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SECTION 1
INTRODUCTION

ale- . co. .'.-_\
i - .-{ .-

.This report is the f1rst in a series de51gned to educate the reader
in the technlques used in the computer code QUASI, whitch. calculates the
currents runnlng on various portlons of a satellite structure. We will out- _

line the general method first and then concentrate on how one would construtt

‘the- node/branch model of the satellite that is required by the code In-

order to perform the latter task'in a manner whlch br1ngs out all of the

' problems clearly, we proceed from very . 51mp1e models to more complicated

structures, each of which empha51zes a particular aspect of the problem. At
the end of all th15, the reader (and, indeed, the author) w111 still. have a
great deal of dlfflculty in constructlng a reasonable node model of a real
structure, but we should all have a better understandlng of why we are hav-‘
ing so much trouble. It would be possible, as has beéen done in the past
with transmission line models, to start off with a very compl1cated rea115t1c
satellite system and claim that we have modeled it well in our code. Until

tests have been performed, no one could prove otherwise. As in the trans-

j;mlss1on line models, the quasi-static model can be manlpulated to ring with the

proper period (it uses 1nductors also) ‘However, we w111 start by modeling
spheres and cyl1nders, where the amount of fudg1ng requ1red to make them

work will be 1mmed1ate1y obV1ous. Hopefully, the amount of insight obtalned

in this way will more than compensate for the embarassment and can be considered

a deposit in the bank of 1ntu1t10n from whlch we will all have to withdraw

when the t1me comes to predlct the currents. runnlng on an actual S&tEliltEa



SECTION 2
THE QUASI-STATIC APPROXIMATION

The ﬁﬁasi-static approximation can be thought of as a static
version of the.method of moments with self-inductive terms and radiation
losses approximated by the inclusion of lumped parameters. It would be
possible, of course, to include mutual inductance terms.. -The impoptant

| point is that inductive terms are not inherent in the soiution,.but must
be added as corrections to the static solution. Experience with finite
difference solutions to two-dimensional (azimuthally symﬁetricJ geometries
indicates that the oscillation modes are not excited to an important degree
in reelietic SGEMP problems and that the quasi-static appfoximationrsheuld
suffice. vHowever, one is still left with the problem of determiﬁing vaer§

_of inductance and resistance by other means. In the future, it would be

| wise to use method of moments (MOM) and integral equation techniques to
determine the coupllng coefficients in terms of lumped parameters (Reference
1, 2, 3). With those methods, the impedance (coupling) parameters can be
found bf solving the free-field seatterlng problem and fed into the qua31a'
static code as the satellite model. The quasi-static code then would calcu-
late spatlal and return currents in a self-consistent manner. The moment.
method solutions can be made in a rather-crude mannerrcompared to what is
normally requfred in an antenna calculation, since the parameters will be
used in a proﬁlem‘in‘which higher modes are not excited. There‘is no sense
in d1v1d1ng the surface of the body into more-area 1ncrements for the MOM
calculatlon than is going to be used in the qu351 statlc model The only

'change requlred would be that elastance coefficients would be computed‘in-

“stead of capacitance coefficients. The decreased accuracy requirements would




allow three-diﬁenSional objects (objects without azimuthal Symmetry) to:be :

“analyzed with minimal computer storage and tlme requlrements Other approx1-

mations might also be allowed whlch normally would not be cons1dered in a

. MOM code.

In tlie qua51 -static approximation, both space and the sate111te body
are divided into nodes, where charge is allowed to accumulate. The electrostatic
potentlal at a partlcular node 15 glven by the sum of the charges at all the
nodes, each t1mes an elastance coeff1c1ent, i €., the potential at the 1th

node 15
K

- 2 5 ,>: e

Here, for later convenience, we have summed separately over the structural

~node charges, QJ, and the spat1a1 node charges 9 - The structural and spatial

elastances are E1J and elk respectively.

. At the moment, we calculate the internode elastances by assuming

that the nodes consist of point charges, i.e.,

. . 1 . . :

E. o = 5ore ’ i# J (2-2)
ij 4wcoRij bt
= 1 ; : ' ' ‘

®ik T me,r. > 1#k, . - (2-3)

ik

where MKS units are used (g4 = - 8. 854 X 10'12 farad/m), R 1 is the dlstance

‘between a surface node and the node at which the potentlal is de51red and

rik is the distance between a spatial node and the one in question. The
self-elastance of a structural node is usually. calculated by (1) taking the
area of the satelllte structure that is represented by the node, i,'(ZJ

determ1n1ng the radius of a sphere with the same areal a, ; where

* The procedure for calculatlng a; is different for long thin objects. This
will be discussed in Section 5. ' ' ' :

7



a, =y~ , (2-4)
‘and, (3) using the self-elastance. of .a chargedfsphere,

Fii = Zﬁé%;; . (2-5)
Figure 1 shows the example of a cy11nder which we will transform
into a nodal model. In this case, we choose to break up the surface of
the cylinder into 14 ségments, each of which will be reﬁresented by a node.
The surface nodes will eventually be connected by impedances to allow cur-
rent to flow between them. Figure 2 shows the nodal représgntation of the
cylihder, whéfeffhose nodes which will have impedance branches between them
are connected byrlihes. The nodes are represénted by spheres in the diagram,
but it must be remémbered that they are treated as such only in the calcu-
lation of the self-elastance; otherwise, they are treéated as point charges.
Figure 3 shows a cross-section of the node model. Here the spheres represent;
ing the nodes are drawn to 'scale. Nodes 1 and 14 are chQSén to represent
half the area of the end caps. Nodes 6 through 9 each represent l/sth
the area of the cylinder wall. The remainder of the,nodeé,,situated at the

th th

corners, each represent 1/8 the area

of thezside.

the area of an end cap plus-i/16

3The_self—elastance qf a spatial node is caléulatéd by assﬁming
that the charge contained in the incremental volume of space represented
by'the node is evenly distributed throughout a sphere of the same volume.

Since cartesian coordinates are used in QUASI, the incremental volume is
= Ax Ay - Az , . ) ' (2-6)

‘and the Tadius of the sphere is

= [37/(4m) /% . ' @27
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Figure 2. Placement of the nodes used to represent the cylinder
- shown in Figure 1. Lines show which nodes will be
. connected by current carrying branches.;
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The potentialzat the surface of the sphere due to the charge contained.
within it is

Vi = 8meoa; _ (2-8)

or

1
®ii ~ Breea; (29
This elastance is half of that which would be present if the charge was
distributed over the surface of the sphere, as in the case of the surface
nodes.
. Electrons moving through space have their trajéctories altered
by the presence of electric fields (magnetic: field terms are ignored in the
quasi-static approximation). These fields are generated by charge distribu-
tions in space and on the satelllte body They are calculated by. f1nd1ng

the gradient of the potential in the vicinity of the partlcle

In order to calculate the current running on: ‘satellites, i.e, on
the branches connectlng the nodes we must spec1fy the impedance which is
assumed to connect the riodes. ThlS will usually consist of inductive and
re31st1Ve elements, the capacitance being determined by the nodes. Consider

th ﬂth

the current runnlng between the m apd surface,node., In the absence

of a connectrng branch, the potential difference between them would be

'Amn"= VooV | B (2-10)

- where V and V are ‘calculated using Equation 1 w1th i be1ng replaced by m
and n. When a connnectlng impedance is present, there is also the condition
that

12




Amn ZmnImn ? . . : (2-11)
where Za is a time domaln operator representlng the branch impedance and
Ihn is the current flowing on the branch. For example, if a pure 1nductance

connects the two nodes, then

Y | ' .
Amn = Lin ot Im DR (2-12)

‘where Lmn is tﬁe‘indudtance. Mutual inductances could be used to couple

branches, just as the nodes are through E .-

There Are several ﬁéthods for solving the set of equations defined
by 2-9 and 2-10, where the currents flowing in all the branches must be con-
 sidered, as well as electrons returning to the nodes from" space and leaving

them through photoemission, and the spatial charge dlstrlbutlon in space.

A time stepping procedure was chosen for use in program QUASI. This is out-
1ined by the flow chart shown in Figure 4. From the circuit solution
viewpoint, the important aspect of this method is that -a two-step time 1ter—
ation scheme is involved and that it amounts to a large impedance approx1ma-
tion. It was chosen for its 51mp11c1ty. In the future, after the entire
eode has been shown to operate correctly, more accdrate techniques could

be used.

In the remainder of this report, we will epply-the‘quasi—static
approximation to ‘simple geometries in order to examine some of the factors
which must be considered when determining the branch impedances. The
meaning .of such quantities as capacitance, in the node model context, will
be made clear. ‘The same is true with the concept of r1ng1ng modes. At
thlS point, we must -specify the complex frequency with wh1ch the object will
ring. Then, from'a knowledge of the self and internode elastances of the

surface nodes, we can find the required inductances and- resistances. Thus,

13
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Figure 4. Outline of the structural current
calculation‘ used. in program QUASI.

14




for this part of the problem, the interaction with spatial charges can be

:,ignored and Equaiion 1 reduces to
- J 7 . . : : ) ' . ..
v, = 2. E..Q. . ‘ _ (2-13) .

As mentioned previously, moment methods might be used in the future to
generate the prbper coupling impedances, thus eliminating the guesswork.
- This is still a good exercise from the aspect of understanding the coupling

processes involved.

15




SECTION 3 |
SOME CIRCUIT RELATIONS | ' »

In the studies of the node models which follow, we will need to
derive equivalent circuit networks which give the same results as the node
model. In order to standardize the notation, certain elementary concepts

are displayed here.

In Flgure sa, a serles RLC impedance is shown, comnected in series
with a voltage source. A parallel RLC impedance is in parallel with a
current source in Figure 5b. Considering the underdamped cases only, the

rlnglng frequency in each case is given by
w? = wﬁ - V2, - (3-1)
where v is the damping rate (vA= 1/t, where T is the e-fold decay time) and

wp is the undamped ringing frequency. 1In both the series and parallel

impedances,

| Wo = L1 (sec™?) . - (3-2)

Nic

The damping rate is given in each case by

_\E%E-(sec'l), parallel

v = = O (3-3)

%% (sec™!), series .




()}
-/
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e

(a)ASeries (b) Parallel

Figure 5. RLC resonant circuits.

In order to determine R, L, and C from the behavior of a’ circuit, we require
“one more parameter in addition to Wy and v, For this parameter we chose

the characteristic impedance

n= \[%7 (ohms) . (3-4)

Then, in both cases,

L = n/w, (henries) , - T (3-5)
C = 1/(won) (farads) , | (3-6)
while
: won ‘
B 2y (ohms), parallel | |
R= D - . . (3-7)

' 2un/wp (ohms), ‘series .

Obviously, more information about a circuit is required in order to choose
between- the serieés and parallel forms. This can come from the required
behavior at low frequencies, for example. '

- 17
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Note that the same complex ringing frequency is exhibited by

‘a second circuit. W1th parameters L', C', and R' when the 1ndlv1dual im-

pedances are related by a multiplicative constant i. e., S -
Q' Wy . _
' (3-8) . i
v =wv
if
L' = KL
“C' = C/k
R' = kR

where k is any constant. The eircuit's characteristic impedance changes,

‘however

n' =kn . ll_u (3-9)

In the follow1ng sectlons, we will attempt to formulate equivalent
circuits which- predict the hehavior of 51mp1e'geemetr1c shapes.
- The node models will give us an effective. capac1tance C. It will
then be necessary to estimate the values of L. and R wh1ch will make the
circuit ring at the frequency of the prlmary resonance. It will also be
necessary to choose the arrangement of circuit elements to give the proper
low- frequency behavior. Higher frequency behavior depends on the excitation
of higher modes, which w111 not be simulated. With the 51mple shapes to be
considered, it w1ll be relatively easy to ‘estimate the undamped ringing
frequency, Wo. * This is done by making the wavelength of the oscillation
equal to the perlmeter length of the object in the dlrectlon that the
oscillation is assumed to occur. For example, using this formulat1on, the
wavelength at which a cylinder of length 2 and dlameter d would oscillate,
if it did not radiate, would be 2(d + 2). Of course, the complex frequency
of such 51mp1e objects is already known to high accuracy, but the purpose

of this exercise is to investigate techn1ques which m1ght be used in more

18, | — i




realistic problems. Given wy end.C, the inductance, L, can be calculated.
A radiation resistance must also be estimated to give the ‘damping rate and
true ringing frequency. The damping rate will usually be small compared

fo the undamped frequency. The worst case is the sphere.

In orderrto see how the procedure might work, without actually.
using the node model to calculate C, we apply it to the problem of an
oscillating sphere. Let the sphere have the radius a. The undamped oscil-

lation frequency for the primary resonance would then be estimated as

 wp = 2mc/(2ma) = c/a , : (3-10)
vwhere c is the speed of light and the wavelength is
| Ao = 2ma . - -Vﬁ": | (31D

The wave number is then -

ko = 22 = 1/a , | o (3-12)
so that v
‘koa =1 . _ ' (3-13)

An estimate of C.is now requ1red in the absence of a node model calculation.

The static capac1tance (capac1tance to infinity) of a sphere is

.00

C, = 4T€ea , - . (3-14)

Where €0 is the permittivity of free space (8.854 X 10712 farad/m). This
1s not - the. capac1tance requ1red for our problem however. Werareqeoncerned
w1th the problem of the oscillation of charge from one side of the sphere
to the other, ‘with the total charge belng Zero. Therefore the capac1tance
of interest is the capaeitance between the two sides of the sphere rather
than the eapacitaﬁce of the sphere relative to infiniry, ‘The capacitance

between two hemisphericalvehellsrseparated by-an infinitesimal gap is

19




c=Lewm. : o (3-18)
The inductance which will make the circuit ring at wo is‘given by. Equatioﬁ
3-2 as | '

L = 3;1.- Yo » ) (3-16)

where Wy is the permeability of free space (Mo = 4T X 10-7 henry/m) and
where o

c? = 1/ (Mo€0) - . (3-17)

The characteristic impedance is then

oo 2Nng - | (3-:
. n = =5 (3-18)

where ng-ié the,impedaﬁce:of'free space (=120 T ohms}.

Flnally, we need an estlmate for the resistance R. In a real
problem, it would be estimated from thé damplng rate of a simple, but
geometrically 51m11ar, object (Propably with equal surface area). In this
case, we started with a simplé object so that we have gone as far as is
- practical. Note, howeVer, that the equivaient parallel and series circuit
resistanpes a?é“related by

PR _ 2 . . ) N '
RSRP = n* . - | (3-19)

The complex wave number corresponding to the first resonance of a sphere is

given by (Reference 4)

V3 .1 wa ’
. -+ — o= — . -
ka * 2.+ i3 < | | (3-20)
so that
va Ig : . )
yMa _ 2 o1
= 5 - , | (3-21)

The ringing frequency is given by

20 -




a
T

————

C

i . 2 " .
| (9%':1_)2 = (fi_a) . (chi)z =1, . o (3-23)

which is identical to Equation 35I§,» Using Equation 3-7, the parallel

|5

, - o (3-22)

so that

resistance is ,
C. -

7 Gn : : ,

Rp s NSl (3-24)

o 253

" The series resistance is the same in this case, so that we can consider a

'single resistance in both circuits, i.e.,

R=R_ =R =n. S (3-25)

'Therefore all of the elements 1n both thé series and parallel resonant

circuits are equal

Instead of trylng to use the hemispherical cap301tance we might

have tried u51ng half the static capac1tance,
c=2c = ome - | (3-26
_2 o oa , ) ! ) -,)

and, in this case at least, the' error would not be lafge (25 pefcent) No
general statement can be made at this time about the error involved in using
this procedure for other shapes It would be useful because the static
capacitance is. known for many geometrles, 1nc1ud1ng cylinders, spher01d5,
and the- 11m1t1ng forms of spher01ds, e.g., discs (References 5 and 6). The
modal frequenc1es are dlso known for many such shapes ‘which helps in esti-

matlng the radlatlon re51stance (References 7 through 9).

In order to decide whether a series or parallel impedance is

more appropr1ate, we must look at the low- frequency behav1or The radiation

21




resistance of an'eiectricaliy small dipole isu(Reference;d)

_ 2l 2 S ooy 7
RRAD = Fne (wh)< , . [3»27) -

where h is half the dipole length. This is valid for the spherical antenna
with h = a. The important aspect is the w?® dependence. The real part of the

impedance of a parallel RL circuit is
ZR.' = T W , 7 '(3-28)

which has the ‘same w? dependence. Now‘ if a voltage source is inserted in
the parallel circuit, where it would be in series with the capacitor which
' stores e1ectr1ca1 energy, the. impedance is descrlbed by a parallel RL in
series with C. Therefore, the parallel circuit provides the proper low-
frequency response (see Figure 6). Substituting the formulas for R and L

into Equation 3-28 yields 3-27 (with h = a) and hence the proper limit.

The parallel circuit cannot be used directly with a current

driver required to simulate SGEMP because the capacitance'C must be broken

. ~up to represent the proper capacitances to 1nf1n1ty, as well as between
the two halves of the object. This will be done in Sectlon 4 during the
analysis of the two-node model. Figure 7 shows a possible configuration
suitable for current driver calculations. The capacitenee C must be equal
to

_ 1
C=g7+¢
G

AB ? . (3-29)

The current driver is across only one of the capac1tances to
infinity, s1nce it is intended to represent electron emission from one side.

In a symmetrlcal problem, such as the sphere, C

A = Cge.
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Figure 6. Parallel RLC circuit driven by
R a voltage source.

=

Figure 7. Parallel RLC circuit modified to simulate
o electron emission from one side of: the
sate111te




The sphere has the property that its characterlstlc 1mpedance, n,
'isdequal-to the resistance term, R. In transmission line- termlnology, it
is terminated in ité characteristic impedance. Therefore_reflectlons are | _ -
eliminated and'it'radiates'immediately. This is not true with other simple
shapes, - in general, i.e., they are not matched well to the impedance representui- .
ing space. It is this mismatch that is respon51b1e for -the relatlvely poor

'radlatlon rate of other geometries relative to the sphere. Standing waves

are set up.

The behavior of a system, as far as the influence of the radiation
term is concernéd, can be bracketed by first making a calculétion with R = 0
'énd'then répeating the calculation with R = n. In the latter case, the
radiation rate at resonance will be v ='w6/2 Since the resonance of a
satellite is not usually excited in a typical SGEMP problem, the actual

radiation loss should be a small correction, even with-R =

124




| SECTION 4
THE TWO-NODE (DUMBBELL).MODEL

The basic model for studying'structural currents is the two-node
or "dumbbell" model. The current floﬁing across the equator of a sphere,
for example, could ‘be calculated with a dumbbell model 1n whlch the two
nodes represent the two hemispheres and the 1mpedance connectlng them is
given the proper 1nductance and re51stance to allow a current flow equal
“to the actual current on a sphere.* Dividing the obJect into more segments
improves the accuracy of the model and allows a more detalled description
of the current flow but does not 1mprove the basic ab111ty to resolve
higher model responses Each time another node is added, another undeter-
mined.branch 1mpedance is also added Its value is determined by 'the
add1t10na1 current cont1nu1ty requirement (along with the .modal frequency
requlrement) Therefore, another parameter other than self—lnductance
‘and re31stance must be added for each hlgher mode than needs simulation.

