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ABSTRACT

A grounded, parallel-plate vacuum diode illuminated by x rays
generates a two-sided distribution of non-Maxwellian photoelectrons. The
resulting potential hill problem may be reduced to a first-order nonlinear
differential equation subject to two-point boundary conditions. An iterative
APL/360 program has been written to allow the user to perform on~line cal-
culations of potentials. Numerical results are presented for several cases

of incident blackbody radiation and unequal two-sided emission.
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I. INTRODUCTION

The study of space charge limiting in single and double diodes arose
early in electron physics in connection with thermionic emission. The sub- "’
stantial body of work generated by Langmuir and others is surveyed in the
review article by Ivey (Ref. 1). Time-dependent effects such as instabili-

ties have been developed in detail by Birdsall and Bridges (Ref. 2).

Currently, there is considerable interest in the response of electronic
systems to intense photon environments for which hv = 1 to 100 keV. Of par-
ticular interest are internal electromagnetic pulse (IEMP) phenomena gen-
erated by photoelectron emission in metallic cavities. The earlier works
cited deal almost exclusively with Maxwellian photoelectron energy distri-
butions. However, recent measurements (Ref. 3) and Monte Carlo calcula-
tions (Ref. 4) reveal that photoelectron distributions for monochromatic
photons are actually triangular rather than Gaussian. Furthermore, in
realistic IEMP cavities, emission from opposing walls is important, and
the two-ended emitter (double diode) problem must be solved. For Max-
wellian distributions, the double-diode problem reduces to a fairly simple
statistical mechanics calculation, but, for the triangular electron distribu-
tions, this approach is no longer valid. An additional complication is that
realistic radiation spectra tend to be filtered Planckian rather than mono-
chromatic and, hence, the triangular photoelectron distributions must be

summed over a broad photon spectrum.

Recently, Wenaas and co-workers (Ref. 5) developed one-dimensional
and two-dimensional computer codes for the one-sided (single diode) prob-
lem. In the present report, the planar double-diode problem is investigated
for filtered blackbody photon spectra. Stationary potential equations are
developed under the assumption of zero ambient air pressure and nonrela-
tivistic electron trajectories. A model photoelectron current distribution

is introduced and used to simplify the equations governing electric field and



net current. The resulting differential equation is solved numerically by a
Runge-Kutta procedure programmed for on-line use with IBM remote ter-
minals. Execution time per double-diode case turns out to compare favor-

ably with previous single-diode work.
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II. BASIC EQUATIONS

Consider a pair of grounded parallel plates located at x = 0 and x = £,
respectively. The space between the plates is assumed to be a vacuum.
Let us assume that, under the action of x-ray bombardment or some other
electron generation mechanism, the two plates emit electric currents with
electron energy distributions Ji(E) dE and JZ(E) dE (see Fig. 1). Each
electron energy group contributes a space charge density given by p(E) =
J(E)/ve where the elgctron velocity Ve is related to the electric potential

V(x) by the nonrelativistic energy conservation relation

i

lmiievim =E (1)

The electric potential is obtained by solving the Poisson equation

2

dx o

subject to the grounded plate conditions V(0) = V(¢) = 0.

The net effect of the motion of electrons in the space charge field is to
form a potential hill of height V = VM located at X = XEpge Lower energy elec-
trons are repelled back into the emitting plates while the higher energy elec-
trons escape over the top of the potential barrier and are collected on the
opposite plate. For simplicity we neglect any electron reflection and re-

emission after collection.

On the left side of the hill (x < xM), the net current Jn consists of a
forward component in’ a backward component Jbl’ and an additional com-

ponent sz arising from electrons arriving from the right.side, namely:

J =7

n-Jg -7

bt - If2 (3)



Fig. 1. Geometry of a Parallel Plate Diode
of Plate Thickness d and Spacing £
Emitting Current Densities J4 and
Jo A/cm? under Irradiation by
Filtered Blackbody Photons
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where Jn is constant because of the continuity equation dJ/dx = 0. Each

individual current contribution varies spatially with V(x) according to

Tgy (%) =fcD I (E) dE (4a)

eV (x)
eV )

