek -
For many cases, the integral in Eq, (30) repres.ents a small correction term, The auxiliary
functions ‘
1 2 1 2
L ¥z | 2. in T2
£(z) -[2 S(z)] cos T2 [2 C(z)] sin T2, 31)
L. mz? 1 pz2
g{z) -[2 C(z)] cos—5 [2 S(z)] sin—7-, (32)
with
3 = o T/
T - 6k
b a, - s
1 k Tk
Oy
Yo =3 +—,
2 k Tk



allow Ik to be written

{33)
Py 4
+f [f&y)(sin p +1 cos p) - gly)(cos p - i sin p)];r{: ,
b
1

where y = (p + na.i! 2)/ (-na.k), ‘The SICONT subrouﬁneB is used for evaluating the correction term.
The methods used to calculate the Fresnel ihtegrals and the auxiliary functions are given in

Appehdix A,

In certain situations the 51 of Eq, (29) becomes large and positive, Since the correction term
can be significant in such cases, the form of Eq. (33) gives difficulty because of the rapidly fluctu-

ating f and g when their arguments are negative. One is forced back to the earlier form

pk
_ j’ imu? ) {1-1 "
]_k._ exp\—3 = - F (u-a.k) du , (34)

-6, /T,

with g, = (T-Bk)/ T,. LetI_ denote the portion of I contributed by usa . Withu, = the smaller
of a and ﬁk' with Bk >0, and with the definition

Fl, B = 1-D[F@) + F@)] , (35)

one finds

- -i . -i 36
I =4 (u‘e, T_) % [uk(z)] e VE -1f[vk(z)] e 1wz} dz, (@6

where uk(z) = a.klz + wzl(na.k) and w is a constant chosen as the largest of the three values 1,

and ek/Tk. The limits of integration are z, = wliga IZ tra ek/Tk) and z, = w (wakIZ -7y u, ).

In this form the vy 2 0; hence, the f and g are well behaved, and the numerical integration is

straightforward by use of the SICONT subroutine, 8

If uy = 'Bk' then I.k = I_ and evaluation is complete, If the restriction Bk > 0 is removed, then
the integral in Eq, (34) is over a region of negative u, Again, with u, = Bk (as it would be for
ﬂk < 0), one has Ik = I_. However, if uy =2, then I.k =1 + I+ , where

B
uru u_ ‘a- ]
+fk 2 F(uak) du
k .
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Again, to take advantage of the desigh of the SICONT routine for integration of rapidly oscillating

functions, let w be the larger of 1 and ﬂk. Then the integral may be written,

2
= l ’ iwz s , iwz ,
L ", {elvg@] ™ - il @] ™} az, -
2
%1
where
2 2
DR T S S L
k Trﬂ-k 2’1 2w 9 - ,

In summary, Ik =1_for u, = ﬁk; I.k =1 +1I, for u, = ay. The field is evaluated from Eq, (28), with

L given by Eqs. (33)-(37).

Results for TEC = 2,5 % 1016 Electrons.’m2

Before presenting results, one first checks the earlier assumption that n =~ 1. The delay
is qos' (wk) = Celwi = wz TEC/(2¢cN wi), When w = wp, the index of refraction becomes zero,
and propagation of that component ceases, Figure 5 illustrates the plasma frequency in the
model ionosphere as well as the delay, §, required by the constraint that the index of refraction
become zero, Hence, for TEC as low as 1013 electrcms/m2 {z ~ 100 km) and with n= 1 assumed,
the first ~ 10 ;s of signal may be evaluated. At an altitude of 350 km (TEC = 1016 electrons/mz)
and with n =~ 1 assumed, the first 300 ys of propagated signal may be evaluated, For oblique paths
through the ionosphere, the times are increased further. Of course, with these delays it is
assumed that the incident pulse has frequency components sufficiently high for the contributions to
occur after existing, higher frequency contributions. The lower frequ:ency terms that arrive after
these delays will experience small indices of refraction and suffer significant attenuation that is

not taken into account in the present model.