" The natural parameters are mutual inductance terms, first between adJacent
branches and then ‘between branches which are farther .apart. This subject
w111 be touched upon in later sections, but we are not . interested in;higher

resonances at this time. The subject is also mentioned in Reference 10.

ok Actually, fat obJects, such as cylinders with diameters which are not
small compared to their length reéquire more than two mnodes for a proper -

model. .This. is bécause there is a restriction on the ratio of node
'jrad1US to node:separation arising from the 1/r elastance approx1mat10n
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The: dumbbell model because of its ba51c simplicity, illustrates -

many aspects of the basic node model approach whlch might be hidden in a

more comp11cated one. One of the concepts emphasized by it is the dlfference

in the types of capacitance one can encounter in a single problem. Con-
fusion in the use of the term "'capacitance" can lead to poor application

of the model. The dumbbell model is a realistic representation of a

strucfure consisting of two large, fat segments connected by a thin rod.

" The inductance of the system- is determined by the rod and the system capaC1—
tance is determlned by the end objects. Flgure 8a shows the ‘two-node model
with the nodes being represented by spheres of radius a, and a. The
impedance is represented by an inductance, but would normally include a
parallel or series fesistance, The capacitance between‘nodes completes
the.resonant circuit. 'Figure 8b. shows the LC network suff1c1ent to des-
cribe the rlnglng properties of the model. Our initial goal will be to

'calculate C, so that L can be determined from the desired undamped ringing
frequency. The inductance, plus a resistance to give the proper damplng
rate, are sufficient data for the circuit calculatlon in QUASI. We will
proceed farther, however,: and develop a capa01t1ve network which can be

-used in a complete circuit representation (Flgure 7). This will not only

be instructive, but will set up a tomparison with the transmission line

model in the next sectlon.

The potentials at theé two nodes are
V1= EnQa ¢ E1aQ, . (4-1)

Vo

E12Q; + EzzQz s (4-2)

where E;; = E1, (the variables are defined in Section. 1). The potential

difference between the two nodes is. 7
AV =V, -V, = (511 - E12)Qu - (Ezz - Elz)Qz . (4-3) ’
If the two nodes are thought of as the plates of a capacitor, the capacitance

would be
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(a) Schematic representation (b) Equivalent circuit suitable
' for impedance calculation

'Figureaé. Two-node (dumbbell) model.

._._Q__= 1 . . _ .
Lg " AV " Eny + Eaz - 2E1p ° ) (4-4)

where AV is the potent1a1 d1fference induced when a + Q charge is placed
on one node and - Q is placed on another. This eapac1tance.w111 be called

the "dynamic" capac1tance.because it will be used to determine L.

. If the node system has been charged and allowed to reach equalibrium,
the charge w111 arrange 1tse1f on the two nodes in such a way that AV will

: be zero. The relatlon between Q and Q2 will be

Qi_ Ezz - E1p . = : P . _
Q2 Eir - Ei2 7 " A _ : . ' (4 5)

‘The'differehee Between the charges Q; and Q, is giveﬁ by o

F -1
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where

Q. - N R
AQ . (4-8)

V;Qi + Q2
Q - Q

1

A two-capacitor system is required to form an equivalent network
which allows a charge separation to occur. Figure 9 Shows such a network
where the single capacitance, C has been replaced by the series capacitors

C1 and C». The ratio of the capacitances is given by

i _ Q1
=L =X o | 4-
Cz Q2 (4-9)
Also,
_ GG _
C = E:—:_Ti; s (4-10)
so that
C1 = (1 +F)C , '
| (4-11)
Cy, = FC1

wvhere F is given by Equation 4-5.
We digress at this point to show how a purely static approximation

would work; in the case of a' two-node model. Assume that a‘singie eléctfdn

of charge - q has been emitted from the system. The potentials at the two

nodes are

v,

E11Q1 + E12Q2 - €14 » ' ' (4-12)

V2

E12Q1 + E22Q2 ~ e2q , o (4-13)

where the spatial elastances are a function of time, i.e., the distances
between the electron and the two nodes is-a function of t1me. The static

approximation assumes that, as a first approx1mat10n, ‘the nodes are

connected by a short circuit so ‘that AV = 0 and ' : :




Figuhe 9. Two-node model equivalent circuit modified
to give proper tharge gistribution between

nodes.
= el.-ez-"_" a i
Q = FQz + - —F* o, 4 - (4-14)
Now, '
QU +Q=q, : “ (4-15).
' 50 that
Q =73 (q+4Q , (4-17)
and o . , /
=(FE-1 2 e1 - e .
AQ*(F+1+F+1511_512)?- (418)
The current running between the two nodes is then
- ;_ -d._ _ 2 i B 7 N
;ISC, T dt O F+ 1E;1 - Ejp dt (e1 - 3.2')' s (4-19)

fwhere it has’ been assumed that q is constant and the only time var1at1on is
in the spat1a1 elastance coefficients. A first order estimate of the
'potentlal dlfference developed between the two nodes, in the presence of a
connectlng 1mpedance is obtained by computing the voltage drop across the

load when I is flowing through it. The exact solutions for the current
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and voitdge across a load impedance can be obtained from the Thevinen and

Norton equivalent circuits shown in Figure 10.

Maxwell's capacitance coefficients are defined by

Q = 2 Vs (4-20)
J
For the two-node model, 7
7Q1'= C1aVa + C1aVs o (4-21)
Qs = CigVy + CaVs (4-22)

wheré C2y = Cy2. Inverting the equations yields the relationship between

the elastance coefficients and the capacitance coefficients:

Ci1 = E22/D
. C22 = E1n1/D o | | (4-23)
Ci2 = - E12/D , .
Ci €2
i 1
Cy

1
‘ Z
Cpmd= LOAD

2 - | — 02
L ' | _ 2 q _ d
Voc = 2alei-es) Isc = FT Erpofr7 at (&1 €2)

(a) Thevinen | {b) Norton

Figure 10. Thevinen and Norton equivalent circuits providing
the current dnd voltage across the branch in a two-
node modet when a single electron of charge -q is
emitted. The model is based on static solution

© approximation. Two capacitors are used to give pro-
. per charge distribution between nodes.
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where
i 2
D = E11Ez2 - Ejp .
When the nodes are widely spaced, so that d >> a{hz,

1/E11

R

Cia
Cz2 = 1/Ej, . (4-24)
, C12'=-512/(E1i522).-

.The capacitance Ci2 is negative, meaning that a positive ﬁotential at one
node. induces a negative charge at the second, grounded node. For future

use, we define the positive quantity
Ciz = |Ci2] . - - (a-25)
The dynamic capacitance, C; is given in térms of the modified
Maxwell coefficients as '

2
_ €11Cpp - Cis ' : _
= e e S | (4-26)

. A capacitance- network of the form used in Figure 7 cah be synthe51zed which
gives the same- relatlon shown above, i.e., with CA = Cll,f Ciz, CB = Ca2 - C12,
rand CAB = Ci1o. Thls is shown in Figure 11.

- 511‘512

L )
r 02

= CZZ-CiZ

Figure 11. - Network formed by capacitors r‘epr‘esent1ug Maxwell's
capacitance coefficients which equals the dynam1c
capac1tance between nodes 1 and 2.

e
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" We now show that the dyhamic cépécitance, C, is, indeed, the value
of capacitance required to calculate the values of L and R needed to make
thé-systém oscillate at the required frequency. We do this specifically
for L and the undamped frequency, wp. The procedure is the same for R and

the imaginary frequency, v. ' -

The current through the .inductance, L, connecting the two nodes is
~ given by :
dl

L Frae AV = (E11 - E12)Q - (Ez2 - E12)Q2 . (4-27)

DefiﬁingaPOSitive,current as the flow of positive chargeffrom'node 1 to node
2,Vand aésumihg that each node is initially charged equally, but with.op-

posite polarity;:We find, after taking the time derivative of Equation 4-27

d?1 :
Lz = (Ex1 - E12)(~I) - (E22 - E12)I
. (4-28) .
=~ (Ei1 + E22 - 2E12)I '
Assuming a time dependence of glWot
w? = Eiy + Ezi ~ 2E1» (4-29)

'Comparing:with'Equation 3-2, yields the dynamic capacitance derived in

Equation 4-4 as the static capacitance between nodes.

Referring to Figure 7 again, we wish to show that, with CA’ CB,

and CAB defined as above, in terms of Maxwell's capacitive coefficients,
this circuit gives the exact solution for the two node model when i is

given by the cuxrent‘leaving one node, but normalized to consider the fact

that charge does not immediately become transférred.tb infinity. This

exercise emphaéises two errors which have been made in the past using 3 -
lumped parameter models based on transmission line theory. The first

error was referred to-above: the charge was effectively transferred ' -

instantaneously to infinity. The second error was the assumption that the




dr1v1ng current was transferred across the node capac1tance to 1nf1n1ty
{c11) rather than across a smaller capac1tance.(C = C11 -~ Clz) with a
separate capacitance between nodes (CAB = C12). The transmission line
model is shown in Figure 12, for comparison with Figure 7. The load

impedance,AZL,'represents the parallel RL impedance used in Figure 7.

We begln by redrawing Figure 7 in a form whlch fac111tates analys1s
Th1s circuit is shown in Figure 13. ‘Rather than solv1ng for a general
load, ZL’

the analysis, but allows the basic points to be made. Then the open

the open circuit voltage (ZL = ®) is computed. This 51mp11f1es

- ¢circuit voltage across.two nodes, due to the emission of a single point
charge, will be calculated. This will be in terms of the elastance coef-
_flciénts After converting to Maxwell's capacitance coefficients, the two
solutions w111 be seen to be identical when the driving current 15 taken to
be the current leaving the node minus a time-dependent quantity which takes -
1nto account the distance of the emltted charge and the rate at which 1t

_ moves away from the node.

Using nodal analysis, the vbltage across Z.-, when ZL = ® js

found to be

- Q
oc - Gy ’ (4-30)

CA + CAB(]' + CB)

or

Q(C22 - Ci2)
oc C11C22 - C

(4-31)

where

Q= d/‘l dt . _ (4-32)
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1=

Figure 12.

current leaving 7 L

Cia

node

Two-node model with electron emission from one node as would
be treated using transmission 1ine theory as has been applied-
in the past. Compare with the correct model shown in Figure
7. Here, the current driver is the current being emitted from
the node. The correct current term includes a time-dependent
correction. term which accounts for the fact that charge, once
‘emitted, moves away from the node with finite velocity, and

is not immediately transferred to infinity.

C |
B
||' B '.
I T |
— = 14 v
e “ap l f

Figure 13. Two-node model for emission from one node. This

circuit is the same as shown in Figure 7, rear-
ranged to facilitate analysis. In terms of
Maxwell's capacitance coefficients: CA = Ci11-Ci2,
Cg = €22-Ci2, CAB = Ci2. :




The correct expressions for Q and i have yet to be determined.

Consider the open circuit voltage developed across two nodes-wheﬁ 
a charge of -q is emitted, leaving a charge of +q on node A. The voltage
is ' 7 '
V=V _=ql(E11 - E12) - (e1 - e2)], - (4-33)
~ where fhe_elaStahce.coefficients have previously been defined. This can be

‘rewritten as

Voe = Q(E12 - Ei12) , . (4-34)
where
o e1'L €2 |
= SR 5 St T I 4-35
. Q q(l Eiy - Elz) ' (4-35)

Now, using Equations 4-23 and 4-25,

_ Q(Cz2 - Ci») : A
OC a C11C22 - Ci% ? ' . (4 36)

which is identical to Equation 4-31. Q is the charge emitted from the node
minus a term which is proportional to the difference in spatial elastance
coefficients (e1 - ez). These elastance coefficients vary inversely with the
.disténée from the nodes, so that when the true charge is many nodal radii

away; Q = q.

In the case of a single emitted charge, q is a step function in

time so that

-d )
) ’ - (e1 - ez2) '
. e; - €z dt 7 :
=71 - 1] - ——= - - -
‘1 ( ‘E11 - El?. lf:O) q Ell - V'Elz' H (4 37)

where

T=q8(t) . . | O (4-38)
'{éqd:étt) isithe'impulse function.
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In general, when there is a charge distribution in space and the

time history of charge build-up on the node is q(t),

_ %rpf;,t)Ae(;,t)dT .

Q(t).= q(t) - B - Eo, , A (4-39)
and '

£ So& 0)heX, tdr

1) = 100 - TR (4-40)

where the integration is over all space, p(;,t) is the negative charge density,
andrAe(;, t) is the difference in spatial elastances. Relativistic effects

are ignored here. A useful example is that in which all charge is emitted

in the direction parallel to the line connecting the nodes and with constant
“velocity, v. There are two ways in which the integral can be interpreted.
First, we can look at the time history of the spatial charge density at each
fixed point in space, so that Ae = e; - e, is independent of time while p(x)
is-time dependent. This is the approach used in QUASI. - The other method

iS't6 follow particles of charge pAt through space, sd fhat p(;) is independent
of time, but Ae is time dependent. This is the approach taken so far in this

note. The former method is simpler in this case, however

Figure 14 shows the two nodes with the column of charge that has -
been emitted at the time t. Let charge leave the node surface at the rate

I(t) (coulomb/sec). The charge in a layer of thickness Az at a distance z

is
' .z - ay.dz
dz = I(t - — ) (4-41)
The effective charge is then
S vt+a) ,
o St - 253 pez) S .
Qt) = q(t) - - ' -, (4-42)

Ei11 -~ Ei12




dg = I(t - 2521

Figure 14.

dz

—_— J- '/ ]{qz R

Geometry of open circuit voltage
calculation when charge is emitted
along z axis with constant. velocity

V.
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and the effective current is

vt+a) o
0 = 10 - grtp| [ i 2w & '
al - .
+ I(0)Ae(vt ~ ay) | . (4-43)

As an example, let I(t) = At, i.e., a linear rise. Then with

N S | -
Che(z) = - 5 (4 44)
p Vo 1 1
Z - a1 )
= t -~ £ " 2y
o A, VYoa A ( \' ) (z z + d)dz
. ty = =— t - -
et) =3 E;jr - Ex»
or,
: 1 ‘ a {1+ %E_ '
- _ a). B 1
Q(t) = q(t) v({E11 - Ei12) I(e V)Qn 1 vt : .
+ i —————
ay + d :
- 1(9)2n 1+ -!E-;) | (4-45)
T\ ay +d/ |’ .
and
. N 1 + !E_
i) = I(t) - L —n 2) (4-46)
v(Eix - Ei2) 1+ VYt ’
a; +-d
where I = A. In the limit of t << a;/v, ‘
oo s |
R al - a'l + d . f
t) =2 I - -
;( ) ()1 Ei1 - Eis . | (4-47)
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SECTION 5
THE LONG, THIN ROD

In thlS section, we consider how a long, thln rod would be modeled
in the quasi- statlc approx1mat10n The thin rod represents the next step
in the evolution of more complicated objects. It is somewhat unique, how-
‘ever, in that the usual technique of determining the node redius, i.e., the
radius of a sphere with area equal to the area of the surface represented,
'is not valid. The first part of this section will involve a discussion of
this point. Then, the values of the inductancesvrequired to make the rod
ring at the proper frequency will be found using two different methods. The
first method assumes, as does the transmission line model, that all
inductances are equal. These 1nductances will not have-the same value as

.predicted for a lumped parameter representatlon of a transmission 11ne

When "fat" objects are being modeled, all inductances cannot be
presumed eqnal."Ihelprocedure in such cases has been to calculate
'inHQCtances based on the assumption that no charge accumulates on any
nodes except:tnose'at the ends of the object. Thislis not physically
realistic, nut'it doeersimplify the inductance caléulation; The current
dlstrlbutlon exc1ted along the object is incorrect, “but represents the
average of the distribution. This has not been an important con31derat10n
in most QUASI calculatlons, since the flrst resonance mode has not been
strongly exc1ted This second method will also be applled to the th1n
rod problem here, in order to compared the results to. the equal inductance

.'method
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A First,_wg consider the capacitance to infinity of a cylinder
with length 2hfénd diameter 2a. This static cépacitance'is known for all
raﬁibs of.h/a~(Réfefence 5),.but we restrict ourselves to the range h/aAé 1. -
Define an equivalent radius, req’ such that req is the radius of a sphere with

the same static cépacitance, C,- Then -

Céo = 41T€DI‘eq . . . (5—1)

When the object is "fat" (a term that will be defined shortly),

o~ \[Z_A—'—" (5_2)

T
eq "

where A is its surface area. When the object is a long, thin cylinder,

however,

req_z 2h/( - 1) , | (5-3)

where the "fatness factor' is
Q= 24n(2h/a) . ' S (5-4) -

Flgure 15 compares the true normalized equivalent radlus (r /h) with the
two approxlmatlons, for a range of (h/a) between 1 and 100 The area ap-
prox1mat10n is best for h/a < 7; while the thin rod approximation is best
for (h/a) =z 7. Therefore, a '"fat" cylinder is one for which (h/a) < 7

and a "thin'" one has (h/a) 2 7. Table 1 compares the percentage error in-

volved in the two approximations.

As a point of interest, the steady state 1nductance of a thin
rod can be obtained from Equations 5-1 and 5-3 through wo = 1/LC_, where
Wy = 2ﬂc/(4h),'1 e.,

o Eﬁ. -
Lp = 4“-(2h)(97- 1) . - (5-5)
The capacitance and inductance'per unit length are

1 B - (5-6) ' -

T .. M.
.CW dmee (2 - 1) °
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L=t a-n. - ' CE)

Reference 10 shows that thé area formula for the radius of a node
(Eduation 2-4) works well in the case of a sphere, a representative "fat" object.
Thus, area conservation is used in determining the node radii (the sum of the node
surface areas equals the area of the object). This rule does not work for thin '
rods. Note that the static capacitances of the individual nodes do not neces-
sarily sum to yield the static capacitance of the object, as in the case of the
fat object whetre the sum of the squares of the individual capacitances equals the
square-of the total capacitance, i.e., Ci = @(Ci)z, where Ci is the static capac-

1 i i Ny -
th node in the absence of all others. We neéd another conservation.

itance of the i
rule for thin rod pfoblems, and take our clue from the .form of the approxi-
mation for the thin rod capacitaﬁce. A thin rod will be broken into linear
segments for a nodai‘representation, not into surface area segments, as is the
procedure for a faf object. Therefore, we are interested in conserving

length rather than surfaée area. Because of the linear relationship, we con-

serve static capacitance automatically, and r__ = ?ai. For the fat object,

eq = §

.the equivalent relation was r2 = Za2,
A eq i i

.Tabie 1‘. Comparison of approximations for the
- equivalent radius of a cylinder.

req/h=
| e /h Feq/ " o
h/a Q . eq - 2/(a - 1) A% A%
T 1.3 1.185 5.128 | 1.225 +3.4
1.5 2.20 0.933 1.667 . +78.9 .943 + 1.1
5 4.60  0.502 0.556 +10.8 .469 - 6.6
15 - 6.80 0.332 0.345 + 3.9 . .262 -21.1 -
50  9.21 . 0.238 0.244 + 2.5 142 -40.3 '
100 10.6 0.208 . .

Q = 2en(2h/a)
. 4&:




Now conéider the values of the inductance fequired to make the
thin rod oscillate in its primary mode when it is divided into N equal seg-
‘ments. Figure 16a shows a rod divided into four segments; Figure 16b shows

" the schematic diagram of the nodal representation. The radius of each node

is
o =S4 % 1 . (5-8)
N N (@ -1)° , :
or
AL
&1 T g1
where

2h

Y

e S
3
b
n

(3]

2a 1 2 3 4

T o e —

(a) Segmentation of rod

(b) Node representation

‘Figure 16. Geometry of thin rod approximation
(example using five segments).
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Q= 22n(2}/a)
% = 2h = rod 1ength .
a = rod radius .