Ty (%) = M (E) dE (4b)

eV (x)
and

T4y (%) =f°° 3, (E) dE (4c)

eVM

As expected, the net current is just

3 =f [7,(E) - 1,(E)] dE (5)

eVM

Similar arguments apply on the right side of the potential hill (x > xM) after
exchanging the subscripts 1 and 2. From the conservation of current and

energy, we obtain the following space charge density

PIX) = Py t Py +Ppp

fw dE 7 (E) j-evM dE J,(E)
= ; +
eV (x) [qu—(E - eV(x))] 172 eV (x) E—(E - eV(x))]“z

dE JZ(E)
(6a)

+‘[::M [—% & - eV(x))] 1/2 (Cont.)



e dE I, (E) fq, dE[J,(E) - J,(E)] ; (62)
= - or x = a
LV (x) [—r%(E - eV(x))]”Z eV, [E E - eV(x))]”z ™
and
dE J,(E) w  dE[J (E) - J,(E)]
. 2

p(x) =2 + for x = (6b)

'l;f(x) [% _ev(x))]i/z er E - eV(x ))]1/2 M

Note that the space charge density p is continuous across the potential hill;
i.e., p = Py T Pep at' VvV = VM.
To reduce the second-order system consisting of Egs. (2) and (6) to a

first-order system, multiply both sides of (2) by dV/dx and integrate to

obtain

2 'V (x) @®
%(QY) =ei dv'f p(E, V') dE (7)

dx
o VM 0

where the integration constant has been chosen so that dV/dx =0 at V = VM'

After some algebra, it can be shown that

2
(2—1“;7) - 1/2{ f dE J (E) (E - eV)/ f dE Ji(E)(E-eVM)”Z

€% (2/m) eV

_f“’ dE[1,(E) - T,(E)] [(E - )t/ L (& - evM)UZ]}
eVM

for x = Xy p (8a)
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and

2
d_V.) . 4 2 [PaE 1.E)E-ev)/? -2 [T QE I (E)E-eV y1/2
(dx €o° (Z/m)ll‘?'{ '[v 2 ~£VM 2 M

- f°° AE[T,(E) - I, (E)] [(E - e)i/% (& - evM)i/Z]}
eVM

for x = Xy g . ) (8b)

These solutions may be verified by direct differentiation and comparison with

the original differential Egs. (2) and (6).

Introducing the dimensionless variables

x:Ig _ V=VOV

J,(E)dE = J_jmdn  J,(E)dE = T, jp(m dn (9)

where J'o is chosen such that .6‘°°j1('r]) dn = 1, we obtain the dimensionless dif-

ferential equations

2 fo 0
(g«;-) =%{2[ dn j,(m) (n - wt/? . 2[ dn j,(m) (1 - vM)”Z
M

/2 for x < x (10a)

2
1/] y

- fm dnfj, () - j;(m][(n - %
M

- (T] - VM)



and
2
dv) _16 ), [®4n s 1/2 w . 1/2
=3 M j,(m) (n - v) -2 dn j,(m) (m - vy )
(dE 9{ .[ 2 _/;M 2 M
¢ 7 anly, o0 - 51T - 02 <= vt B for x>y (100)

v

M

in which the potential scaling factor is obtained from the Child-Langmuir law

J 2/3 2/3
v, =[% PEa) ——‘—1/7 = 5.69(J_ %) kv (10c)
‘o0 (2 e/m)

The two-point boundary conditions are now v = 0 at § = 0 and 1.

For the case of a symmetric double diode (j1 = jZ)' the two differential
equations become identical, as expected. The only explicit parameter in
Eq. (10) is the barrier height VM
the scaling parameter Jo 22. The current distributions j1 ‘and j2 depend

= VM/VO, in which Vo in turn depends on

implicitly on .]'0 £° and other additional physical quantities such as radiation

temperature and emitter composition.

In the special case where the forward and backward emission spectra
of the photoelectrons are equal, we may write j, = j where ./(-)m j(mydn =1
and j2 = kj, the function « now reducing to a constant independent of electron
energy. This allows the basic equations to be written in the more concise

form:

2

dV _ 16‘ <

() =glar rarar] frxsx, (te)
2

dy - 16‘ ’ >

(EE) =Lk E (s Py forxzxy (11b)
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where

)
0

<

F2 =

14

14

M an im (m - w!