7] I R S SR S I EEN B N R 1072
- - -
10 10 :
~ Figure 5. Plasma Frequency and
B §(i.e., TEC/2Nc)) for
| i a Vertically Upward
2 / 4 2 Path Through the
® 106 — ,\\ l’ =110 'T Model Ionosphere
Bl S AN w ]
e E -1
| i d = delay for n= 0, Ne
g T S SR Y W N B 107
0 500 1000

Z {km)



With the parameter choices given at the beginning of the foregoing section, the double expo-
nential and the approximation of Eq. (1) are represented in Figure 6, The ¢y and o of Egs. (9)
are illustrated in Figure 7. The ) indicates that frequency components exist up to quite high
frequencies, as indicated in Figure 8, It is assumed that wavelengths less than 2 m are to be
neglected in the incident pulse, This might correspond to the interaction of the electromagnetic
pulse with an antenna a few meters long for which the response would be negligible for wavelengths
A<2m, 9 With the choice T = 1 ys, then K = 150 includes all components which effectively con-
tribute to the response of such an antenna., The results presented have used K = 325 and are very
similar to the K = 150 results, The observed wave is then given in Figure 9 (recall that the incident
wave is unitless, with peak value 0,93}, The delay, ¢ s' , suffered by each frequency component is
shown in Figure 10, Comparison of these two figures at later times allows one to identify the k
corresponding to the arrival of some of the low-frequency components, The summation in Eq, (28)
omits those components for which ak < 0, since they have not had sufficient time to arrive at the
observation point. The pulses, however, are quasi-monochromatic with width Aw ~ Wy From

Eq. (7) the kth component of g{w) reaches zero when w= 2 w In these results each component is

Kk

assumed to start contributing after the Bk corresponding to 2 x w, passes zero, For consistency,

k
the delay in Figure 10 for each component, k, was calculated for ¢ = 2 x Wy, - This alteration of Bk
increased the peak value of the transmitted signal by a factor near 2 and caused more rapid decay

of amplitude with time for TEC = 2,5 x 1016 electrons/mz,

If Eqs. (28) and (29) were applied to the case of very low dispersion, one might expect the
equations to give a reasonable approximation to the incident pulse, The Tk being small would
result in large correction terms. In that case, however, the proper procedure would be to neglect

the dispersion term as in Eq, (15),

The fraction by which the ionosphere has reduced |E(t) |ma.x can be found in Figures 6 and 9,
For the TEC value 2,5 x 1016 electronslmz, the fraction, f, is'0,077. The series of transmitted
pulses given in Appendix B allows evaluation of this fraction for a‘range of TEC values. Figure 11
compares these results, which allow constructive interferenée of frequency components, with data,
given by Messier, based upon high dispersion, 2 In order to facilitate this comparison, the choices
of a and b for the double exponential match those used by Messier for his incident double exponential.
The higher values of f presented here indicate that the high-frequency, low-dispersion components

add constructively to produce the maximum amplitude in the transmitted signal,

Conclusions

In a review of theory for the dispersion of electromagnetic pulses propagating through the
ionosphere, correction terms found allowed extension of the theory to the case where dispersion,
although not large, is not negligible, The pulse chosen for illustration had a dispersed-pulse
duration greater than the time between arrivals of the various frequency components. The com-
ponents interfere to form quite complicated waveforms, The high-frequency, relatively low-
dispersion components were found to add constructively to produce the maximum amplitude in the

transmitted signal, This amplitude was significantly affected by the inclusion of the correction terms.
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Appendix A

COMPUTATION OF FRESNEL INTEGRALS AND AUXILIARY FUNCTIONS

A transformation of variables allows one to take advantage of Boersma's* work for evaluating

the Fresnel integral, The maximum error is quoted as 1,6 x 10-9. For mc2/2 z 4, the results are

3 11 8 n
o) = =5 204 (_2) '
™ 0 ™%
11 n
8 8
gy = 52 %(—"z’) :
LC ™
1 2 2
Cix) = 3" g(x) cos nxT + f{x) sin —"-’—2(— ,

2
S(x) = % - g(x) sin "—’2‘— - f(x) cos % .

This restricted region of x is the one most often encountered.