When the rod is excited in the dipole mode, symmetry can be used
to reduce the number of independent equations. The open circuit potentials

" at each node are given by

vy = (E11 - E1s)Q1 + (E12 - E1)Qe (5-9) :
Vo = (E11 - E13)Q2 *+ (B12 - E1s)Q

Vi =0 .

Vy = ; Vo

‘VS = -V,

The relevant open circuit potentiél differences are

Az = Vi - Vs

= [(Ea1'- Eis) - (E1z - Eas)]Qu
. - [(511'; Ei3) - (E12 - El#)]QZ , (5-10)
Azs =V = (E11 - E13)Q; + (E12 - E2s)Quv . (5-11)

When the inductances L) and L, are inserted, the currents through them are

governed by the eQﬁations

(-

) |

LS b . | (5-12)
dI

La “qg- = bas -

. Four unknown quantities are involved (L, Lg,.Il, I,) with only
two equations. An additional -assumption is required. Thus, we.are led to
the two choices‘mentioned at the start of this section: equal inductances

or equal currents. The first assumption is the more intuitive, in this case,
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while the'secpnd is the more easily applied.

- Applying_the equal inductance assumption first, we define’

=‘L1 = Ls . . . ' (5-13)

As before, p051t1ve current is defined as the flow of p051t1Ve charge from;r'

'.ra lower numbered node to a higher numbered node. Contlnulty then gives

' the-relatlon between charge and current
Q=-1 o
. : _ - (5-14)
Q =1 - 12 ’ ,

so that, after dlfferentlatlng Equations 5-12 and assuming a harmonic time

dependence, the inductance is seen to be related to the ringing frequency,

w, through

(w?L)Z - A?L) + B =20, . o _ (5'—11'5,;)7

where

A

1]

(Exx - E1s) + 2(Exx - E12 - E13 + E1u)

B.

n

(Ex1 - E13)(E1: = Eis) - E1p - Eyy)?

‘Because of the equal spacing between segments, the internode elastances are

related simply:

. -1
~E{; =5 E12

Exy = ¥ Ei (5-16)
\- . 1

Eis = a Ei2

A,in terms of the self-elastance, Ej1, and the lergest internode elastance,

Eiz, the coefficients A and B become




-
]

29
3(E1y - 36'512)

(5-17) | -
23 : :

=5 E?, .

3 ..
B = Efl - Z’EIIEIZ -

The internode elastance is proportional to 1/A%, while the self-

elastance is proportional to (2 - 1)/A%, so that their ratio is
Hi=0-1, : (5-18)

where 2 is defined in Equation 5-8. It was shown above that a "thin'" object
is one for which (h/a) > 7, or Q > 5.3. Srructurally,-this is really quite
‘a thick rod, i.e., most rods used in a satellite or otherﬁstructure are
thinner than this ratio. - Even in this casé,-ﬁhe ratiorbf‘self—elastance.
to mutual elastance is relatively large (E11/Eiz = 4.3) and the mutual
“elastances can be effectively ignored. The coefficients A and B reduce to
A = 3E),

L, ' | , (5-19)
B}?Ell- . . . .

When the internode elastances can be ignored, ‘the self-capacitance
is approximately equal to the reciprocal of the self- elastance (see Section
4). Therefore, for the purpose- of deflnlng inductance values to give the
proper resonance frequency, the nodal model is equlvalent to using a lumped
parameter representatlon of a transmission line model. To show the equivalence,

we will derive such a model,

In a transmission line model, the rod would be assigned a capacitance

per unit length (C') and an inductance per unit lengtHA(L')‘such that
L'C' = 1/c¢® . . _ D - (5-20)

The approximate values given by Equations 5-6 and 5-7 satisfy this relation-
ship (since they were forced to). In this way, the total inductance and total
capacitance will be such that the undamped ringing freq@engy will correspond
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to the inverse of the time required for light to traverse the length of the

. rod-and back, i.e.,

L2L1C! = 1/w? . - _ | _ (5-21)

_ If one chooses to represent this transmission line model with a
lumped parameter model, the circuit would look like that shown in Figure 17,
where. a model with-fife.capacitors was chosen to:corre5p0nd to the five
" node model analyied above. Using standard circuit solution fechniques, the

equation relating L, C, and w is seen to be

@L)2 - 2 (Wl) + =5 = 0 . (5-22)
C C
_Compériéon with Equations 5-15 and 5-19 shows that this model is equivalent
" to the nodal model, in the thin rod limit where the internode elastances _
can be ignored, one can use the capacitance to infinity, or its inverse, in

~ each case.

The solution to Equation 5-22 shows that

"L (3-VD)

LC gz s (5-23)

u{
it
1]
|

1]

»Figure~17. Lumped parameter representation of the transmission Tine
model of a thin rod. A model with five capacitors was chosen
- for comparison with the nodal model shown in Figure. 16.
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where, in analogy to the nodal model

1M . : -
C=g7" 4meg (R - 1) ° : (5-24) _ -
AR = /5

The product LC is considerably larger than would be expected if one could
~use the L and C corresponding to .theé size of the rod segment represented,

in which case one would have the relation

LC = . ‘ (5-25)

In other words, when constructing an LC model for a thin rod, one cannot
-simply take the total capecitance, divide it by the number of segments
represented by capacitances and also take the total inductance divided by
the nuniber of segments represented by inductances and ekﬁect to force the
model to resonate at the proper frequency. The same is true for the nodal

model, in which the capacitances are replaced by elastances. _ -

‘ - We now investigete'the second technique for finding inductance
values which make the‘nogal model ring at the proper frequeney. This
technique is mathematically simpler and can be used for fat objects where
the concept of elastance per unit length cannot Be applied. In this case,
we allow no charge to accumulate at the inner nodes, so that there is no
contribution to the potentials from them and the current_ié coﬁstant as a
“function of distance along the rod. This assumption ﬁedeesitates the use

of different inductances between different pairs of nodes, in this case, two
inductances (Ll and ﬂz). The open circuit voltage equatigns, analogous, to

Equations 5-9, are
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"Vll

= (E11 ~ E15)Qs
Vé'? (E12 - E14)Q)
Vy=0 B | . (5-26)
Vy = -V, |
Vg = -V .

Now, the chargé Qé is equal to ZEeYo. Therefbfe, the current is given by

dI

Ly 57 = [(Ex1 - Exs) - (E12 - E3u)]Qu , (5-27)
Lélg%'= (E1z - E1s)Qu ., - | ' : | (5-28)

Using the same definition of positive current, we obtaln, after differentia-

tion
- . ' 11 ‘
WLy = Ey1 - Eyp + Eyy - Ey5 = Eyy - 17 E12 > (5-29)
2 | =z 2
w°Ly = E12 = Eyy = 3 E12 . (5-30)

If the internode elastance is ignored as a first approkimation, the inductance
L2 can be replaced by a short circuit and inductance L1 is proportional to’

the self-elastance. The average inductance is

Eip

w2 (5-31)

= 1 -
Lavg- = 2 (Ll + LZ) -

- 8

The constant 1nductance calculated using the first technlque was (Equation
5-23, with C = 1/E11)

- 0.76E;

L= =2, (5-32)

or, about 25 percent smaller

Both technlques yleld the same current on the end segments, when

the 1n1t1a1 charge is the same, i.e.
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I =f'11 = - iQee™t (5-33) .

where Qg is the charge initially placed on segment 1 and -Qp is the chérge- K -
- initially placed on'segment 5. The inner current, I,, developed when equal

inductances are used, is given approximately by

Ip = -21-— 1+ V5 = 1.62], . | (5-34)
In terms of the end current, I = I;, the averageAcurrent running on the
equal inductance rod is '

I =1.311. (5-35)
avg :

The fact that the average current is about 30 percent larger than the equal
current model is consistent with the fact that the average inductancerdf
the equal current model is about 30 percent larger than that of the equal

inductance model.
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SECTION- 6
THE SPHERE AND CYLINDER -

In the preﬁious section, the difference in treatment between thin
objects and "faf" objects was considered. "Thin'' and '"fat!" were defined in
terns of - the approxinations which could be used to estimate the capacitance
to infinity of the object, namely, the 1ogritnmic and area approximations.

. In this section, we concentrate on the representationrof fat objects,
.specifically the sphere and fat cylinder. These are certain aspects 'to the
problem of modeling fat objects_which are not encountered in the thin rod

. problem. One of these was discussed in Section 5: the methodvby whicn

one chooses to solve the inductance-current distribution problem. ‘There is
also fhe problem1of_spacing the nodes properly, one whiéh did not occur

"with the thin rod-becanse the node radius, in most practica; céses, is

much less than the internode distance. The problem of,the sphere has already
been thoroughiy explofed_By Longmire (Reference 10), but ifoill be.explored‘
here from a somewhat different viewpoint Its symmetry makes it a nice
problem to solve, but also prevents it from lending much 1n51ght into - the
solutlon of real problems. That is why the fat cyllnder w;ll also be

considered.

One of the flrst questions encountered when trylng to model an
obJect for SGEMP predictions is that of how many nodes to use. From:the
aspect of trying to force a single, uncomplicated structure to ring in its
lowest mode, a basic two- node representation will suffice. However, other -
.con51derat10ns are 1nv01ved First, the 1nverse separatlon distance ap-

prox1mat10n for. ‘the. 1nternode elastances w111 only be valid if the nodes are
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_ separated by a distance which is suff1c1ent1y great, compared to the radius
used to calculate the self-elastance. A rule yielding reasonable results 15'
to have the centers of any two neighboring nodes separated by three times '
the average radius of the two nodes. This assumes that the two node radii in
question are not grossly different (they would not be in any reasonably

thought-out representation). We will return to this subject briefly in the

uext paragraph. The second consideration is that of the detail desired in
the structural current distribution. The distribution will normally be
dominated by thé driving source, i.e., the currents leaving the structure
and returning from space, ratcher than by any ringing modes excited on

the structure. Therefore, the number of nodes, and their placement will
be determined-in large part by the expected current flow due to the

-electron emission rather than the desire to resolve standing waves.

~

As an example of how the node spacing becomes a factor because of .
the internode elastance approximation, consider the problem of representing
a right circular cylinder with flat endcaps. Assume that a two-node -

‘representation»is acceptable as a first approximation to the current flow
across the cylinder's equator. The question becomes one of whether the nodes
representing each end of the cylinder are far enough apart to allow the
elastance approximation. To check this we first calculate the half-area of

the cylinder to be

Ap= 1), o NGRS

where d is the cylinder iength and r is its radius. The node radius is that

of a sphere with the same surface area, i.e.,

\/ 1+ d/r, . (6-2) -

where a is the equivalent radius. If we require that the nodes be centered

a

N]H

on the centers of the endcaps, a distance, d, apart, and that d = 3a, we
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,find_that the ratio of d/r > S'must be observed. If the cylinder is fatter
than this, it must be broken into smaller segments in‘both'the'azimuthal
énd longitudinal directions. As mentloned above, this would probably be
done for purposes of resolv1ng the current distribution anyway. See

Figures 1, 2, and 3 for an example.

As a partial justification for the node separation (d/a = 3) rule,
consider the Maxwell capacitance coefficient for two metal spheres. U51ng
the inverse distance approximation for the elastance, we have (Equatlon 4-24)

2

Ciz2 = Ca1 = - 41ey %r 5 . (6-3)

where a is the sphere radius (equal spheres) and d is the separation between

sphere centers. The correct relation is (Reference 11)

Ci2 = Cz1 = 47mea sinhB ) csch(2nB) , (6-4)
' n=1
where cosh B 151- For réference, the self-capacitance is given by
" C11 = Czp = 4mea sinh ), csch[(2n - 1)B] . (6-5)
- n=1 '

Equations 6-3 and 6-4 are compared in Figure 18. It indicates that d/a > 3 °
is a reasonable separation rule for invoking the inverse distance approxima-

tion.

In Section 5 we showed that the capacitance of "fat" cylinders
was very close to the capac1tance of a‘'sphere with the same ‘area. Refereﬁce
6 indicates that this is true, for ''fat" shapes in general, 1nc1ud1ng thin
disks. We now show - that, by conserving area in a nodal representatlon of
'such an object, and using the inverse distance approx1mat10n for the mutual
elastance, that one can expect a reasonable value for the static potent1a1
'calculated at-the node. We will restrict ourselves to. the case of a sPhere,-

;whlch is. easy to solve, and assume that the conclusions. W111 be valid in
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'+ calculated exactly and using the inverse
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,génefal. " Before proceeding, however, we will find the minimum number of
nodes that can be used with the mutual elastance approximation. Since two-
nodes_would be the minimum desirable number, we check that first. Consider

" a sphere of radius, r. The radius of a sphere with half this area is - A
= /Y7 . | (6-6)
If the two nodes with this diameter are located a diameter apart, i.e.;. d =
2r, then the separatlon distance to radlus ratio 1is
/- NT=2.8. - (6-7)

This is close to the desirable ratio of 3, so we conclude that a minimum of
two equally spaced nodes can be used to represent a sphere, using the inverse

distance mutual elastance approximation.

The potential at any point on the surface of a sphere with charge

Q is

. _Q | iy
= Freor .(6 8)
If @e picture the sphere as being divided into N segments of equal area,

each with charge Qo = Q/N, then the potential at a pointlon the ith'segment

is

v, = = X

i = Fme; ¢ - (6-9)

Now represent each of these N area segments by a node such that the potential

“at the ™ node is

N - ' :
= 2By : (6-10)
_ - n=14 _ . .
and we'have'the,test for the accuracy of the node model, i.e., how well is -

the relaﬁion'

ame, 3E, = g-. (6-11)
Con=1 _ ’ : ) .
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With a, the radius of the it hode and r.  the distance between the,ith-and

nth node, the test becomes
1 1 _N '
At Ty (6-12)
‘ In the case of a two-node representation, ‘we have N = 2, a; = a; =
r/V , and ryp = r21 = 2r. Then

NS 2. 191 o (6-13)
ag Tryo T T

which is very close to the de51red 2/r, 1 €., within 4.5 percent. By in-
crea51ng the number of nodes to N = 6, we maintain a configuration in which
all adjacent nodes are the same distance apart, which is nice for some-cal-
culations which we will perform later. After numbéring the nodes as shown
in Figure 19, with nodes 1 and 6 at the poles and 2 through 5 around the

equator, the relevant distances are
a1=a2=...=a6=r/'\’—6-, : ) 7 7(6-14) -
V2 r

riﬁ(n adjacent)

2r .

. | ?in(n opposite)
Equation 6-12 yields

V6, 4 1 _5.78 , | | | (6-15)

r quf 2r r

It

which is within 3.7 percent of the desired value of 6/r.
: The nodal model improves as we look at potentlals farther out in
space since the object begins to look more like a point charge. Thus, we -

" have good reason to believe that the node model will be reasonable representa-

”ftlon in the statlc limit.




Figure 19. Six-node model of a sphere.

The first mode, or dipole response, of the sphereris extremely
easy to represent in the case of the six-node model. The-inductaﬁces are
connected as shown in Figure 19, elthough the inductances parallel to the
equator can be eliminated from the inductance calculatlon, since the azimuthally

sSymmetric. dlpole mode will not excite currents in-that d1rect10n Also, with six

equally spaced nodes, all inductances are equal, all currents are equal.
_'Therefore, instead of solving the six- node sbhere which is done elsewhere '

‘~(Reference 10}, or solv1ng a more complicated spherical representation, we

choose to look at the fat cylinder. The ba51c nodal model is the fourteen

node model shownﬂxn Flgures 1 through 3. The nodes are arranged in two
azimuthal planes, yielding four identical arms with the two end nodes (numbered
1 and 14 ih Figufe‘1) in eommon. ‘Each -arm has five nodes, including the

two common end-nodes. One node is at each corner .and one is at the equator

. In the model used as a test problem in QUASI the end nodes represented half

‘the. end-cap area The elght nodes at the corners each represented 1/8th

P
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_fho end-caﬁ area~plus 1/16th the area of the side of the cylinder. The fouf
nodes around the equator each represent 1/8 th the side area. . 7

| in ordér—fo compute the inductances required to force the cylinder
to ring at the'proper frequency; a charge of +q will be placed on one end
(node 1) and a charge of -q on the other (node 14) The symmetry of the
problem allows us to consider only the current through one branch (nodes 1,
2, 6, 10, 14), 1/4th

symmetry reduces the calculation to that of two inductances: the one con-

of the total current flows through each arm. Further

necting the end-node with a corner node (L12) and the one connecting the
corner node to the one at the equator (Lzg). This particular calculation
will hot yield vélues for the inductances parallel to the equator, since the
symmetry is such as to allow no current flow in that direction. A separate
.calculatlon, in which the cylinder is excited in this direction, e. g s by
placing p051t1ve charges on nodes 2, 6, and 10, and negative charges on

nodes 4, '8, and 12, would be necessary to obtain these values.

The- impedances which connect the nodes consist of pairs of in~ *
~ductances and resistances in parallel. The inductances are calculated first,

since the undamped ringing frequency can be estimated rather simply. This

- is done by f1x1ng the wavelength of the oscillation as the distance around

the cyllnder, 1 e.,
=20+ d), : | (6-16)

where & is the cylindér‘height and d its diameter. The undamped ringing fre-
quency is then h

Wo = 2mc/A . | (6-17)
The dambiﬁg raté .V, must be estimated separately. This mlght be done in
the general case by looking -at ‘the damping rate of an e111p501d with similar
size and dimension ratios. The solution is known for thin cylinders. 1In

the course of calculating the inductances, an effective capac1tance will be

found which y1e1ds the relation
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-mu,= 1 , _ ' _ o (6;17j :
LCerr -

for each L. This efféctive capacitance, given in terms of the elasténce
coefficients, can then be used to calculate the parallel resistance through

Equation 3%3,

o ! |
R= ot . | | (6-18)
2VCepg | ' | :

The cylinder will then ring with the damped frequency

w ¥ m% - vZ . : (6-19)

Continuing with the example of the cylinder, we have the problem
shown in Figure 20 to solve. The cylinder radius is r =-d/2 and length

£ = 2h. Therefore, the area of each end-cap is

.Ac_= 1]‘1'2 7, (6"20)

and that of thé cylinder body is

A = 4nrh . (6-21)

b

The area represented by each end-node is

3.

A = i ' | ' (6-22)

The area represented by each corner node is

=2

T2, T | -
Ar = gt e gth (6-23)

.The nodes around ‘the equator each represent the area

 Ag =g Th. | | (6-24)

The corresponding node radii are
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+q

. -_Y_ 9 ' - _q ¢ . .
' 10 ~—"14 i}

Figure 20. Single arm of node representation of cylinder.
One -fourth of total current flows down each. arm.
It is assumed that no charge accumulates at the
corner nodes. The cylinder has radius r and

length %.
T
a; = -, , 6-25
ay v 7 ( )
T fh 1 ,
82 = 7\ 7 * 5 (6-26)
as = % ’-‘zh . (6-27)

In order to simplify the calculation, we assume that the current
is continuous around the corner, i.e., there is no charge accumulation.

_ The three relevant potentials are
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a(Ei,2 - Ex,1e) » . (6-28)

V]' =
Ve = q(E1,2 - E2,14) , | | (6-29)
Ve =0 . . ) (6-30).