[>+]

dn j(m) [(n - !
M

/2

/2

= (n - VM)

1/2]

(1ic)
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III. METHODS OF SOLUTION

The second-order Poisson equation has been reduc'ed to the form

dv/dt = F(v). Integration yields the formal solution

v
~ dv
E.—_!; —F(_?)_ | (12)

which satisfies the equation v = 0 at § = 0. Furthermore, the peak potential
VM must be chosen to satisfy the other condition v = 0 at € = 1. For certain
current distributions, the resulting charge density function F(v) is suffi-
ciently simple for the integral (12) to be explicitly performed. However,
this usually does not facilitate matters since a solution of the form § = G(v)
must still be inverted to give the desired potential curve v = G-i(ﬁ). This

inversion must generally be done nuinerically or graphically.

If we adopt the strategy of directly integrating Eq. (12) numerically,
another difficulty arises because of the singularity at F(VM) = 0. Expansion

of the right-hand sides of Eqs. (11) about v = v for actual current distri-

M
butions reveals the integral contribution
v
f M dv
(1-€)vy, F(v)
to be of the order ¢ 1/2. Consequently, small values of ¢ must be chosen,

implying a correspondingly small step size in the numerical integration.
Such computer runs are excessively time consuming, and thus the differ-

ential equation approach appears preferable.

The numerical results given here were obtained by means of the

APL/360 routine RUNGE provided by Dr. D. C. Pridmore-Brown. This

-11-



is a Runge-Kutta procedure whose step size and format are controlled by
the vector V (not to be confused with potential) and which operates on the
differential equation defined by the function SET. (The detailed documen-
tation is available from the writer on request.) It is most convenient to
integrate Eqs. (10a) and (10b) simultaneously from v = v, out to v= 0
rather than integrate the individual halves of the potential cons ecutively.
This results in a substantial saving in computing time. Further time can
be saved by choosing the fairly large step size A§ = 0.05. We estimate that
this subdivision introduces errors of around 2 percent in the potential solu-

tions and around 6 percent in the values for net current.

The method has been checked for the one-sided case by passing to the
limit of vanishingly small barrier heights (vy;—0). As vy, diminishes, the
potential curves become parabolic with distance £, in agreement with the
linear small-field approximation dZV/dx2 = -.]'/e0 ve. In the opposite limit
of increasing barrier heights, the potential curve becomes increasingly
skewed toward the left, approaching a thin sheath with a linear tail in agree-

ment with the vacuum approximation a®v /dx2 = 0.

Solutions have been studied by the writer for x-ray spectra that are
monoenergetic, flat, or ideal blackbody (Planckian). Only the case of black-
body radiation will be presented in this report. The basic equations (10) can
also be readily used to handle input data on photoelectron spectra originating
from measurements or from Monte Carlo computer runs. The integrals over
electron energy would then be replaced by finite summations with judiciously

selected quadrature weighing coefficients.

-12-
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IV. MODEL ELECTRON ENERGY DISTRIBUTIONS
FOR BLACKBODY RADIATION

The photoelectron current produced by incident x rays is the product
of the filtered photon flux at the emitter surface times the photoelectric pro-
duction cross section summed over all photon energies. The ideal blackbody

spectrum is given by the Planck formula

CE2 dE

v = exp(E /T) -1

N(Ey) dE (13)

where EY = hv is the photon energy in keV, T is the blackbody temperature
in keV, and C is a normalization constant chosen such that f« N(E) dE = 1.
An attenuatmn factor exp[-p d p.(E })] must be inserted for an emitter of mass
pd (g/cm ) and total mass absorptmn coefficient p cm /g The photoelec-
tron production cross section is proportional to the amount of photoelectric
absorption of incident photons: [1 - exp(-R w]=R_ p, where R_ is the
electron stopping range in g/cmz. Strictly speaking, we should also include
an energy-dependent factor to account for multiple scattering of electrons
within the emitter. However, for sufficiently low atomic number and photon
energy, this variation in energy is relatively slow (Ref. 6). Above the K-edge
for the emitter, the photoelectric absorption to a:good approximation varies
as (EY - EK)-?’, while the electron range varies as (EY = EK)Z (see Ref. 7).
A final ingredient is the electron energy spectrum for monochromatic pho-
tons. The measurements of Denisov (Ref. 3) reveal the dominant contribu-
tion to the photoelectron energy spectra of light elements (EK <« hv) to be
linear up to the maximum photoelectron energy EY - EK' Combining all of

these ingredients, we get, for the blackbody photoelectron current spectrum,

-13-



© Ei exp[-p d p.(Ey)] dEY

exp(E_/T) - 1 ~ -~ 3
E+E Y (E - Eg)