For large x, the f(x) and g(x) be-
come small,

In the region 0 < ﬂlez < 4, the results are

11 o 2 2.
S L ' LI = X sin P
f{x} = 8 Z bn 3 +2{cos sin } . .
n=0

2 2
1rx2 - 1rx2 ! 1 1rx2 ‘nxz
g0 -y 2 -2, () +3{eos B rain ),
n=0

2

17x2 11 1T'x2 " ﬂ'xz ﬂxz
Clx) = JT 2 8 {an cos —5— - b, sin —}
n=0
and

11

nxz frxz ’ ﬂxz 1rx2
S = §5 L (T {ppc0s G- a sin B}
n=0

The coefficients are given in Table A-1I,

*J, Boersma, "Computation of Fresnel Integrals, " Math, Comp. 14, 380 (1960),
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For the case of negative argument the following relations allow evaluation of the functions.

l\‘c.w*

28

C(-x) = -C(x),
S{-x) = -S(x),
2 xz
f(-x) = -f(x) + cos T - gin I ,
2 2
2
g(-x) = ~gx) + cos —--17; + sin ﬂxT .
TABLE A-I
Coefficients
i a, b. c, d,
_ i i i i
0 +1.595769140 -0.000000033 0 +0,199471140
1 -0,000001702 +4,255387524 -0,024933975 +0,000000023
2 -6,808568854 -0.000092810 +0,000003936 -0,009351341
3 -0,000576361 -7.780020400 +0,005770956 +0,000023006
4 +6.920691902 -0.009520895 +0,000689892 +0,004851466
5 -0,016898657 +5.075161298 -0.009497136 +0,001903218
[ -3,050485660 -0,138341947 +0,011948809 -0.017122914
7 -0.075752419 ~-1.363729124 -0,006748873 +0,029064067
8 +0. 850663781 -0.403349276 +0.,000246420 -0,027928955
9 -0,025639041 +0,702222016 +0.002102967 +0,016497308
10 -0,150230960 -0.216195929 -0,001217930 -0,005598515
11 +0,034404779 +0.019547031 +0.000233939 +0,000838386
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Appendix B

A SERIES OF PROPAGATED PULSES

A double-exponential pulse characterized by the parameters N1 =1, T=1us,a=4 ps-l,
and b = 476 us'l is assumed to be incident upon a series of TEC values, The incident pulse and
associated constants are as described earlier in Figures 6~8, This appendix presents the result-
ing series of transmitted waves corresponding to Figure 9 for the TEC value 2,5 x 1016 electrons/
mz, The K value 325 was used for the calculations presented here, Comparison with results for
K =150 indicates that the latter number of terms would have been sufficient, Starting with the
TEC=1x 1016 waveform, the results are presented for an additional 2-us time because of their
more complicated behavior, With TEC = 1 x 1018 and following graphs, each graph spans 1 us
rather than the 2 ys spanned in preceding graphs, Some unfortunate scale choices have been made,
‘In the results for TEC = 7.0 x 1018 electrons!mz, for example, the pulse should be slightly off

scale (rather than discontinuous) nears = 3.8 us.
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Appendix C

EXAMINATION OF INDIVIDUAL FREQUENCY COMPONENTS

This appendix has been included in order to illustrate variation in the contributions of several
quasi-monochromatic frequency components and the effect of the correction term in Eq. (30) that
hae been included to account for the possibility of low dispersion, The amplitude units are normal-
ized to the 0, 93 amplitude of the incident pulse, For these graphs K indicates the contribution of
the k = K component, The resultant pulse is given in Appendix B for the TEC = 2,5 x 1015 electrons/
m2 case examined here, The correction terms have been multiplied by 106 as indicated, For the
cases shown, the correction term is $6 percent for each of the k values chosen. When results are
displayed as in Figure 11 the correction term reduces f by a factor of ~2 for TEC = 2,5 x 1015

electrons/ mz.
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