The elastances are given by

_4ﬂ€oE1,1 = 1/a , T 7 | K (6~-31)
4meoEy,, = 1/7 , | R (6-32)
4TeoEy 1w = 1/8 , - (6-33)
4TeoBs 1y = 1/RF + 12 . (6-34)
~Noting that I ; - 1/4 dgq/dt, we have the_equationsrfof the'iﬁductancés
 'ng1g = 4{(Ex1 1 - E1,2) - (E1,1v - E2,14)] , ' .(6'35)
wiloe = 4(B1,z - Ea ) . . - o (6-36)

The effective capacifancés are then
4C12 = [(E1;1 - E1,2) - (Bi,13 - E2,14)]17} - (6-37)
4Ca¢ = (B1,2 - B2uw)7 . | (6-38)

Equation 6-18 can b¢ used to calculate the two necessary resistances Rj,-and
Rag, which appeérrin parallel with L;, and Lyg. To do this, an -estimate of |
v must be made. An upper limit is given by the dampihg_rafe of a sphere
with the same surface area as the object under considefation (Equation 3-21).
This is a reasonable approximation when the object is fdt and not convoluted.

In general, however, the damping rate is not an important parameter in SGEMP

- problems and can be ignored. 1Its importance can be‘brécketed by solving

the problem twice, once with no resistance term and once with a resistance

which'gives the ‘damping rate of a sphere of equal area.
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APPENDIX 2

QUASI: A HYBRID QUASI-STATIC CODE FOR
CALCULATING SGEMP STRUCTURAL REPLACEMENT CURRENTS —
THEORY AND RESULTS

NOTE: ThlS appendix is Self-contained and all mention of sections,
- figures, tables, equations, and references refers only to items

contained herein. This appendix has not been published as a
separate document.
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SECTION 1

'INTRODUCTION

When photons from an exoatmospheric nuclear burst hit an orbiting
satellite, electrbns are knocked off exposed surfaces. Electrons may move -
“away from the satellite, escapihg to infinity, or they may return to the.
satellite's surface, although not necessarily to the point where they were
emitted. In any case, a spatlal current density is produced which results
in electromagnetic fields in space and currents .on the conductlng surfaces
of the satellite. ~ Such currents are labeled replacement currents, since
this charge flow, in one sense, ''replaces" the emitted electrons. The
situation is more complicated than simple charge-replacement however. .
Emltted electrons have not moved very far from the satellite at early times
and their presence affects the charge distribution on the satellite. Further-
more, the resulting eleCtromagnetlc fields will 1nf1uence the electron
tragectorles pulllng many of the emitted electrons back to the 5ate111te _
in some cases. The whole SGEMP problem is thus qu1te complicated, requiring, -
in general a selchon51stent calculation of electron motion and electromagnetlc
fields along with the proper boundary condltlons as determlned by the geo~
metrical configuratlon of satellite conductors. A

The electron dynam1cs problem is compllcated by the fact that
satellltes are ‘typically quite complex electromagnetlc structures. Conductors
.rarely are in the form of simple geometries and often varlous pieces of the
satellite are connected by struts or rods. In general, three- d1men51ona1
’effects may also -be 1mportant |
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One thus has two primary computational problems in trying to
calculate SGEMP Teplacement currents on a satellite. The first is the
problem of calculating the self-consistent electron trajectories in : c

- sufficient detail to define the spatial current densities and charge
distribﬁtion in the space outside the satellite, while the second problem S

is proper modeling of the complex geometrical structure of a real system.

A number of technlques can conceptually be used for calculating.
SGEMP replacement currents on complex structures. One of these techniques
is the finite difference approximation for solving Maxwell's equations in
a three—dlmen51ona1 grid combined with Newton's law for fOllOWlng electron
traJectorles. Such finite-difference techniques have been used for some
time in calculating the EMP fields produced by nuclear_weaponsl'i, and more
recenfly for two-dimensional SGEMP calculations“®. The main problem in
extending these finite difference calculations to a complex three- d1men51ona1
geometry-is the fact that a very fine mesh would be required to descrlbe .
parts of a complex geometry (e.g., struts or rods). When working in three
dimensions the mesh size can easily become prohibitiveiy large for use with

existing computers.

Another calculatlonal technlque that has been used in the past
for SGEMP calculations is the equivalent circuit method’®. This method
treats both the satellite itself and the surrounding space as an electrlcal
c1rcu1t. Emltted -electrons become current sources and ex1st1ng c1rcu1t
codes are used to flnd the transient response of the equivalent c1rcu1t.
The advantage of such methods is that detailed geometries can sometimes be
modeled by a few 51mp1e circuit elements (e,g., a thin rod may just be
modeled as a 51ng1e inductor); in addition, methods for solv1ng circuit
equatlons are, readlly available and generally understood. The dlsadvantages -
of circuit equlvalent methods is that a rigorous treatment of both the
satelllte and the surrounding space requires a very large number of circuit -
elements whereas existing circuit solution technlques limit the analyst tor

relatlvely few elements, requiring much‘lntultion in setting up the models.
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Another set of calculational methods might be'grouped'Under_the
general heading.of electromagnetic scattering codes. Such techniques
include moment methods, integral ‘equation solutions, and singularity ex~
pansion calculations. These methods have been-used for high altitude EMP
interaction calculations where the incident fields are well known (usually
incident plane waves) Thus these tools have been primarily. used outside
the source region, while for the SGEMP problem one must 1ntegrate over the
rspatlal current density outside the satellite (due to emltted electrons) to
determine the incident electromagnetic field at each conducting boundary.
Scattered fields are then calculated so that the proper EM boundary
conditions are obtained. The fact that one must obtain the incident fields
due to external. electrons at each time step severely limits the usefulness
of these techn1que5 at higher fluences where space charge limiting effects.
are important.

One can combine several of these calculational_techniques'into
what might be called a hybrid method. Such hybrids can be designed to
include the advantages of several other methods while attempting to minimize
the 11m1tat10ns Such a hybrid technique was used in construct1ng the

structural return current code discussed in this report.

The method used is to divide the SGEMP problem into two parts
The space outside of a sate111te is treated using f1n1te d1fference techniques.
Quasi-static fields are calculated and electron trajectories are followed by
use of finite-difference approximations .of Newton's law. - The satellite 1tse1f
‘however, is treated as an equivalent circuit where currents depend on the
voltages between circuit nodes and the connecting 1mpedances Slmple circuits
can model falrly complex structures so that realistic satellite geometries
can be considered. We thus: comblne the good treatment of external space
-prov1ded by f1n1te dlfference ‘techniques with the capablllty of hand11ng
complex geometries by circuit modeling. The main problem is mating these two

'--methods so that self-con51stent replacement current calculatlons are made.

BN
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The code developed for doing these calculations is called QUAST.
ThlS report first describes the basic theory used and various approximations

made. A-descrlptlon of the code and numerical methods used is then given. -

This is then followed by a discussion of typical results.




SECTION 2

BASIC. THEORY

As.with'any electromagnetics problem, a basic starting point is -

Maxwell's equations (in MKS units)

3B

UsE + s =0 (2-1)
-> 3-6 -> |
VXH - -BT = J (2 "2)
>
VB =0 (2-3)
VD = p ‘ (2-4)
- <> - - Lo . -
where B=1uH and D ="€E (2-5)

‘The electromagnetic fields can be written in terms of scalar and vector

-5
potentials, -¢ -and A, where

_).
-2 ©_ BA .
E=-Vo -5 (2-6)
and _ . :
> 1 > ' :
H = a VX_A . o (2-7)

N :
The potentials ¢ and A can be related in several ways. If we

use. the Lorentz gauge, then
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VR + el %%-= 0 (2-8)
which gives )
32 ;
Vg -en 2o .2 (2-9)
ot
and
. 2 '
V2R - ep g—% = - . o (2-10)
t
This then implies that, in free space,
- [D(X",t‘)} :
> 1 ret 3_ -
oG, 1) = f d’x (2-11)
4me }_;,I
a.ndr > . .
A(x,t) = v wsr d x (2-12)
R |x_x;‘ .

. > >,
where [ ] ret means that t° is to be evaluated at t=t - lféi—l

Up to this point all equations used have been exact. One approxi-
mation used in the code, however, is implied by the name QUASI. This name
refers to the quasi-static approximation, which is equivalent to assuming
that the BK/at term in Equation 2-6 is relatively small. The scalar
potential is then given by solving Poisson's equation. Iﬁ this approximation, .

in free space, .

. -_ } ) . 7 + ) )
. - 1 p(x,,t) 3.~ 1
¢(x’t)Quasi-static7 4me .[ I;_;, d"x (2-13) .
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This equation is identical with Equation 2-11 when retardation
effects are ignored. Thus, the quasi-static approximation implies that

we assumé OA/dt is zero and that retardation effects can be ignored.

Note that Equation 2-13 is the solution of Poisson's equatlon in

’free space, i. e.,.the solution of
V24(x,t) = -é—p(?,t) : . (2-14)

This integral(Equation 2-13)can be applied to the SGEMP problem if we include
charges on the various satellite surfaces in the charge distribution p(;‘,tJ,
If we think of p(;',t) as a number of point charges in space the integral
in Equation 2-13 just becomes a summation
| Q (t) o |
Pyt _ 1 _
P0Lt) = 7= ¥ S . (2-19)
. 1 .

x—x

Thls expre551on is equivalent to the relationship between voltage

'and charge on a system of N conductors first written down by Maxwell®
_ N s
¢, = 3 SR : (2-16)
j=1 |

vhere ¢i is the potential on the ith conductor, Qj is the charge on the

jth conductor and Sij is called the elastance coeff1c1ent.

The elastance coefficient®™? S, - is defined as the potential to
which the rth conductor is raised when a un1t charge" is placed on the sth
conductor, all other conductors being present but uncharged Elastance
values are thus related to the .inverse of capac1tance coeff1c1ents and, in
the limit as conductors go to point charges, elastance values just depend on

the distance between two p01nts (compare Equations 2-15 and 2- 16).
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Note that at this point we have made no distinction between points
in space and poinfs on the surface of a satellite. At points-in_space, Qj
in Equation 2-16 represents the charge due to emitted electrons while on
conducting SUrfaces Q includes both the charge left behind when electrons
were emitted and any redlstrlbutlon of charge due to replacement current

flow along conducting surfaces.

For a.purely electrostatic problem, any conducting surface is an
r'equlpotentlal surface due to the fact that the time derivative of the vector
potential in Equatlon 2-16 is zero. Since the tangential component of E is
zero at the surface of a perfect conductor, then

Vo

tangential (2-17)

and thus
¢ = constant along the surface

In this case, Qj on conducting surfaces is given by EqUation 2-16 and the
fact that ¢ is constant everywhere on the surface. (The Q at points
off conducting surfaces are assumed known from partlcle follow1ng of emitted

electrons.)

For a fully dynamic problem, however, the correspondence between
voltage and scalar potéﬁtial is more complicated. The voltage between two

poings is given by the line integral of the electric field; i.e.,

, - ,
AVjy = - JE-dI ' ' ' (2-18)

1




which, from Equation 2-6, becomes
.2 34
A
AV21 =J.(V¢+-B-F) hd I
. 1

(2-19)

t
~
=a
"
©
e
p—
Y
de’
..hﬁm
>
L ]
[N
=y

for time-varying fields, the second term in Equation 2-19 is path dependent.

Now, if the path of integration is along the surface of a perfect
. e . . . i - P -
conductor, AV,; is zéro,since the tangential component of E along the

conductor is zero. This then implies that

' 2
$omb1 = - = f A-dt e
; |

The QUASI code is not fully quasi-static because the right hand
side of Equation 2-20 is not assumed equal to .zero. Instead, it is approxi-
mated.by the expfessionf Z21*153 where -Z»1 1is some operator and Iz is

the current flowing from point 2 to point 1. Equation 2-20 then becomés

Cb2-d1= ZaatIan o ) (2-21)

This equation is. just Ohm's law giving the voltage between two nodes of a
circuit as the prdduct of an impedance operator times_the.current throltigh
the branch connecting the nodes. We are thus treating_fhe'conducting

surfaces of thé_Satellite structure as an equivalent circuit. By proper

‘choice of the circuit -impedances, the resonant frequencies and decay times

- of the'satellite structure can be approximated.
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The first of these two equations gives us the potential at a pbiht
in speqe aesuming we know the charge at various grid points and the various
elastanee coefficients. The charge at points outside the satellite is found
by '"following' various particles representing emitted electrons, while the
eharge on various portions of the satellite surface depends on the amount of
charge left behind when electrons are emitted plus the amount of replacement

current that has flowed up to the time being considered.

The.secend basic equation is used to determine‘feplacement currents
on the satellite sfructure. Various points are represented by circuit nodes
connected by impedances. The potential difference, as'found from Equation
2-16, and a predetermined impedance are used to calculate the replacement

current at each time step.

‘ Now that we have discussed the two basic equations of the QUASI

code, we will consider some of the approximations made in more detail.

ELASTANCE COEFFICIENTS

The elastance coefficients are a set of numbers; depending only on
geometrical,censiderations,that can be used to calculate the potential of a
set of conductors when the charge on each of the conductors is known. For

N conductors,

N -
?; si_ij , 1sisN . (2-22)

where the elastance coefficient, S ij is defined as the potential to which
the Jth conductor is raised when a unit charge is placed on the ith conductor.
We have prev1ously seen (Equation 2-15) that if each of the conductors is

made so small as to approach a point charge, then
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ij %W 33 (2-23)

and
(2-24)

I
o

S. .
ij -

‘since Equation 2-22 then just becomes the expression for the potential from a

set of N point charges.

In general, however, each of the N conductors can have an arbitrary
shape. The set of equations for voltage cah also be solved for charge, with
the result that

N ,

= C..vV. : : 2-25
23 i3 : : ( ).
j=1

where Cij are the capacitance coefficients of a multi-conductor system 10,

[For our purposes,. it 1s usually easier to deal with the elastance matrix
since it is easier to calculate. The charge, rather than Voltage, is also more

. readily available from other calculations in the code.]’
As an example of the elastance concept, let us consider a simple

two conductor system con51st1ng of two spheres of rad11 'a and b (Flgure'z-l)

separated by the dlstance T

Sphere A : 0 Sphere B

| Figure 2-1. Geometry for elastance coeff1c1ent
. calculations.
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The Capaéitance of a single sphere of radius R with respect to

infinity is

C = 4mey R . (2-26)

‘Therefore,
CA = 4Teqy a ' : ' S (2-27)
CB = 4meg b : (2-28)

Let us first assume that r>>a and r>>b. If we charge sphere B to a
charge Qp, the potential at sphere A is about QB/ 4meor. Thus
s, 28, = ——e— (2-29)
BA AB 4mEQT ' )
A charge of opposite sign to QB and order of magnitude QB(é/r) will be
- induced on the near side of sphere A and an opposite charge on the far side.
This dipole-like charge distributicn will have little effect on the potential

of sphere B. Therefore

w0
13

B (2-30)

ol

likewise

s

1
x = (2-31)
T,

For any c_:orﬁbination of charges on the two spheres, the potentials

are thus given by

[ S

-1 1 1 ' .
o Ty (5% %) .
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1 1. .1 | o
% " 4meg [‘f Q * E'QB] _ (2-39)

These two equatibns can then be solved for QA and QB and the resulting
coefficients of ¢A and ¢B are just the capacitance coefficients of the

system; namely

e = . . ab (e
Gup = Cpp = - 4meo (2-34)
2
Cap = 47€0 rb (2-35)
: r2-ab
- r2a
Oy = 470 -3
. r°-ab

To obtain these relationships, we assumed that the separation
distance, r, was rélatively large. It is possible to solve for the capacitance
coefficients exactly by'using an infinite set of image charges. From Reference

10, the exact solutions, when a = b, are given by

. , o . ) )
CAA = CBB = 4T, a sinhB 2: csch [(3n-1)B] (2-37)
n«l
Cap = Cpp = - 4Teo a sinhB 221 csch (3nB) (2-38)
where cgshB =57 (2-39)

For convenience, a was set equal to one meter and the normalized capacitance
matrix elements were calculated as a function of sphere separation r. The
‘results are shown in Figure 2-2. 1t appears that the dpproximations used in

calculating Equations 2-34 to 2-36 are fairly accurate for r = 3a.

Theiapproximations used in obtaining Equations 2-29 to 2-31 can
easiiy be extended to a system with N conductors as long as the separation
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1.4
Flg
1.2
1.0
-.2
o -.4
. .
SO|E

Figure 2-2. Comparison of exact and approximate capacitance coefficients

veemeeesenns, Exact calculation
T (Equation 2-37)

s, ———— Approximation
, (Equation 2-35)

i 2 =
r (meters)
r (meters) .
l-’ L) ? T ? [} 4l. EI-) 4 6 h -
o -Exact ca]bu]ation

~ (Equation 2-38)

Approximation
(Equation 2-34)

for the geometry shown in Figure 2-1 with a = b = 1 meter.
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_‘betweéh condﬁctbré is relatively large. The mutual elastance, Sij,'qut
depénds on the distance,“rijrg and the self-elastance of a conductor is
approximated by the inverse of its capacitance to infinity; i.e.,

1

ij T W T (2-40)

1
S.. e 2-41
S b I (2-41)
J
One should also note that the capacitance of a conductor of any
shape can be approximated rather well by the capacitance of a sphere having
equal surface area (see Reference 11). For example, if an irregular

conductor has a surface area A, then a sphere of radius

- | A s -
Toq = ,/4" : o (2-42)

will have a capacitance to infinity very rearly equal to that of the original

conductor, A(The ca?acitaﬁce‘of'the sphere is just [47eg req]_1 ).

ELECTRON EMISSION

When incident photons hit the surface of a satellite, electrons are
emitted. Thqrnﬁmber of electrons emitted per unit area ﬁhd the initial electron
energy diStribﬁtion depend upon the incident photon spectrum, the total
incident photon fluente, and the emission ﬁaterial. The various electron.
emission parameters are calculated separately and used as input to the
QUAST ‘code. ) o

Eléctrqn emission at a given point is described by the expression
- N_(W,0,¢,t) = F(w) 0(6,9) g(t) - - (2-43)
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where N, is the number of electrons emitted per unit area, per unit
1HC1dent fluence, per unit energy (w), per unit solid angle (o, ¢),per unit
time (t) s

For photoelectrons, one can separate the various terms so that .
F(w) is the electron yield per unit energy, - ©(6,$) is the angular distri-
bution of elecﬁrons with respect to the surface normal ( © and ¢ are
" measured from the surface normal), and G(t) is the time history of electron
emission, which is usually assumed to just follow the time history of the
incident k-ray‘pulse.' For convenience, one usually normalizes the angular

distribution and time history so that

s

II 0(6,) dodd = 1 : : : (2-44) -
e:l ¢=1 . - '
and ' J 'G(t) dt =1 : S , | (2-45) -

. The total electron yield is then just
Y, = f E(w) dw o (2-46)
, s o A
F(w) 1is a function of the emitting material and the incident x-ray
spectrum. To first order, however, the electron energy distribution is in-
dependent of the photon'angle of incidence. The function F(w) can be fbund
from any of a number of codes, 1nc1ud1ng GRAP, NORM, and QUICKE2.

The'QUASI code actually uses an integrated electron energy distribution
‘defined by '
IF(w) = j F(w) dw N (2-47)

w
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‘IF(wj is then'fhe number of electrons having energy greater than W.

Excepfvat-a glancing angle of_incidence, the angular distribution

- of backséattered'photoelectrons can be fairly accurately described by

0(0,¢) = InBC0SE 4o44 | (2-48)

' : '~ where 0 1is measured from the surface normal.