1l
Q

J(E) dE

K

2 E dE
C (B - Ep) e E -E?
Y K

3 2
exp[-(El /Ey) ] EY (14

v exp(E_/T) - 1 _ 3
E+E v (EY Erx)

n
Q
b
jo
£

\8
=R
3]

where EY = Ei is equivalent to the e-fold attenuation factor corresponding to
pdp=1. The factor C'/(EY - EK)2 is introduced to normalize the total
electron spectrum to unity. If we continue to neglect K-edge effects

(EK <« hv), and introduce the dimensionless variables

n=E/V_ n, =E, /Y,
p = Vo/T X = EylE
y=mp=E/T leEI/T o« o (15a)
we obtain the dimensionless form for Eq. (14),
j(n) = C J(np) (15b)

where

3
 dx exp[-{y, /xy)~]
X exp xy - 1

J(Y) =y A . . . (15¢)

-14-



The function J(y) exhibits fairly simple behavior:

Jy)~vy fory -0

~ exp(-vy) fory - @ (16)

which can be verified by asymptotic expansions of Eq. (15¢). Some typical
computer plots are shown in Fig. 2 for the case of 0. 54 g/cm2 of aluminum
and T =5, 10, and 20 keV. A useful approximation is the triangular distri-
bution sketched on each plot, for which the governing parameters are y, and
Yoo This model distribution function is used in the remainder of this discus-

sion. A summary of model parameters is presented in Table 1.

In analytic form, the triangular distribution may be written as

: 2 Y1
J(Tl)=—;ln— forn=my =45
2 1
n, - 1M b4
2 2 2
e —— f < < = e— 17
ny M, -y ormysM=M; =g (17)

It is not difficult to establish directly that .6‘"’ j(m) (_111 = 1, as required in

Section II. The net current is

T, = (L - f°° j(m) dn

<

M
v zn
- My 1
_(l-K)[i-(nl) “2] for 0 < vy, =M,
yooM
)
= (1 - k) T, 7, for n s vy s M, (18)

-15-
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PLOTPARM+35
MODELPIT

SPECIFY MASS NP EMITTER IN G/CM»2,

e

MASS
IS A PLOT REOUIRED(YES OR NO)?
Y

0.175

* BLACKBODY
0. 150 0 o= °© TRIANGULAR

0. 125
0. 100§

(y)
0. 075

0. 025

-0, 025

2
Y
3

TEB= 20 Yi= 1.1 ¥2= 3.8109 Yo= 1,1653 MASS(G/CMx2)= 0,538

PLOT SCALFR= 35

Fig. 2(c). Blackbody Current Distribution F'it to a Triangular Model
(TBB =20 keV, d =2 mm Al)
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Table 1. Summary of model parameters for triangular
current distributions

(2 mm Aluminum)

TyplkeV) Yy Yy Y2 v4/Y2
5 4.7 3.3 8.0 0.41
10 2.3 1.9 4.8 0. 40
15 1.6 1.4 3.8 0.37
20 1.2 1.1 3.8 0.29

When the barrier VM is increased from zero to the peak of the electron dis-
tribution (0 = Ve 111), the net current goes from Jn/Jo =1 down to Jn/.To =
1- 111/112. Further increases in the barrier height toward the maximum

electron ener (n, s v,, <M,) causes the net current to drop to J_/J_ = 0.
gy My M 2 |3 n'“o
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V. NUMERICAL RESULTS

The basic formulas, Eq. (10), can now be evaluated using the model

distribution given by Eq. (18). Because of the piecewise nature of the tri-

angular distribution, the evaluation divides into three cases.