The time history, G(t), could be any of a variety of arialytic
functions or generated from a numerical table. One useful analytic function

is the trapezoidél time history

ey
G(t) = Go‘(a) O0=st=t,
= Gq t1=t=t, - (2"49)
:ng—ri) tast=ts
. ts
where, for normaiization,
Gy = — 2 ' (2-50)
e tat+ta-t; . B

. PARTICLE FOLLOWING

For following the trajectories of emitted paptigles, one just uses

© Newton's law

ng = @l | (2-51)




For the low energy electrons, which are dominant in SGEMP éélculations, the
turning force due .to the magnetlc field is much smaller than the force due
to the electrlc field. ' Thus the ¥XB term in the above equatlon is dropped
from the part1cle—follow1ng calculatlons in the QUASI code. The veloc1ty and
position of each particle is simply obtained by numerically 1ntegrat1ng the

acceleration vector, dv/dt.
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SECTION 3

CODE DESCRIPTION

A 51mp1e flow diagram out11n1ng the main sections of the QUAST
code is shown in Flgure 3-1. Each of the blocks in this’ dlagram will be
described in this section of the réport. First, however, let us consider
some ba51c assumptions regarding the spatial grid and how the satelllte

circuit model sits inside this grid.

A Cartesian grid is used with constant cell dimensions of Ax, by,
and Az. Let

n

NX = number of nodeés along x-axis

NY = number of nodes along y-axis
and

Nz évnumﬁer of nodes along z-axis .

The word node is used to refer to corners of each Cartesian cell.
Each node is a551gned a 51ng1e number, countlng first along the x-axis, then

along the y-axis, and f1na11y along the z-axis. If

X
IY

number of Ax's from the or1g1n

number of Ay s from the or1g1n

and

Iz

number of Ax's from the origin
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1. _ " READ INPUT DATA

.2 [T INITIAL SET-UP CALCULATIONS . |

o . BASIC TIME LOOP
3. : t=nAt; ¢n,Qn
KNOWN AT ALL NODES

CIRCUIT THEORY CALCULATION

a.. . = -
Zig iyt %o Y
n=nt} "
b. | EMIT "NEW" ELECTROMS |

. MOVE “NEW" AND "OLD"
. ELECTRONS

AVERAGE PARTICLE LOCATIONS;
d. DETERMINE Q"' ON NODES <
OUTSIDE SATELLITE | -

DETERMINE RETURN CURRENT . . )

€1 AT EACH SATELLITE NODE
£, CALCULATE Q™' oN
ALL NODES

I

NEW POTENTIAL CALCULATION
g. 7 PN+l = Zsijqq+1
.- j J

4. R OUTPUT

5. ~ STOP CALCULATION . ' : : -

VFjgure 3-1. Flow chart\ of the QUASI code."
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then the

node number = {IX+1) + NXx(IY) + NXNY*(IZ) . (3-1)

Each spatiél cell is also assigned a number; that number being
the smallest of the node numbers of the eight hoﬂcs forming the corners of .
the cell.

The'equivalent circuit used to model the electromagnetic structure
of a satellite is constrained to it tﬁe spatial mesh; i.e.,rcircuit nodes
muét coincide witﬁjspatial nodes. Circuit branches (and thus the various
R, L, and C impedances) are connected betwéen thé spatial nodes. A two-

“dimensional example is shown in Figure 3-2.

At first glance, it appears that we are constrained to satellite
geometries thatvcan'be fit into a Cartesian grid. Striéfly speaking, this
is not true since the values of elements in the equivalent circuit depend
upon the actual geometry rather than the cdordihate_system used for field
and particle following calculations. Also, additional data describing
the actual geometry of those spatial hodes‘repreSenting:satellite surfaces

are part of the input information used by the QUASI code.
BLOCK 1—INPUT DATA

The QUASI code requlres a large number of 1nput parameters in
order to fully specify the problem under consideration. Included among

these parameters_are.

General grid and time-step information

,i2} Déscriptions of satellite surface and comnecting
impedances '
3. Descriptions of electron emission points and electron

‘spectram and time-history.
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Yy
NY=5 _
»
5 AN
+ o+
-T\ R
l) (
\ i .
‘ - | NX=7
' X
A. Grid model of cylinder
Yy
z

B. Actual geometry

Figure 3;2.7 Two—diménsiona1 grid/circuit model
of infinite cylinder.
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" 'Each of these three.areas will now be described in more detail.
(1) Grid and Time-Step Information

Input parameters in this group include NX, NY, and NZ, the number
of spatial nodes along the x-, y~, and z;axes. QUAST is presently configured
to handle up to a 10 X 10 X 10 grid but this grid size could be increased
if sufficient storage is available. The cell dimensions, Ax, Ay, and sz,
are also read in at the start of the problem. The choice of values for Ax,
Ay, and Az will depend on the size of the satellite and the number of ele-
ments used in the equivalent circuit model. The time step interval, At, must
also be read in. The size of At must be kept fairly small to insure that
the various difference equations are stable. In addition, the total number
‘ef'time cycles for the problem is an input parameter. The maximum problem

time is then the number of cycles times the time step interval, At.
(2) Satellite Equivalent Circuit Description

A number of items regarding the equlvalent circuit of the satel—
11te are input parameters of the QUAST code. The subroutine SETUP reads
the input satellite information and processes it for further use later in

the A code.

The first set of data read by SETUP describee>the surféce nodes
of the satellite model. The location of each node in the grid, in terms of
the integers Ix Iy, 'and 1Z (integral number of cells fromrthe origin} is
first read 1n,\along w1th the surface area each node represents IX, IV,
and IZ, along W1th Equatlon 3-1 are used to calculate the spatial node to
"which each surface node corresponds. The area of the node is used to cal-
culate the self—elastance of those nodes that Tepresent the sate111te. If
 the area represented is A, then a sphere having equal surface area has a

radius pf,,'
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A LS | o (3-2)

Teq ~Nam
The self elastance is then given by

,v ~ —1 ) .. -7- -

854 [4ﬂeoreq] . 7 _ (3-3) | -
Note that each surface node is specified by two.index numbers, ‘its

surface node number and the corresponding spatial node number. The. two indices

are related by the array IA(I). When I is the surface node number, the value

of IA(I) 1s the corresponding spatial node number.

The next set of data read in describes the direction of a vector
normal to the surface at each cell bounding the surface of the satellite
model -ThiS'surface normal data is used to determine When an electron in
‘space is moving toward a surface where it will hit and be deposited. The
surface riormal data is indexed by cell number rather than node number . since.
any particle in a cell bounding 2 surface may hit that surface. This makes
the input of data somewhat confusing since the spatlal node number of a <
surface node does not necessarlly correspond to the cell number Just outside

the surface.

~ The IX, IY, and IZ of boundary cells are read in directly. These
values are chosen to glve the smallest node number of. the cell and thus
the cell number itself. _Three direction cosines are also read in for each
boundary cell. These numbers give the direction of the- surface normal w1th
respect to the x-, y-, and z-axes. Up to three surface normals may be
a551gned to any one cell so that concave geometries can. be modeled 1f not

too complicated. This data is stored in the arrays NﬁRM and CN.

" The final set of input data for describing the satellite gives the
type and values of impedances that connect the various surface nodes. . Thus, - "
‘this data describes the branches of the equivalent circuit which is used

“
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to model the satellite. Each branch is numbered and the two surface nodes
‘which are connected by the branch'given. (The order in which these nodes
are inpuf determines the direction of positive current flow.) Also, the

- predetermined inductance, resistance, and capacitance for each branch is
given. These values are used to calculate various constants used in solving’

for currents in the circuit.
(3) Electron Emission Data

This last group of input information describes electron emission
from the satellite. First of all, the emission time history parameters are
given. A simple trapezoidal time history is assumed, aod'the time function
constants indicated in Equation 2~49 are read ‘in. Next, the integrated
X-ray spectrum (Eouation 2-47) is read into the array XIF(I), where I is
the electron energy in units of 1 keV. [The XIF(I) array is normalized to
1 0 keV/cm 1nc1dent fluence, but the actual incident fluence, 1n cal/cm
is read.in elesewhere. in the code, and the unit conversion is automatically
taken care of.] Several different XIF arrays can be read in to account for

the different eletctron emission spectra of different materials.

The other input emission parameters describe'yhere electrons are

emitted and in What direction.‘ In the present code coofiguration, electrons
~can be emitted only from surface nodes. For each emission node, the x, y,
and z p051t10n of the node is given, along w1th two angles, a retardation time, -
and an emlsslon area. The two angles,. 6 and ¢, give the,dlrectlon of the
surface normal vector around which electrons are emitted. © and ¢ are
standard polaf,and‘azimuthal angles as measured from the x-, y-, and z-axes
(see Figure‘S -3).. The retardatlon time is the time after the start of the

i problem at whlch a glven p01nt begins em1tt1ng electrons. This retardatlon
,_tlme factor is used to account for the transit time of the incident X-ray

. pulse’ across the satellite. The emission area is used to find the total

' number of electrons that should be emitted per unit time”(since the
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electron y1e1d 1s a functlon of exposed area). Since the code actually
emits particles representlng large numbers of electrons, several other
parameters are also read into storage. These parameters are: n. the

" number of particle energies to be used; Ng» the number of polar emission
angles to be Sampled{:and n¢, the number of azimuthal emission angles to be

used.

Em1551on node relationships to surface node numbers are contalned
in the IB array. If I is the emission node number, then IB(I) is the

corresponding surface node number. The spatial node number is then given
by IA(IB(I)).

BLOCK 2—INITIAL SET-UP CALCULATIONS

Many calculations'in this code need be carried out only once. The
set—up-éection of ‘the QUASIicode does these one-time calculations and stores
the‘reSults for use within the time stepping loop. A number of different -
sét-up calculations are done. We shall describe here only those most im-

'-portant to understandlng the overall operatlon of the QUASI code.

, Some of these-initial calculations have al:éady been mentioned.
The subroutine SETUP takes input data describing the satellite and calculates
the IA array for referencing surface node indices to spatial node indices.
.Thls subroutlne also begins setting up the NPRM array, which describes the
surface normal vectors in each cell of the spatial grid. SETUP also calcu-
7 lateé certain,cdnstants (the D(i) array) used in solving for the current

througﬁ each branch of the satellite's equivalent circuit.

For calculational purposes the outer boundaries of the Cartesian
grid system used in QUASI are treated in the same manner as surface cells

representing the satelllte. The reason for thlS is the’ fact that, when




elecirons reach the outer bouhdary of the Spatial mesh, we have decided to
‘stop foilowing their motion and simply let the"chafge represented '"'stick"
at the p01nt where it hits the outer boundary If the outer boundary is

not too close to the satelllte, such an approx1mat10n is fairly accurate.

A In order to have charge deposited on the outer boundary, one must
assign surface normals to all outer boundary cells. 'Eachfouter face of the
mesh'has one sufface normal,'each outer edge two, and each outer corner
three. Nodes on the outer boundary are then also included in the IA array
'(so that charge can collect on these "surface'" nodes). The first NS elements
of the IA array'will always be surface nodes of the satellite model itself.

The elements NS + 1 to NSN refer to nodes at the outer boundary.

For each spatial node the array TYPE(I) is also defined. If I
is the spatial index of a surface node (satellite surface or outer boundary),’
TYPE(I) = 0.0. If I refers to a node in space, then TYPE(I} = 1.0.

The next sef of set-up calculations are for the purpose of calcu-
latlng the initial injection parameters of electrons emltted from the satel-
lite's surface. These set-up calculations are: carried out in the subroutine
TRANTP, which assumeé that emitted electrons have a cosf distribution with

'respeot to the surface normal.

The original direction of an emitted particle depends on ng and n,
"as well as the direction of the surface normal with respect to the coordinate

system of the problem. Let us assume the coordinates shown in Figure 3-3.

In thls figure, z' represents the local surface. normal, whlch is -
rotated from the (x,y,z).system by the angles 6 and ¢ The angular distribu-
tion of electrons is measured with respect to the z' axis. Thus these angles

will be labeled w1th a prlme
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Figure 3-3. Emission geometry.

First of all, the ¢' angles are given by

¢1 = 0.0,
! = i - ' . —
¢1¢ - (1¢ 1) (Zﬂ/n¢) ’ (3 4)
where
2.5 i¢5 n¢ . .
Furthermore, the ng equally probable ©' angles are given by
1 = -
eie (eie+1 + eie)/z 3 , (3-5)
where .
01 = 0.0
9, = sin~'(A0)
A8 = 1.0/VDy
6, = sin”(Yk-1 48) , 3=k =ng
=T
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A set of direction cosines are then calculated in the primed co-

ordinate system using 7

cosO"

z' =
y' = sinf'sing’ o (3-6)
x' = siﬁeicos¢! ‘

These coordinates are then transformed to the unprimed system by

x = x'cosBcosd + y'(-sin¢) + z'sinbcosd

Yy = x'cosBsind + y'cos¢ + z'sinBsing o (3-7)

z = x'(-sinf) + z'cosH .

These direction c051nes are then just mu1t1p11ed by the magnitude of the
1n1t1al partche ve10c1ty to get the components of the velocity vector in

~'the (x,y,z) coordinate system.

These direction cosines are stored in the arrays CX, CY, and CZ -
which are indexed by the emission node number and the partlcular 6' and ¢ used

in calculating their value.

Another group of set-up calculations are done to determine the
values of the elastance coeff1c1ents (Equation 2- 16) The self-elastance
' coefficients of satellite surface nodes are calculated using Equations 3-2
and. 3-3. The self- elastance of spatial nodes is found by assuming that
charge is unlformly dlstrlbuted around each spatial node in a sphere having
the same volume as a unit céll (see Reference 12). As a result of this ap-

proximation, the self-elastance for spatial cells is given by

S;3 = [8meoa;]™t, (3-8)
whépe.' .

L [3bxbydz]e . o

oy - [ ©-9)
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‘Note that rij’ and thus Sij’ depends only on the three numbers (ki - kj)’

As discussed in Section 2 of this report, the mutual elastance
between two points just depends upon the distance between the two points.
However, for a 10 x 10 X 10 three-dimensional grid, there are 10° elastance
coefficients. It is not practical to store this many numbers or to recalcu-
late the elastance values every time step. In a uniform Cartesian grid,
however, it is possible to use certain symmetry properties to greatly

simplify the problem.

We have previously: shown (Equation 2-40) that

1

Lo B 3-10
H T W (5-10)
wher rij is the distance between point i and point j.”'wa, in a Cartesian
system o
= _ 2 _ 2 ~ 2 _
| ?ij'h \f(xi xj) + (yi yj) _+ (zi zj) . ,(3 11)
Now .
x; = kiAx -
x, = k.Ax
3 J
yi = R'iAY
: (3-12)
. = &.A
Y5 7Y
z; = miAz
z. = m.Az ,
57N
so that

T = Vﬁki - kj)z(Ax)z + (8 - Rj}Z(Ay)2»+ (m, Armj)z(Az)z . (3-13) -

(% - 2j) and (m; - mj). For a 10 X 10 X 10 grid there are only 1000 such
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numbers, fatherrthah the 10° possible S, i3 values (i.e.,-in Cartesian system.
many of the elastance coefficients are identical in value) In the set-up
calculatlons the, Sij values are calculated and indexed to the (k - kj),

(Ri - Ej), and (mi —.mj) values.
BLOCK 3—TIME ITERATION LOOP

The vast majcrity of calculations carried out by QUASI are done
inside the time iteration loop. The various parameters of interest are
calculated in a timé—stepping procedure. All parameters are assumed known
for the nth time cycle (at time t = nAt) when the loop is entered. The
values of voltage, current, charge, etc., are then calculated for the n + 1
time cycle. The time loop can be broken down into a number -of distinct
steps, as shown in Figure 3-1. In this section, we will discuss each of

these steps.
Block 3a—Circu1’t_Theory Calculation

This part of the code calculates the current ihAeach branch of the
equivalent circuit that is used to represent the satellite's surface. The
potential at each end of every circuit branch is known from the prev1ous
pass through the time loop. The potentlal difference across the branch

is then
k%Y - L (3-14)

where ¢ is the potential at the ith node (one end of the branch) and ¢

the potential at the j th

node (the other end of the branch) The_cur:dnt
“through the branch at t = (n + 1)At is then given by a general equation of

" the form
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n+1/2 n-1/2 n-ltzj

" = D) Vg + D@1 7+ b, (B)ay D, (4) (3-5)

(The n+1/2 and n-1/2 superscripts indicate that branch currents are actually
calculated at times one-half time step different than spatial voltages.)

In this equatidn,

k = branch number
n'= time step
qz = total charge transferred between nodes up to
t = nAt
‘and
VDk-= constants depending upon_the‘impedancés associated

with the k™™ pranch.

Three types of impedances have been considered initially: R, RL,
and RLC where R, L, and C refer to resiStance, inductance, and capacitance

respectively (always connected in series).

CASE I: Z =R

Mok | o (3-16)
‘therefore
D (1) = 1/R ,
4 ,ﬁk(z) =D (3) =0, | (3-17)
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CASE II: Z

L %% + RI = AV
‘%4 % I = AV/L | (3-18)
_ AyRH2 '
n_ 'k - R/L At n-1_- R/LAt
AIk_-— R (} - e ?,+ Ik e ,
therefore
b ; -R/L At
D (1) = & (1 - e/
' _ -R/L At
Dk(Z) = e
(3-19)
. Dk(z) =0

D, (4) =

|
—

t
) CASE III: Z=L—d—+R'I+-1—fdt
- CASE TII: I c
, .
t

BR LY, +-é—f_1d't.
| ] -

"
<<
~
t
—

= (3-20)

I 1 _ 1
LE+RI'+-E_‘[Idt—V(t) CfIdt
t
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. -1
- AVn—uz _ Qk
k C
A,‘In—lIZ ’ Qn-1
k n-1 1{RAt At“ k
n__ L At + 1 [ 'E(L ¥ LC):]_ 7ol
- 1 + L(RAL | At? '
2\ L LC
therefore
' _ Mt
D) = 5~
B 1 {RAt = At?
D(2) =1 - '2'(T+ _Lc)
ke
D (3 = -1¢ __
D, (4) = 1./1 RAt+At2
k - L LC

Since an analytic solution is used for the RL circuit (Case II),
assuming constant AV over the time increment, it will be wise to use this
one whenever possible. This means ignoring a series capacitahce which

might be used to give a rod its own resonance frequency, for example.

A finite difference solution is used for the RLC circuit. This
will become unstable for large At, on the.order of L/R or .VLC.

' The Dy paraﬁeﬁer in Equation 3-15 is calculated for each branch
in'thefsubrOutine-SETUP and stored in the array D(k,m) where k is the branch
" number and m ranges from 1.to 4. In addition, the branch-to-surface node
array, N%DE (I,K) is also precalculated -in SETUP. In this array,lI is 1 or
2, dependlng on which end of the branch one is at, and X is the branch

number. For each I and K, the value of N@DE equals the correspondlng surface

node 1ndex - ,AT | o 100




The actual calculation of the new cyrrent in each circuit branch~
is carried out in the subroutine LOAD. This 5ubrputine also_calculates the .
amount of charge added or subtracted ‘to each surface node during the time
step due to current flow through the circuit branches. Thisrcharge is
added or subtracted to the previous charge on each node so ‘that the new

charge’ dlstrlbutlon can be determined.

The charge that is actually located on each sufface node is given
by the value of the QQ array. When thé charge that has'fldwed'ihfdugb a
given branch in one time step is calculated, that same amount of charge is
added to the value of QQ at the node at one end of the branch and subtracted
from the QQ value at the node at the other end.

)B]ock 3b-—Emit New Electrons

During each time step in which electrons are be1ng emitted from -
the exposed surfaces of .the satellite, particles representing these electrons
must be emitted from emission nodes. in the QUASI grid. This part of the
code calculates the 1n1t1a1 parameters that are to be assigned to these newly

emitted particles.