Case 1: VM S ny

vV
F =fMdni~"—(n-v)”2 2 Fv,vy - )
v

1 n, My Ta
where
F(v,x) = x3/2(%x +%— v)
1"
- i 2 M 1/2 1/2
= dn-& 1L - - -
F, j‘: " 111[(11 v) (M-vy) 7]
M
| n - Tl 2 1 2
"‘f Zdﬂni:q—z‘_-n—[('l - V)” - (m - vy /
Ny 2 2 i .
4 4
= -— c2
A FSCl v nzmz - “1) FS v
where
FSC1 v = ]F‘(v,‘n1 -v) - F(iaM, ni - vM) - F(v, VM T v)
FSC2 v = F(v - 1]2,1]2 -v) - F(vM - qz,nz - vM)

- F(V " '12; 111 - V) + F(VM - nzy "11 - vM)

-21-
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Case 2: v < ni and vM 2 'r|1

4 F(Vﬂ’ll - V) 4

F, =

1 nl nz )[F(V-TIZ:VM-V)-F(V-'f}zn"'li"’)]

4
F, =« ————— FSC3 v (19¢)
2 n,(ny - My)

where

FSC3 v = F(V = "'12; 112 = V) = F(VM - "12:"12 = VM) = F(V = le, VM = v)(19d)

Case 3: v = 'nl and vM = 'r]1

— —4 - -
FI - = nz(nz _ nl) F(V TIZ:VM V) (193)

F,=-——2%  FSC3v (19£)

2" "M, - my)

These relations have been incorporated into the APL/360 program titled
BBDI®PDE which is listed in Fig. 3. This program is suitable for on-line
use via the IBM 2741 teletype terminals.

A typical terminal session is shown in Fig. 4. The user first enters
the desired values for blackbody temperature TBB (in keV), triangular
model parameters Y1 and Y2, and scaling parameter JOL2 (in amperes) by
means of the APL operator <. Access is then gained to the potential pro-
gram by typing BBDIQDE. The computer responds by requesting a trial
value for the potential barrier height NUEM. After this value (usually

between 0.1 and 0. 3) is entered, the computer types out a short table of

-22-
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JOL24+400

BBDIODE
SPECIPY TRIAL VALUE FOR NUEM
:
.20
n,2 0.,18897 0,.18887
0,4 0,14546 0,14546
0.6 0,023333 0,023333
0.8 ~0,00084657 ~0,00084657
1 ~0.00084657 ~0,00084657
LEPT= 0.65 RIGHT= 0.85 D= 1,3
JRIGAT+ ALEPT= 1 cPL rfME= 0 O 15 47 M 5 SS
Yi= 1.1 y2= 3,8 TBB= 20 NUEM= 0.2
FOxL*2= 400 JNET+JO= O VMAX= 61,78
BBDIODE
gPECIFY TRIAL VALUE FOR NUEM
.16
0.2 0.13233 0,13233
o.4 0,011408 0,011408
0.6 ~0,012917 ~0,012917
0.8 ~0.,012917 ~0,012917
1 ~0,012917 ~0,012917
LERPT= 0.4 RIGHT= 0.4 D= 0.8
JRIGHT+JLEFT= 1 CPU TIME= 0 0 11 14 M S SS
Yi= 1.1 y2= 3,8 TBB= 2 NUEM= 0.16
JOxL«2= 400 JNET4+JO= 0O VMAX= 49,424
BBDINDE .
SPECIFY TRTAL VALUE FOR NUEM
Me
.18
0.2 0.,16126 0,16126
o.4 0,082581 0,082581
0.6 ~0,019402 ~0,019402
0,8 ~0,019402 ~0,019402
1 T0.019402 ~0,019u402
LEPT= 0,5 RIGHT= 0.5 D=1
JRIGHTAILEFT= 1 cPU TIME= 0 0 12 23 M § SS
yi= 1,1 ¥y2= 3,8 TBB= 20 NUEM= 0.18
JOxLw2= 40O JNET+J0= 0 VMAX= 55.602

****i.*****i***t*******************

Fig. 4. Printout of Typical Terminal Session
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values for the distance parameter § (column 1) versus the potential v on the
left and the right of the potential peak (columns 2 and 3 respectively). The
last four lines of output provide a summary of data and solutions. The first
line gives the location of the left and right grounded plates with respect to
the potential peak and the total plate separation D for the present iteration.
The second line gives the ratio of emission currents and the execution time
for the computation in minutes, seconds, and sixtieths of a second. The
third and fourth lines summarize the input data and give the net current
ratio and the maximum potential (in kV). More detailed information on the
potential profiles can be obtained by typing DATA. In general, the plate
spacing does not turn out to be unity on the first try, so the user must
iterate again by typing BBDI@DE and repeating the whole process described
above. A successful solution for which D = 1 is indicated by a row of aster-

isks following the last line of output.

The IBM 370/155 execution (CPU) time for each iteration is about
15 sec, which at $4 per CPU minute amounts to about $1 per run. Assum-
ing 2 to 4 iterations per case, the costs are about $#2 to $4 per case. This
figure is quite comparable to previous work (Ref. 5), and there is the addi-
tional advantage that the user is in the computation loop and can decide how

much and what type of information he desires for each case.

A typical family of potential curves for the case of a symmetric diode
is shown in Fig. 5. This potential is always centered between the plates and
increases with increasing values of the parameter Jof 2. Note that for values
of Jolz greater than 20 A, the peak potential can exceed 10 kV above ground.
For the case of unequal emission, the potential peak moves toward the
stronger emitter as shown in Fig. 6, and, for one-sided (k = 0) emission

and large Jofz, the skewing is quite pronounced.

Numerous runs for TB =5, 10, and 20 keV and either one-sided or

B
symmetric emission have been summarized in Tables 2 and 3. First, let

us examine the dependence of net current J /J on J 22 and T,,. For J !2
n' "o o] BB o
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Table 2. Peak potentials and net currents for a single diode
(MASS = 2 mm Al, k =0)
Ten To2® v 313 M
(keV) (A) (kV)
5 25 0.10 0.97 4.9
50 0.14 0.87 10.8
100 0.16 0.60 19.6
200 0.135 0.34 26.3
400 0.105 0.17 32.4
10 25 0.11 0.96 5.4
50 0.15 0.80 11.6
100 0.15 0.50 18.4
200 0.125 0.26 24.3
400 0.093 0.14 28.7
20 25 0.085 0.99 4.1
50 0.11 0.96 8.5
100 0.14 0.82 17.2
200 0.15 0.53 29.2
400 0.125 0.34 38.6
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Table 3. Peak potentials from a symmetric double diode

(MASS =2 mm Al, k=1, J /J_ =0)
n'“o

Ten ot : i VM
(keV) (A) (kV)
5 25 0.25 12.2
50 0.27 20.9

100 0.22 27.0

200 0.165 32.1

400 0.115 35.5

10 25 0.20 9.7
50 0.26 20.1

100 0.24 29.4

200 0.185 36.0

400 0.132 40.8

20 25 0.16 7.8
50 0.22 17.0

100 0.24 29.4

200 0.22 42.8

400 0.18 55.6
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greater than 50 or 100 A, the net current in an unequal double-diode drops
significantly below unity. The dependence on the radiation temperature
enters through the ratio VI/VZ‘ which (as seen from Table 1) does not vary

greatly as T is quadrupled in value. The most sensitive dependence of

BB
Jn/JO, as indicated by Eq. (18), is on Joﬂz via the dimensionless barrier
height Ve

pass through a maximum, so that similar .]'n/Jo values result only if we

Note, however, that for each fixed temperature, the VM values

compare both the upper or lower branches of Eq. (18) in both cases.

As has been previously pointed out, the values of VM do not change
markedly with Jofz {e.g., a fourfold increase in JOIZ from 25 to 100 results

in a 60 percent change in v for the case Tggp = 5 keV). Since Ve VM/VO

M
and V_ = 5,69 (JOIZ)Z/S, it is evident that the peak potential is given by

_ 2,2/3
Vg = BT L5)
in Table 2. On the other hand, the classic Child-Langmuir solution for a
o =569 (32270213 = 2.26 (7 4?). Therefore, the

potential solutions for arbitrarily large values of J'oﬂz are not correctly

where B is around 0.5 to 1.0 for the range of parameters

centered potential is V

given by the usual analytical results. This is because we are dealing with
a spread in electron energies rather than a monoenergetic distribution.
Nevertheless, neglecting the slow variation of VM with Jolz, the scaling

law for V.  with Jozz is approximately that predicted by Child and Langmuir.

M
Only the proportionality constant is different.

For actual IEMP studies, these results can be extrapolated graphically,

or additional computer runs can be readily made.
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