_ In the QUASi,code electrons in space are represented by particles
‘with given locations, velocities, and charges. Each particle represents |
.a certain number of ‘electrons as indicated by the total charge of the -
particle (also called the weight of the particle). When particles are
injected from emission surfaces, the original velocity vectors and particle

weights are calculated from the electron emission dlstrlbutlons

Inputs to the. QUASI code 1nc1ude
- ’ '
number of dlfferent energy partlcles to be emltted

1l

n
w

ng number of different 6 emission angles
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and

n¢ = number of different 0] emission angles . - :
U51ng these parameters, the or1g1na1 velocity vector and partlcle welghts
are chosen so that all particles emitted at a given time step represent

the same number of particles.

To calculate the energy of emitted particles, the total yield is
divided by 2n_; i.e.,
IF(w_: ) )
o= — - (3-22)

2n
W

where IF(w) is defined in Equation 2-47 and Weso is the minimum electron
energy considered (1 keV in most cases). The emission energies, w,, are

then determined.by

l-IF {w1)

= 0 ‘ .
IF(wp) = 3o : o . : ’ (3_23)
IF(gn)‘= (zn - 1)o . )

Thus each emission energy represents an equal number of electrons (the num-

ber being 20 per unit area).

Once the original kinetic energy is known, the non-relativistic

velocity is given by
\;mcz ; o | (3-24)

Since we have .calculated initial angles and energles to be equally
‘probable, the Welght assigned to each eJected particle is Just ' 7 : -
(AL (IF (W 5))

WT = e ‘“w“e“¢v G(t) , (3-25) :
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'

where A is the area of the emission surface, G(t) is the emission rate at

" the time being considgred, and e is the electron charge.
. 1 . .

Note that, if w min is not a function of time, all of the above
parameters, except G(t}, can be calculated ocutside of the time loop. The
time history, G(t), is evaluated at any glven tlme by a call to the
FUNCTION subprogram FTIME. |

The above calculations are carried out for each emission node.
Each initial velocity is multiplied by the direction cosines calculated in
the TRANTP subroutine to give the initial x-, y-, and z- components ofrthe'

velocity vector. The initial position is just that of the emission point.

When charge is emitted from a surface node, dn equal amount of
charge of opposite sign must be added to the QQ array at that point. This

accounts for the positive charge left behind when electrons are emitted.
Biock 3c—Move "New" and "01d" Electrons

This block of the code involves a loop over all particles
(electrons) in space outside the satellite. New pbsitions and velocities
are calculated for each partlcle using Newton s law To understand thls
section of the code, let us first consider how the partlcle parameters are
' defined.

For each particle, seven parameters are stored. The three position

components are written as

XP = IX.XFF |
YP = TY.YFF A - - (3-26)
.1and. | .
;'zpjé_xz.zFF ,




ﬁhererlx is the integer number of cells from the origin, measured along a

line parallel to the x-axis and XFF is the fractional distance across the

IX*M cell. YP and ZP are similarly defined. Thus ' -
'XP'5 actual x-component , .
Ax
YP = actua; y;component , (3-27)
y
'ZP _ actual z-component

Az :

_ In addition, for eéch particle, the three velocity components,
VX, VY,,andVVZ,_and the particle's weight (charge), WT, are stored and

updated as needed.

The motion of a particle is determined by Newton's law

—>

F=mas=m. ' : (3-28)

In the QUASI code, it is assumed that the only force acting on a particle

is due to the local electric field. Therefore

- (-e-)E , (3-29)

m

where T is the local electric field vector and (e/m) is the ratio of electron

‘charge to electron mass. If we convert this equation to finite difference

notation

J2 (ﬁ-E)At . T2 _ | ‘ (3-30)
This hew velocity component is integrate& once more to bbtain the new particle
location h s '

L Vn+JIZA;‘+-xn ) - _ (3-31)

In_the'code itself, one first determines what ¢ell the particle is
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initially in. This cell number is given by

I = IX + 1 + NY*IY + NX*NY#IZ | o . (3-32)

where IX, IY, and IZ are the integer parts of the particle's location at
the start of the time step. The new x-components of the velocity and posi-

tion vectors are then given by (in FORTRAN notation)

VX(J) = VS(J) + (eAt)*EX{I) | (3-33)
At o |
XP(J) = XP(J) + (A )*VX(J) (3-34)

 where J is the'index of the particle being considered. Similar expressions
'_apply for the y- and z-components of velocity and position.

EX(I) is the x-component of the electric field in the I'P cell.
Before any particles are '"moved," the three components of electric field

are calculated for each cell using the relationship
E=-. | - (3-35)

.Note that it is at this point we make the quasi-static assumption that

BK/Bt = 0 (compare the above equation with Equation 2-6).

Each cell is>ﬁﬁmbered according to the smallest node number of its
,eight vertices. U51ng the potentlals at the corners of each cell, four
values of each component of E are calculated. These four values are then
averaged and this average electric field used to calculate the acceleratlon

of all partlcles within the cell.

Con51der the 51ngle cell shOWn in Figure 3-4. The z-component of

‘electrlc field is then approx1mated by
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E = -
Z

‘where ¢(i) is the potential of the i

o) - 0wy + 06 - 0@ + 6 - 4(3)

- 08 - (0] - (3-36)

th cell corner. Ex and Ey'are similarly

calculated for each cell.

The cell corner labeled 1 in Figure 3-4 has the node number that

is used to label the cell under consideration. This cell number is given

by Equation 3-32.
given by

Il
12

I3

14"

I5
16

17

TF -corner 1 is node I, the other seven node numbers are

1= Corner 2

NX = corner 3
NX*NY = corner 5
NX ; 1 = corner 4 ' o (3-37) -
NX + NX*NY = corner 7 |
NX#NY + 1 = corner 6

NX + NX*NY + 1 = corner 8 .

(5]

N
K2l

«
R e
| _
|
1
|
(
w

2 C 4




These numbers then give the proper indices for use in calculatlng

the potent1a1 gradients used to find the average electric field components

" in each cell.

Blocks 3d and 3e—Average Particle Locations and
Determine Return Currents

Due to the way calculations are carried out it is useful to dis-
cuss both block 3d and block 3e of Figure 3-1 at the same time. In actual

fact, blocks 3c to 3e are all carried out in the subroutine MP which loops

‘over all of the particles emitted from the satellite's -surface.

A Once a partlcle s new pos1t10n has been calculated this "new"
p051t1on is used to calculate a 'mnew" charge’ d15tr1but1on All charge w1th1n
a2 given cell is assigned to the eight cell corners llnearly interpolating
according the actual partlcle location w1th1n the cell. In this way, the
expression relating charge to potentlal (Equatlon 2- 16) needs only be

summed over the spatial nodes, rather than over all partlcles

This "averaging" of each particle's location is carried out in '

the following way. Since the particle's new position is indicated by

XP = IX.XFF
YP = IY.YFF . (3-38)
ZP = 1Z.ZFF ,

,tﬁe integer parts of XP, YP, and ZP are used to calculate the new number:
of the cell wh1ch contains the particle, using Equation'3 32. The following-
'quantltles are then calculated u51ng the fractional ‘parts of the partlcles

" location:
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FQ(1) =
FQ(2) =
FQ(3) =
FQ(4) =
FQ(5) =
FQ(6) =
FQ(7) =
FQ(8) =

where WT is the weight

(XFF)# (1.0 - YFF)*(1.0 - ZFF)*WT
(1.0 - XFF)*(1.0 - ZFF)#(YFF);WT
(1.0 - XFF)*(ZFF)* (1.0 - YFE)#*WT
(XFE)* (YFF)* (1.0 - ZFF)*WT
(3-39)
(XFF)# (1.0 - YFF)* (ZFF)#WT
(1:0 - XFF)*(ZFF)« (YFF)*WT
(XFF)* (YFF) % (ZFF) +WT
(1.0 - XFF)*(1.0 - ZFF)*(1.0 - YEE)*WT ,

(charge) of the particle being considered.

After a little thought, it becomes apparent that FQ(i) is just

- .the fractional amount of charge that is given to each corner of the cell,

' using lipear interpolation. For 1= i =7, i just refers to the node

number Ii given in Equation 3-37, while i = 8 is the cell number given by

Equation 3~32; i.e;,

I = (IX

+ 1) + NXx(IY) + NX*NY*(IZ) .

Now, the array Q(K) is used to store the charge attributed to

each spatial node due to particles moving through spaée.‘ Therefore, for

éach'particle, the Q array is updated by the calculation

Q(I) = Q1) + FQ(8)

I}

Q(I1)
Qui2).

.Q(13)

@)

Q(15)

. Q(I6)
o

Q(17)

Q(I1) + FQ(1)

Q(12) + FQ(2)

Q(13) + FQ(3) _
(3-40)

Q(14) + FQ(4)

Q(I5) + FQ(5)

Q(I6) + FQ(6)

Q)




The calculations descrlbed so far would complete the particle 1oop
if one did not have to consider the possibility of the charge returnlng to
the satellite s sutface or hitting the outer boundary of the spatial mesh.
When this happens, the amount of returning charge must be determined, and
that amoeht of charge must be removed from the particle following calcula-

tion.

Thislproeedure applies only when the particietbeing considered;
is in a cell adjoining a sutface of the satellite or the outer boundary.
The array NORM is used to determine when this is the case. I1f I is the
cell number and NORM(I) = 0, then the particle is not near a surface and
the particle ¢alculation is complete. If NORM(I) # 0, then the particle

is near a surface and further checks must be made.

For each cell where NORM(I) # 0, the components of a vector (or
'vectors) normal to the nearby surface (or surfaces) are: stored in the CN
array. Fer partlcles in such a cell the dot product of each partlcle s
velocity vector and the surface normal vector is calculated. If this dot
product is p051t1ve, the particle is moving away from the surface and thus
no further calculations need be carried out. If thehdot product is negative,
the particle is moving toward a surface and further ceiculations'must be

done to determine if it has yet hit the surféce.

The.surface normal array, CN, is then used to determine if a
particle is within a certain distance of a surface. This distance, which
is an input numher, is some fraction of a cell size. For most cases, the
surface the.particle is approaching is just one of the cell boundaries,

but- surfaces diagonally dividing a cell are also allowed
When the dlstance between the partlcle and the surface boundary

1s less than the spec1f1ed dlstance, the following add1t10na1 calculations

are carrled out
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First of all, the weight of the particle is recalculated, using B

the algorithm

1l

WT(J) = FQ(1)*TYPE(I1) + FQ(2)+TYPE(12)

+

FQ(3)*TYPE(I3) + FQ(4)*TYPE(I4)
(3-41)

+
+

FQ(5)*TYPE(I5) + FQ(6)*TYPE(I6)

+

FQ(7)*TYPE (I7)

4

FQ(8)*TYPE(I) ,
where

J is'the particle index

T is the cell number

- and the array TYPE(i) is 0.0 if i is a node in free space or 1.0 if i is a
‘surface node. The weight of the particle is thus decreased to account for

part of the charge it represents returning to a surface node.

At the same time, this returning charge must be added to the QQ

array. This is done by expressions of the form

Q) = QQ(3) + FQ(k)=(1.0 - TYPE(j)) , (3-42)

where j varies over the eight surface nodes bounding the cell and k is the

index corresponding to j as determined by Equations 3-37 and 3-39.

Similarly, the same amount of charge must be subtracted from the
Q array, since it was previously added (Equation 3-40) when it was assumed

that the particle was not returning to a surface.

When these calculations have been completed for all particles in
space, the parficle loop (blocks 3c to 3e of Figure 3-1) is completed. New
values of particle location, veiocity, and wieght have been calculated, the

charge distributed to spatial nodes determined, and the charge returned to

- surfaces has also.been calculated.




One other point regarding the particle loop calculations needs to
be considered; namely, when do we stop following a given particle's motion?
This is determined by a check on the weight of the particle at the beginning
of the particle 1loop. If the weight is less than 1 percent of the average
rparticle weight,,which is recalculated every time step, the particle is

assumed unimportant and is no longer considered.
L ont ;
Block 3f—Calculate Q' =~ on All Nodes

At this point in the time loop, the total charge of the system
is contalned in two arrays, Q(I) and QQ(I), where I is an index varying

over all spatial nodes of the mesh.

The Q¢array'represents only that part of the total charge due to-
electrons moving in space, i.e., the emitted charge. Part of thls charge
may be ass1gned to nodes that are also surface nodes 51nce many particles.
are expected to be near emission surfaces at early times. This charge may
move away from surface nodes at later times, however. The Q array depends
only on particle locations and weights. Therefore, this array is set equal.
to zero at the beginning of each time step and recalculated as particles |

move in space.

'The QQ'array, on the other hand, 'represents charge-actoally-resid-
ing on the varlous .surface nodes of the sate111te and the outer grid
boundary These charges may red1str1bute themselves by flow1ng through the
various c1rcu1t elements, but, at any given time, the total sum of charge.
in the QQ array plus that in the Q array should equal the initial total
charge of the entire system (which is usually zero). Note also that QQ(I)
is»always zero when I is.not a surface node. Also un11ke the Q array, _,'
“the values of QQ(I) must be saved from one time .step to the next since there
is no other place where equ1va1ent data is stored. (The Q array can always
be. recalculated from partlcle data.) o -
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For calculating the néw potential at each node, howeVer; one
requires the total charge at each node. Thus, after all particle motion
calculations have been completed, the two charge arrays are just summed,
with the-resulting total charge for each node stored in the Q array. At
this point then, the numbers in the Q array change their ‘meaning from that
prev1ously dlscussed (Note, however, that Q(I) changes only for those I

_values that represent surface nodes with non-zero QQ(I) values.)
Block 3g—New Potential Calculation

The final step in the time loop is to calculate the new:-potential

vaiues_at each node in the spatial grid. This new potential is given by

‘n+] Z S.

ij J

“where Q?+1 is the total charge at t™! on the jth node as calculated in
block 3f of the time loop.

~ Calculation of ¢n+l is straightforward but the operation can be
quite time- consuming since there are j multiplications for each value of i.
However, in many cases Q *1 will be zero for many of the nodes in the mesh.
Therefore, the code flrst checks to see if Q is zero. If this is SO, j
is just 1terated to its next value. If not, Slj is determined by calculating
the Ak, A%, and Am values defined in Equations 3-13.

_ When this calculation is completed, the time loop is -also
finished. The code then checks to see if the maximum desired time has been

reached. If not, the time loop is repeated.

BLOCK 4—OUTPUT -

:There are obv1ously a tremendous number of output parameters that

As a result the varlous charges,




pbtentials, electric fields, and branch currents are written on an output
tape at every specified time step. -The desired output. parameters can then

be pulled off of this output tape.

In order to avoid exceedingly long printed outputs, only a limited.
number of parameters are actually prlnted at the end of the output 115t1ng
One output cell is specified. The potential and total charge (after Q and -
QQ have been summed) are printed for each of the eight corners of the cell.

The three comp0nénts of the average electric field within the cell are also

printed. In addition, a number of specified branch currents are printed

at specified cyéle‘numbers. If the primary interest is in calculated re-

placement currents (i.e., the branch currents), this printed output may be

sufficient for the user.
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"SECTION 4

SAMPLE PROBLEM AND RESULTS

In order to check out the calculations made by the QUASI éode, a
sample problem was used. This sample problem was calculating the SGEMP
response of a right circular cyllnder emitting electrons from one end. This
simple two-dimensional geometry was chosen because calculations for such a
geometry had prev1ously been carried out using the SEMP code, which uses
purely finite-difference techniques for finding skin currentslon the
cylinder. We can thus directly compare the replacement currents calculated
by QUASI with those given by a rather finely meshed finitexdifference calcu-

-lation.

The geometry con51dered and the equlvalent circuit used by the
QUASI code are shown in Figures 4-la and 4- lb The points where skin cur-
rents were calculated with the SEMP code are indicated in Figure 4-1c and

the QUASI surfaée_node numbering scheme is shown in Figure 4-14.

It should be noted that the grid size in the,SEMPvcaiculatioﬂ is
approximately‘lsicentimeters, while for QUASI, Ax = Ay = 1.5 meters and
. = 0.75 meter. We ‘are thus using a rather coarse grid in QUASI. This
7‘.1mp11es that the current in each branch of the QUAST equlvalent circuit is, in
SOme . sense, an "average" of the current across the area of the cylinder

that the branch‘represents. Thus, a one-to-one éomparison of QUASI and

SEMqugsults'is.not'possible.




a. Geometry considered

D

N

c. Locations where skin
current was calculated
using the SEMP.code.

20

164
12
8 ¢

d Nddé numbers of
the QUASI equiva-
lent circuit

F{gure“4r1f.-Samp]e.problémﬁ comparison of finite
: - .1 difference calculation (SEMP) and QUASI.
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For comparison purposes, identical electron emission data was used
in both the SEMP and QUASI calculations. Although the geometry of the problem
was two-dimensional, no attempt was made to require azimuthal symmetry in the
QUASI'calculation. In fact, azimuthal circuit elements were at first used
in the QUASI circuit model, but they were later dropbed for simplicity when -
it was determined that azimuthal currents were,'indeed, quite small, Célcu—-
lations also show that the currents in each of the four parallel: circuit paths
of the QUASiVCOdé are very nearly equal even when the azimuthal circuit

elements are absent.

A comparison of replacement currents on the emission surface of the
cylinder is shown in Figure 4-2 where an incident filuence of 10™° cal/cm?
- was assumed. In this case, the current calculated by QUASI does indeed look
like the "average' of the current calculated at points A and B by the SEMP
code. (Each of the branch currents from QUASI has been multiplied by four

" to account for the four parallel circuit branches.) . ' -

Figure 4-3 compares the SEMP current at point B with QUASI results .
at adjacent circuit branches. One would expect the SEMP results to be the
"average" of the two QUASI currents. In this case, the QUASI calculations
appear to be a 11tt1e high, but not unreasonably so considering the large
size-of the.QUASI grld.

Results on the back side of the cylinder are shown in Figure'444.

Again, the comparison is not.at all bad.

It should be noted that a few timerpoints were calculated by QUASI
beyond those shown in Figures 4-2 to 4-4. At these later times, the currents
'appear to be becomlng unstable and results begin to dlverge from the SEMP : -

galculat;qns., The reason for this phenomenon is not fully understood at

this time. . , ' - ' - : .
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The total CP time for ihis QUASI run on the CDC 7600 was less than
4 minutes and the total number of particles emitted was about 5000. The
QUAST code is thus capable of giving reasonably accurate structural replace—
ment currents at 1ow fluences without using excessive amounts of computer

time.

The same sample problem was also considered at a somewhat higher
incident fluence (107" eal/émz); A comparison of results is shOWn'ineFigure
4-5. 1In this case, the QUASI results are a factor of 2 to 3 times greater

than the SEMP results.

This disagreement is thought to be due to the fact that the cells
in QUASI are relatively large and a uniform electric field is used to move
all particles within edach cell. However, at higher flueﬁees, where spéce
charge 11m1t1ng effects become important, electric field gradients are fairly
steep near em15510n surfaces. For example, the SEMP calculatlon gives a
- peak electric field of about 2.5 X 10* volts/m at a distance of 15 cm from the
_emission surface .and a peak field of 6.1 x 10° volts/m at 45 em. The QUASI

cell, however, has a minimum dimension of 75 cm. . The peak calculated electric
field in a cell adjacent to the emission surface was about 6.0 X 10° volts/m,

which is about right for a point at the center of the cell.

However, for moving those electrons in the half of the cell closest
to the emission surface, this electric field has too small of a value Thus,
space charge limiting effects will be under-estimated and one therefore

expects the QUASI currents to be somewhat high. A proposed method for cor-

recting this large cell size problem is given in Reference 13.
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SECTION 5

CONCLUSIONS

In this report, we have diséussed the basic theory of a three-

" dimensional, hybrid electromagnetic/circuit theory cddé for calculating
SGEMP replhcemént,currents. The code QUASI has been written for carrying
out such calculations and the basic structure of the QUASI code has been
outlined. Results of a sample problem have also been presenfed and compared
with the results of a different calculational technique. The calculated

replacement currents compare quite favorably at low fluences.

_From the 1imited amount of calculated data that.has been generated
so far, it appears that the QUASI code is a valid and useful tool for calcu-
lating SGEMP replacement currents on relatively complicated structures. The
code has some obvious limitations and a number of improﬁements are certainly

possible. One needs to exercise the code for a number of different geometries

to determine its ultimate usefulness.
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APPENDIX 3

USER'S MANUAL FOR THE QUASI COMPUTER CODE

. figures,ftables,_equations, and references refers,only‘to items
- _.contained herein. This appendix has not been published as a
. . separate document. - '

- ©~ NOTE: This appendix is self-contained and all mention of sections,
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1. - INTRODUCTION

This document gives the information necessary for ruﬁnihg'the
computer‘program QUASI. This code calculates structural return currents
on 4 satéllife.&Ue to syétem generated EMP effects. Thé theory used and
a basic conceptual outline of the QUASI code are described in two companion'

documents?’’?

to this user's manual, The reader should refer to these docu-
ments for further information on the meaning of variOUS'input'aﬁd output

parameters described here.
2, OUTLINE OF CODE OPERATION

QUAST is a three dimensional code using an uniform Cartesian
~grid. The diménsions of a unit cell in the grid are specified by the . .
three dimensions Ax, Ay, and Az. The corner of each grid cell is called
"arnode. To avoid triple indexing, each node is assigned”a single,indéx.

ASimilarly,'eachVCell is' given an index number.

For a given node, the node number is assigned in the foliowing

manner:

Let IX = integer number of Ax's of ﬁode from yz~pléne
1Y
17

inteéexrnumber of Ay's of node from xz-plane

integer number of Az's of node from xy-plane -

“Then, R
..nhode number

IX+1 + NX*IY + NX*NY*IZ
~ and cell number = IX+l + (NX-1)*IY + (NX=1)*(NY-1)*IZ
e o 127




- where NX and NY are the total number of nodes in the x and y - direc-

tions, respectively.

A further description of the relationship between node numbers,

cell numbers, surface nodes, and circuit branches is given in Reference 2.

A flow diagram of the QUASI code is shown in Figure 1. This flow
diagram, along with the attached code listing should be sufficient informa-

tion to enable an experienced programmer to understand how QUAST operates.

In order to coﬂsdlidate the parameters of each problem and also
to facilitate communication between routines, twoarrays J(200) and C(200)
have béen included'which'holﬂ many of the key fixed point and floating
point'péramefers respectively. Although many J(I) and C(I) have been
left unused for future modificatior or expansion, a list of some of the

ones used with a definition of each is given in Tables 1 and 2.

. Various other J's and C's are used as temporary storage to facilitate

in setting up a problem. However, no other C's or J's are used once the
time loop has been entered.

3. INPUT DATA

A'numbef of input parameters are required by the QUASI code. This-

input data is broken down into nine data sets, each of which is described
in the following pages. A
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Figure 1. QUASI Flow Chart.
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Tab]e 1. Fixed Point quameters

J(1) - NX = number of nodes in the x direction , -
o2) - w= " "y | ,
J(3) - N=.." , " " 2 " : , .
J(5) - total number of time cycles to run problem
J(6) - total number of output points requested
7)) - number of theta,emission angles
J(8) - number of phi emission ahgles
J(9) - number of energies for emission
J(i0) - number of surface nodes (specimen only)
J(11)}) - number of branches
SJ(12) - number of surface normals (spec1men only)

J(13) - - output point number (this node plus the 7 associated nodes
o which make up a cell will have the vo]tage and charge printed
. .at each output cycle along w1th the electric fields for that ce]])
J(14) - problem number -
J(29) -~ cyc1e number

- J(30) - maximum number of part1c1es for which storage has been allotted
J(31) - buffer size for reading or writing particle information
J(33) - number of surface nodes (including outer mesh boundary)
J(34) - number of surface normals (including outer mesh boundary)

J(40) - total number of particles

J(41) -~ output cycle flag

J(42) - output cycle counter

J{51) - number of particles emitted in the J(29)th cyc]e

J(101) - total number of ang]es for em1tt1ng part1c1es (9(7)-3(8))

J(102) - 2x3(9)-1

J(103) - J(1)+J(2) 1 ]
J(104) - number of branch current values to be pr1nted at each output

- cycle .
J(TlO)r— (NXNY J(])*J(Z))
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Table 1 (continued) Fixed Point Parameters

JI(IT1) - (NXNYNZ = J(1)*3(2)*3(3)) total number of nodes

J(112) - ,(KX'= NX-1) number of cells in x d1rect1on

J(113) - (KY = NY-1) v y "

J(114) - (Kz=Nzel) v o g

J(VI5) - (NN'= KX%KY%KZ) total number of cells

J(116) - (KXKY = J(112)*3(113))

J(120) - 'J(127) - node numbers of the eight voltages and charges to be

printed
J(129) cell. number of electric field to be printed
J(199) - number of dumps
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c(1)
" C(2)
C(3)
c(4)
c(5)
- Cc(6)
c(7)

Table 2. Floating Point Parameters

DX = distance between nodes in x direction in meters
DY - L 1 n y 1] ‘ n

DZ = " " ou Z ) " n

DT = time é]apsed between cycles in seconds

real time elapsed between dumps in seconds

electron fluence in cal/cm?

fraction of distance from surface for particle turn-off

(i.e., if C(7) = 0.01 any particle within 1% of a DX, DY, DZ -

or combination of these as indicated by a surface normal - will

have its charge returned to the surface charge and will sUbseqﬁent]y
be killed) :

€(64)-C(70) - title of X-ray spectra used
C(71)-C(77) - tit}e of specimen used

c(85)
-~ ¢(86)
€(90)
c(91)
C(92)
c(93)
c(94)

C(95)

€(96)
c(97)
€(98)

¢(99)

1 cal/cm®  in units of KeV/m?

1%/ (2%3(9))

1%/ (4me, )

self elastance of a node in space

time in seconds

charge on an electron (-1.6021E-19 coul)
mass of anje1ectroh'(9.]083E-31 kg)

~ speed of Tight (2.9979E+8 m/sec)

absolute value of C(93)*C(4) _ ,
reciprocal of electron rest mass in Kev (1.0/511.0)
minimum charge on particle for calculating purposes

- {(updated each time cycle). Any partic]e having less than

this amount of charge is considered negl1g1b1e and is dropped
(k111ed) from calculations
C(93)+C(4)/C(94)
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Tab]jerz' (continued) Floating Point Parameters

c(100) - C(4)/c(1)

c(101) - c(4)/c(2)
..€(102) -~ c(4)/c(3)

- €(103) - C(4)«C(93)/3(107)
C(106) - -T1.0/{4+C(1))
c(107) - -1.0/(4%C(2))
C(108) - -1.0/(4%C(3))

C(113) - NX
C(114) - NY
. C(115) - NZ
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DATA SET 1

Data set ] is one card which is read in a 2I5 format

(11 12

11 - integer flag to indicate an initiating run or a dump start .

I1 = 0 initiating run
I1 > 0 start from dump number I1

I2 - maximum riumber of minutes that problem will run
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Data set 2 is

DATA SET 2

one card which is read in a 1415 format

-.l/"J(.l') 3(2)

J(1)
J(2)
J(3)
J(4)
J(5)
a(6)
2(7)
J(8)
J(9)
J(10)
J(11)
J(12)
9(13)
3(14)

J(&)9(5) a(6) 9(7) ~9(8) a(9) 9(10) I(11) 9(12) 9(13)

‘number of nodes in the x direction

1] o on n . y "

o n , " z A "

not used

total number of time cycies for probTem
total number of output points to be put on TAPET
number of theta emission angles
0 phi " "
number of energies for emission
number of surface nodes
number of current branches

_number of surface normals
“node number for output print cell
problem number
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DATA SET 3

Data set 3 is one card which is read in a 7E10.3 format

(cm o)

C(1)
c(2)
C(3)
c(4)
c(5)
c(6)
c(7)

c(3) Cc(4) C(5) c6) o)

Ax
Ay
Az
At

in meters
in meters
in meters
in seconds

time between dumps in seconds

fluence in calories/cm?

not used.




DATA SET 4

Data set 4 15 two cards which are used in a '7A10 format

(50 KEV BREMSSTRAHLUNG stored in C(64) - C(71)

r’é METER X 3 METER CYLINDER |  stored in ((72) - C(79)

C(64)-C(71) - description of X—rayrsourcé
. €(72)-c(79) - " . " specimen
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DATA SET 5

.Data'set'S is made up of 1 card followed by one or more other cards read
in a 7E10.3 format

f/%T1(k) FT2(k) FT3(k) FMNY FLG

AFT](k) - first point of trapezoidal time pulse in seconds

FT2(k) ~ second point of trapezoidal time pulse

FT3(k) - third point of trapezoidal time pulse

+ ) ' )
f(x) ! ;
A FTI{k) FT2({k} FT3(K)
Time
- FMNY - ndmber»of data points in electron spectrum

which will follow

FLG - flag for readina another electron spectrum and
time function (i.e.. if FLG > 0 another set
of data will be read) .

r/’ | A XIF(FMNY)
r/le(e) c e XIF(14)
r/kxF(1) XIF(2) . . . . XIF(7)
XIF(I) - integral of electron fluence normalized to 1 KeV

-of incident fluence (i.e., XIF{I) = number of
- electrons > "I" KeV in energy)
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DATA SET 6

. Data’ set 6 conta1ns surface node data (one card for each node) read in
a 315; E10 3 format '

(IX Iy -12 AREA

IX, IY,‘IZ - integer distances from the origin of the
coordinate system .in X-direction,

y-direction, and z-direction respectively

(the equation for the node number corres-
ponding to IX, IY, IZ is
NN = IX + 1 + NX*IY + NXNY * 17)

AREA. . - effective area in square meters allotted
to this node for current calculations (the
total AREA's input to QUASI must equal the
pHysicaT surface area in square meters of
the object)

. | L s




DATA SET 7

Data set 7 conta1ns surface normal data (one card for each cell) read in
~a'315, 3£10.3 format

r’lx IY IZ CN(N) CN(N+T)  CN(N+2)

- IX, IY, IZ - integer distances from the origin of the
coordinate system in the x-direction,
y-direction, and z-direction respectively. .
{the equation for the cell number correspond-
ing to IX, IY, IZ is cell no. =
IX + THKX*IY + KX*KY*1Z)

CN - an array which holds the surface normal vectors,

e, $=oN(N)T + CN(N+1)-Ty + CN(N+2)T,




DATA SET 8 .

‘Data set 8 contains branch data (one card for each branch) read in a

315, 3E]0 3 format

f/NODE(1,k) NODE(2,k) ITYPE R "AL CC

NODE (I,k)

- ITYPE

AL
cC

integer node ndmber Of'starting point and ending
point of the branch

_1nteger to indicate type of circuit in this

. branch

ITYPE = 1, R circuit
' 2, RL ‘series circuitv
3, RLC series circuit

res1stance of the circuit in. th1s branch

inductance of the circuit
capacitance of the circuit
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DATA SET 9

, Data set 9 conta1ns emission data (one card for each em1ss1on p01nt) ina
15, 7E10 3 format : o : S

[/TEﬁ(I) - XEP(I) YEP(I) ZEP(I) THEP(I) .PHEﬁ(I) FRT(I) AR(I)

integer to indicate which electron spectrum
is to be Used at this pbint i.e., IEM(I) =
implies that the first e]ectron spectrum w111
be used
the Tfloating point d1stance from the or1g1n
of the coord1nate system in the x-direction,
'y-d1rect1on and z—d1rect1on respect1ve]y
THEP(I) - the first and]e .of emission measured from
& ~ the x-axis of the surface
normat PHEP(I) - the second argle of emission measured from
the normal to the surface.
the time in seconds that the Ith emission
point is retarded from emittiﬁg electrons
—? - with respect to the first emitting time.
AR(;) the area of the surface in square meters
over which the Ith emission point is
o emitting (i.e., the Ith emission point
| fepresents emission over this area).

IEM(I)

 XEP(1), YEP(I), ZEP(I)

TREP(I)

FRI(I)

!
l
1
|
i
L]
1
|
N

PHER(1)

M
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4. ouTRUT

Two hlﬂary tapes are created by QUASI. TAPE 1 is an output tape
which, for each output cycie, contains the cycle number, ‘the number of
part1cles, and all of the currents, charges, potentials and electric fields
at that time. TAPE 2 is a dump start tape Several dumps may  be wrlttenﬂ'

and QUASI may be- restarted from any one.

A number of output parameters are also prlnted along with the
code llstlng : The first part of such printed output data just lists the-
var1ous input parameters and the results of certain set—up calculations,

A sample of this problem def1n1t10n data is given in Append1x A.

A second set of data is printed at each output cycle This
printed data 1s a sample. of the more complete set of data be1ng wr1tten
on. the output tape, TAPE 1

~An example of the 1nformat10n prlnted at each output cycle is

shown in Figure 2 The f1rst line contalns the following data:

" CYCLE-NO, = cycle number (number of t1mes the t1me 100p has
, - o ‘been 1terated) '_ .
NO. PART = number of particles currentl} being followed
TIME ' = £t1me at wh1ch output parameters were calculated
i ' (TIME = cycle number X time step)
_PART;/CYCLB = ‘humber of partlcles emitted per ‘time cycle
SPACE,Q = csum of all charge in space (out51de the satelllte)-
TOTAL,Q. =. sum of charge 1n 5pace plus charge on surface
p R -nodes, i.e., total charge on system
"~?AVG,,de'" = average charge of particle in space d1V1ded by

- 100 (particles with less than thls amount of

" charge ‘are dropped from the calculation. |
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The next three lines refer to a previously specified spatial cell
 (this cell number is stored in J(13)). The first of these three lines is
the totéluChargeron each of the eight nodes of the specified cell at the
endrofrthe tiﬁe‘pyclé being considered. The second line gives the calcﬁlated - -
voltéges at each of these nodes. (The order in which the nodes are printed

_is 1nd1cated 1n Figure 2.) The first three numbers in the third line are .

the calculated .Ex, Ey, and Ez components of the electrlc f1e1d respect1-

Vely;'fof fhe'§pécified'ce11 The fourth number in thlS*llne is the sum

of the charges on the eight nodes divided by the cell volume (in cm®) and

the fifth number is Just the fourth divided by the electron charge.

The final line of data for ‘each output cycle is the current in
amps flOWng through certain SpeCIfled branches of the equivalent circuit
which represents the satellite structure. These currents, then, are the
so-called structural replacements currents due to SGEMP. The specified : -
brapches to which thése'cUrrénts correspond are printed just before the

output data fof each cycle begins (see Appendix A). B .

T . 144




.o~u»u.nznp=o_:umm vmucw;mumpmu Indino 4o 3pdwexy

z.
el)p \\
+ s .
. L. 7
£ - —_t - l.lﬂ :
i
. H
I
8 1 2y
. [
pajutud aue [eriuajod pue 8buryo . “
UDLYM UL J9p40 33eD1pUL suaquny 0 -
. . 20-32£0%2~ " zoajdestie 20=327542A 20=3riE°2s  Fyuipgzey= L0a3p04°
. . Co mo¥328s8°1 0143699°2 “o.uhco.
- _onummn 3 LLAFILARN: 10433154 00+3070°g 1043000°y ST TTYAS m
1le3gfotoa 60=3T11Tn 60=3%19% 1 0)e31E86'2m 60m=3g9n*2a oo.m_vm t
||WMuum_h "% U 'OAY 02«3p09°7 = o vi0L Lda3vEn" 2= O Igvag v, = m4u>ux.hm«aocnm°¢o 7 272,15 go
R ST Tf0md2untre S0ejupit P f0esiglis. nalmmn_ Se - E0mIBZL"TF . A0a3gge”
- o : : ) ) E043659'S . Tu04igagTs : 0uraL5eTg-
-10u3c50 0y 00+3836"¢. 00+3¥I0y 004382012 S10w3z9gc 00edngt %o
md.uh 0"g= 071=325¢°¢= ALFLIFAS Ti~311a 8= V=422 = 0f=35u1%y
Nﬂauonm §=a 0 "3AY 17<32nb's £ & Yy10L Lvv«39(3°Tan © 35v48 02, 37240/%1uvdaVa306,"2 =" IL QU
— c e wmn T PO®3T8GCe LB0e3L75%8a | pom 38gT°Pe  m0uIZiN"ne pu=3f5¢ 2 B0.3gzn"
) : : , Qu+3eysts 60+30g2" )
K 80=3¢L9" Te 10=3999°g 10=3¥19%g _o 1586"'€ - ove3gen’ 2 00+a2ra¥y .
nﬂ.mrzm 4= . I 1=3lgotge Tlagvzgiga 1<37€9° T 0ledg6Gm tiwdats®y
. 2143gn0 gar 'oAY 12-3559't = g J«hch mc.mmao L~z c 23vd4s 02 r m4uyux.>z<¢vc.ugcm b=

3wl 00

ﬁ.
ncommou._
1V0¥3u5;.22 .
b= m#mm.-
m = tigtd
Vo348
ec+umcm.
_-MM=_ ”

¢ = hxqa

b
Ueeggne
Phegalzey

b= Yyuvg

uclmuwwch

“on
ucnua_aJﬂ

"3

"3n

01

S

*Z 24nbLg

aolmv.:_. i.
Toegheney”
T0s3e3ley
60=3169°9
51 e gy ugu»u

:ovumﬁs. B
Gosaunhen”
«e;uoaa H

o0=3oTe"2

- °0ON - mJu»u
mclwiwq-_ o ~
10=32400¢" .
Guesvgleg | :
0lej2oysg
2 "0~ 37749




APPENDIX A
SET-UP DATA FOR SAMPLE: PROBLEM

Resultsrfor.é sample QUASI run were given in Reference 2. This
- appendix shows the various parameters used in that problem as they are
~printed ocut by the code itéelf This listing 1nc1udes all of the data
printed out by tHe code- prior to the beginning of the t1me loop.

The geometry considered, thé equivalent circuit and the corres-
‘ponding node numbers for the problem are shown in Figure A-1,
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a. Geometry Considered ' - - b. Equivalent Circuit — - . ... ¢, Node Numbers

: __";-F__iguvrje A-1. Problem 'De—f.ini-tion'.
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APPENDIX B

A LISTING OF THE QUASI CODE




Y
o
.
» .
‘
1
-
"
I
-
.

.'

PROGRANM QUAST (Iﬁpnr.auipuf;TAPE?rTAﬁEé,iA#ES=i&PUT;TAPﬁﬁéuufPUTJ
TAPEAZOUTRPUT TaApE , . TAFEZ2=p(Mp -TAPE - :

COHMAN CC200Y, (2000 p X pC15Ced) ) NrAXEAY s YV(20D, 1B(30),EXCID00),EY(

'.Ilonn)eEZ(LnnO)pFri(a),#rg(a),FrstaJ;sta(a);xptloazi,xp(1023),zp(10

223)aVX(!“23)-VY(10233-V7(102310WT([QES)oFGCSJrTYPE(i3313fSIJ(13§1) ’

1,8770(1331),00133¢) oL - e
~ LARpF PX(3c000),pY(gOOnn)pPZ(30000),PVX(30000)'PVY(SOOOOJ.;
APVZ(30000Y,PHY(30000)

COMNON /ERMSET/ MTRETA, PHToNEW, 1EM(F0)  XEP30), YER(S0) 4 ZEP(30), TH

1EP(3OJ,PH£P(3nJ,AHtso).Fﬁr(SOJprtzojaa).cvtso.aﬂ).CZ(SOpuaj

COmmiy /TARLEY/ SUM(EOO};Nnnﬁta;EnOJ,n(u.zonJ,A(BOOJ,NoRM(loooJ;CN('

12500) : S :
COMMON /COMET/ DT DXy, DZ,MT,MX, 0y, NZ,KRRN, NS, WML,

S CoMmMOG ZCOUPLEZ V13310, 60013310, C0RCR00D, TACI000)

IXZLOCFCI (2009 ) +9
TYSLDCF(O€1334))mIX
DO 19 11,1y

JC20041)=177700000000000000008

10 CONTINUE

.. haoao T=1,200 -
J(T)¥=0 -
C(Iy=0,0

T 20 fONTINUE

RO 30 I=t,100p . e e e
MORM(T)=0 :
30 CONTINUE

CREAD (S+40) 119212
40 FORMAT (1alS) .
PRINT 04,352 o :
A1 FORPATORITINE LTMIT 2x,15,%MINUTESY)
CALL SYCORD (xCRrex)

o XAEFLOATCTRY e e e _ .
XCPYXXEX1#%60,0d10,0 N o T o
TF (T1) 1904190,80 i . )

o DUYHPR 8TART -

50 I13R71el. e e
REHYND 2 . 7 7T S S T
IF CI3) B0.80,60 e o e

60 PO 7D 1=:1, 13
CREAD (2)
10 CONTINUL

80 READ (&) CrJ{EK.EXaEZ;ngVpNﬂﬁﬂp&u;MY;NY,NZ!KKKY:NEW!KX:KYJerNXNYr

I,HxnvwzsNN;TYPE,IA,AP.er,IB.IEM;xEP;ZEP;cxfCY;tz.NNAx,SIJ,YEP,CUR

2'D€“5'“H”NiDT-QX'9*-DZ-“’3'?F@Lﬁﬂ@ﬁlﬁﬁ?ﬁiil'filfEIQ!ﬁTi(ﬁI@!?ﬁ&?*'M“

CBPZaPVYEVY,PYZ,PUT, A NOP
REWIND 2 - '
12an -

90 -READ (2) ) :
IF (EQFr2Y {i0si00™

foo-1e=1241 . - -

6010 90

110 BACKSPACE .2

KRITE (612007 11,12,9({a) T T e

155



120 FORMAT (62K PROGRAM QUAST. DUHF START Fho” DUMP NG..ISn 18K TOT
©fAL MO, DUMPS =sIRe10H proBd NO,B,T5) .
J(te9)=le
REWTND ¢ o
- 12=0 e e e+ e e e e T
130 REAN (1) . o ,
IF CERF.1) 1S0r,180
140 j2s1e+d
¢ ot {30

150 J(1g98)=12
o RACKSPACE 1 X
160 FORMAT (1X,2016) : . ,
161 FORUAT(IX, 91a) e e e e e
170 FORMAY (11X 10F13, 5} , : :
e, 10BRIAL3Y) S R e e e e e+ e et e
IN1=TNRG
YORETOBEMX i i e e
TO3sI0RENYNY _
T I08e Y0+ NY e R
1082 IN2+NENY .
D 51X N K O S U U S
ID7T=106+NY
CILEI0B/NXMY
10920(13)m [1*._1(1{\'5) (J(]_l’.) I1*PXMY1/MX
JO121)=104 . e e TR e
J(Ieay=Ing ' ) - v
RS B A 10~ 2 5 I I 0 S U OO SRS PSSO
: gy sI0Y ' _ S
JC125)210g o e _ - e e e “
J(ip6Y2I0A .
SJUIRTIRINT e e
J{120Y= 108 _
W (129)8T0q. e e et e e e e v e e e+ e e
WRITE Cor160) J '
WRITE (6e0170) C

0 10 370
c - END OF DUMP QTART . .
190 J(30)=T0000
i J(R) 21023 _— . N R } o L }

AEELIET! ' ,
JOL36IRC
J(i137)=0 : - '
J(13R)In2 S
139y =2 - -
RN £ & X 15 1 S et s et e B .
T Itasy = . ,
o Je1s3y =y
J(156)=

B IS VYRR |




—

R8I 10159265159

T C(97)=1.0/811.0
nO 200 Is4.3

200

o C(I3sI2L 40

Ce(137)==1,0
eeLs0)=li0

- C.( 1 6 i ) n" 1 O PN e e e A e arrs v Ay

210
c20

eet .
éze

£(95)2 9979648

MKS UNITS

CCRG)I=1,0/1 b6NDLE=LQ

:C(55)=2.61375+20
C(nY=B,98TUFE 9

C(93)==1.6021E=19
Cl9g)=9,10R3EL3L

C(96)= Ab%(r(qs))

ItE1ba+]
Ci2zibesl . -
133120471
TasgaL+l . I
158150+
T6Z{L1+T%T - -

175156+1

C(I3)=1
C(Tu)=mla
C(IS)="1|Q-
C(La)zrmi,yn

C(I7)emlan

C(ladzg,0

CONTIMUE

Cliph)==1,0 -
C1av)=t.0

C(izo=el 0 " e -

f: ( 136 J“""'“ 1-.'. 0

C('ifqaj 1,0

READ IuFUT PAhAMETan

LB E L P TR T o e e e et +aore e ammn e+ i

READ (Sidp) (J(1)sl= Letad) L

READ (52210 (C(I),151,7)
FORMAT (7F10,3)
WRLTE (He220) J(14)

FomaAt( 11y, 20X ¢ 2THPROGRAM OUAST PRGBLFf‘ NOw

WRITE (64160) (JfI), I=1.1ﬂ)
WRITE (6s170) (CCI),121,7)
READ (5s,221) (C(1)s1™64, 77)
FORMAT(TALD)

FORMBTCIX; 74100

WRITE (69222) (CLIYe1564677)
NX= 1)

HYRI(R)

N2=Jf53

NXNY= MX*NY

NXMYNZ=NXNY*h7

K! NX-l

TKyEnYey
KZ‘NZ -1

=, 18)

PO N A At 1§ AT e e £ b et <3 £ 48 88 Y £ e
——— et




KXKYZKXRKY.
MASRXRKY*KZ:
FNXSFLPAT ENX)
FNYZFLOAT (NY)
FNZ2FOAT(NZ)
MYHETARS(T)

MPHI=J(8) ) S .
CNTEIL(R) e e e

NE=J(10) i o )

L O

CNHL=J(1a)
NNP=KARN/A
Dx=cey) .
by=c(2) - , ' _ . ’ :

0726 (3) OO PO S
DT=r(4)

. MYSRER SV IO I
L JOIot)=d7I%](8)

‘ J1a2)=2*)(9)mi
JO1o3)=d{1)+d(2)=1
Jetodysnne 7

ooJO ey sexny oo o
SC111)ERXNYNT e e e e AR A At £ et et 2 e 2o+ et e et e oo
Jei12)=Ky
MSERIEIS A
3(114)?ﬂ2 S -
1799 Bk o el e ‘
Jeyagye=ry .

L e e eereeee oo e s et et e et e e e e
J(igd)zuN
JOLaSYTuN KX - . o .
CJ(labymNNaKXKY 4| i 3
JCLATIERXKY =Kyt ) i o T
JOLuB)unNa Ky Ky ¥Ry
LXau¥Xel
LYSKYe] e
LZ=KZIml T o -
JOIs0YsLY
R ISEIREIN N o ) o
— i8R Y=Y e e e 5 .
IS TIERIST TR T T ”
J(155)5J(143) ~
JOES?Y=0(147) )
JIK8I=g(yas) - . .
C o J(159)=J(145) —
ST LS TS B -1 S e

. J(laR)2J1u6) ,
BN FE TS S N ST
o J1eR YRR X . ' '
e JCYe6YSYCLRTY ' i
R JCI6TIRKXKY : i T T e e s e
' ~J(116) Kr*KY

;158




 c(91)=a. R*ccqu/rct1J*c(z)*ctslﬂo.75/C(a7)1**(0 33333)
C(92)=C ()

ccsa) L, 0/(Dx*nv*02*1 r+ )

€(96)2C(RY %0 (H) |

€(99)= cca)*ccq3)/tha3 T
N R4S VISEIAE VISR S e e -
CCin1)=C(6)/CcC2) - o
CeL02)=CCa)sC(3) e e
COLOB)SC(UINC (O3 /FLOATEICL01Y) ) )
RSO o & 1. LS EL -1 VA & & 2 N
C(1n7)==0,25/0(2)
C(108)z=0,25/¢(3) e e
CeLL3)=FMy : . o
B o T Lt L e
CLI1SIaFNZ L B
e OBmICIY - - e _—
TOL=T106+ 1
1022108 +MY o . . i
103 IﬁH+NXNY T T
B _10UVIﬂi+“Y ) ~ . o )
J05=102+4YNY o T
. 106210341 e i

107=1064HY

CTERIOB/HXMY

109zJ(13) - Ii*](iﬂS)-fJ(13J II*QXMY]/MX e

Jiaty=ioy o 3 ,

Jtirp2)=10p )
B I D L R

J120)y=104 ‘ ' R
S J125)=2108 i

JC126)=2104 o

J(127)=107 o

J(120)=108 o ) B
_qul‘qi T“Q:; e e b e et et e e .~ eth e e 2 i

PLAH x-RhY DATh.

K-l , :
READ (S, ?10) FTLCKYFTR(K)1FT3LKY , FNNY, FLG
FTUCKYI=2 oD /(rT3(K)*F78fK3“‘Ti(*J),m,wﬁ;,wﬂra
METTE (62231) ) :
FUQnAT(JﬂY,*x.k~v DATAw, //+ TX,34rTY, 1ﬂx,3HFTa,1ox 3Hp73,10x 3HF14,

$8XsLIRNDG OF pT8.)

g
C
c
230
239
232

MRITE C6r170) rT‘(KJ'FT?("{NFTHKJ FYQ(K) FMNy,pLG
MNY=1MT (FUNY) R

READ (5+210) (xIF(I.KJ.T—LgMNY)

WRITE (5,232)
FGFMATtbﬁx bthFrI)) ; e
WRITE (6,170) (XIF(I KY, 121MNY)

NHAx(K)“MNY e e — e - . '
KEK4Y ‘ _ S e e
IF. (FLG.GT 0.0) PQ 0. 2%0 o S
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o000

240

e ExEn

OO0

CALL SFTUR e
NMULNEZaNM ¢y i o o mr e e = o e e e

DRAY SATELLITE

AND SETUP SURFAGE MODE ARRAYS

NSIDES= ﬁ*(KXKY*hX*KZ+KY*KlJ+NMLN : : .
JO105)%NSIDES | e

DO 240 I=nMLN, N%IDES . , o ' :
CN(T)=0, D men e e e e e e e — e e .
CONTINUE ' ' :

CSTNRF 3 SURPAEF NPRHALS AT ﬁACH cURhtR OF THE HERH
12ENMLN$E

TISNMLNER e
bO 250 I=1.8

CK1EI(140+1) e i e e

NORM(K )= «(30000+NMLN)
CN{NHLR)=CCLag+])
CHNlT2)SCCa8+47) ,
CHCI3Y=COLS6+1)
NHELHEYML NG G

R ENM LN e e

250

.00 a70 Kap, Lz
KKZ {4KXH (] ) +KXKY % (Kn )

TA=MN P8
CONTINUE

STORE 2 SURFACE MORHALS ALONg EAacH EDGE OF THE MESH
It=n . e e _ o 3 ]
DG 260 I=1,3
ERLRISTLLSSN § §
ThCeJ(158+1)
DO 260 Ky,4 i e -
TIET1+1
CKKEA015% +11) . L o e e e )
DO 260 L=p.L1
LesNMLNYJ (1344 1) B K
CKKERK$ ING
NORYIKKIZA (20000 NMLR) ) o o e
CHNCLAY=CC126%K)
CMML NS ] rl+5 » e e e i X
L3SHMLN+IC13741)
CHIL3)=C(1334K). o i o L i i o
NHMLNSKHL NG
COAJTIF‘I‘JF. . - B ey R P . PP ceeemimm drmemet ts e . memaar ke e el el P,

‘ STnnE 1 SUQFACL_FDRMAL AT THE FACES OF THE WESH

D” 270 Isaoly e e et e e e *

i RH(KK)=MMLN




'7NM|M_MMLN+1
KK“KX*I+H¥KY*(K»1)..

279

NDRM (KK) =HMLN
CN(NMLMY) et 0

CNPELRHENMENGS
R TMUE

DO 280 122.LY

D0 280 KE2.LZ

ONMLHENMLNET

280

290

KKETHKRXKY % (kmy)
NORM(KK) SaMLN
CNINBILN)EL,0

KKSTHKXKY *KnKY

NORM(KK)= N”4R e e e e

CN(MHLN)=u1 0
MMLNZHMINER -
cCAbrIHIE

OO 290 - KE2eLY

KKST+KX& (k=)
CNORMCKKY sNMEN

CHM{NMLN) =1 ,0
Nm B ML N3

KKEKKeNHoKXKY e

NORM (KK ) SRMLN

CCNANMLMN) Tl 0

NMLAMEM N3
CONTTRUE '
HEM=NG

DO 300 IRy

Lo YAausy=YD
CNSN=NAN+T

L LACMEN) = II+NYNYon
CONT INUE

DO 300 K3y

TIE Nk (Tl )4 NXNY* (Kuty

MENzNSN+ Y

,IAquNJ—TI

NEHzMEN4 Y

DD R90 CEs2abX

ValySu) eI TNl

CONTINUE

DO 310 Isq X

DO 310 KeqatiZ

CITRTHENYYY R (Key)

MEM=MNEN

DO %R0 Ixg,MNX

DO 320 KEQeNY

320

CMBMzNgN+L o
1I=1+Nx*{g.1)

IA(NSV)'II

NEMINSN+ -

B B

IA(MS“) TI*NXNYN?'NYHY

CONTINHt
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'Eﬂﬁ-ﬂﬁ1SURFAEEMNDRMRtS'“Mmwum““.-
GET INJECTINN ANGLES

OO0

CALL, TRANTP

DO B30 Ismt.MEW
CIXEXEPCL) L o N e _ 3 -

TyY=vFpCI)
S 1Z2=7EP(L) L S :
K1ZTXed 4 NYRTY 4 NXNYH T2 ) ' : o .
- DO 33p K=y N8N , T
TOIF (TACR) EGLKEY TRl =zK '
330 CONTIRUE :
- KENpGz1

c _
g SET SELFmpl.ASTANCE CcOEFFIGIENTS
DO FUO IZ1,NS
CYI=TACY)
SI1T(I1)= r(qo)/ﬂ(TJ
340 CQMTINUL
kK=o - i
C
c SET bTHtR ELASTANCE COEFFICIENTS i
g AND ZERG FIFLDS . 5 ,
DO 350 1Z=t,n7 )
TIZ=FLOAT(IZ=1)%n2Z '
TIZ=TIZ%T17 _
© DD 350 IY=zi,hv _ )
CTIYRFLOATCIY=g) %0y, . e S
TIVETIY®TIY oo
0O 350 IX= 1'“X : -
KKZKK41 N
0R(KKIT0,.0 i
V(KK}=040
IF (KK.EML1) 0 TO 350 —
TIRSFLOATCIXw™g) £DX - T
TIX=TIKATIX
STJ(KK)= f(QG)/QJRT(TIX+TIY+TIZ)
TYPE(KKYZY, 0O
LK COMYTINUE D
- Ks0, SRR
c e i it s e arcs e e e e+ ettt e oo e+ e
c DELETE OUPLICATED SURFACE NCRMAL S -
g 7 AND SET SELFmELASTANCE FOR MEGH BOUNDARY ~—~~ =7 ~ 7 e *

b 160 131 sNSH ST
e IYRTACYT) ' . ‘ .
' IF « TYDE ( I I ) F‘ﬁ . 0 0 J Gr) TU 360 TR o S e e i s .
. KEK$L S , )
ALK = IA(I) 0 LT st e e

8 s1rttnyacieis T




oo

LY

362

WRITE FIRST AUTRUT ¥APE RECORD
PRI“T pRLPLFN PAQAEETERS

J(?a?:mwtu
CWRITE (1) J.C, 14, IB 'UPF o
WRITE (6s361) '
FOFMAT(* FLOATING POINT pAkAwET&RS (CEAI*)
WRTITE (eet70) C
WRITE C(brih2)

ll‘Q‘T‘
NRTTE

(br1a0) J
(herh3d)

FoRpAT(x FrxED PRINT PARAMETERS (gdsiw)

363 FURNAT(x - TMDTPFCT ADDREGSTNG (1828) FOR FWTSSIOh NDDEb:*r/r

c -
c

"'blg:c

' zso ruuvlwu

f% T,.F,
wnTTF (osihQ)
WETTE (hyp36id)

CHARGE T8 EMITTER FROM DQeIA(IB(IIN)®)
(IR€I)rYmqeNER)

360 FORMAY (* IUDIPFFT ADDRESSING (lAxS) FOR SURFACE NUODES, #*,/,

A% T E, aURFAtF CHARGF 15 REDI%TRTBUTFD BY sUB
20 ,
CWRITE Chrt1af)

WRITE (6£,369)

(IA(I)r =1, N8N) B

§ %
WRITE (6r170)
KRITE fﬁ!}b&)

366 FORAAT (% zMORn# FUR EACH CELL,! p_,* 7,

(TYPE(I).T=1rN¥NYN7)

2% HORx=G (NG OADTACENT GUKFACquwp/'
2 NORMAL CrnuPONENT XwA¥1S
3 NORus1IIT SENCLITY
hyt/s . ' . .
LB NHWH"*PIIII - {87 CCNCeIlDY
Ao/e : L
7% enn o CHETTIH3Y |
A //p . B 3
9% “09””'3IIII Jyesr. 0 L eN(ITId
bo/e . B
L B - 28D CON(ITIH3)
At , ,
C (x e e e C3RD ﬁH(IflféJ
0y

O WRIYE (HetAf)

S WRITE (oenall.
CHRITE (6,368)
567 FLORMAT (X
YL Mﬂ

fhrnn(l) 1= 1,MM) 7
(”fur(1!131131pKHRH,NDP)
(NRDECR, 1y, 131 KBRN, NOR)

o N

LOAD FOR QCIACI))%

Y puRrAT(* ETYRE® nF EAER wou&-l Ef*Tviﬁo;(SURF4cE NODEY*» /s
TYPE=1,0 (SRACE NODEIw)

YmAXTS

CNCITIT4ly
CNCILT+y)

tN(IIIML~

LCNCIIT+7)

T+l
CN(TITe0)

LAY 1Sk /
EN(III42)™ .

CN(ITT+2) %
CNCITI+s)%x
CNCITIH2)%

CNCITI45)%
CN(IIifS)%h;w

NOOES OF RRAMCHES FOR uuvpur CURRENTS*,// % QUTPUT PQINT*'”
EEETI lHiraXﬁjHe,”xfin ux 1HA,UX RS AX 1 R6  4X 1KT 4X, 1 HB.

L 0X, 1v°.3y.2H10.zx.?H11.1x-cH1ar// 1ox.*FRnM NDDE *, 121%)

368 F“PMﬁT(IOX:tTn
C§TART COF TIME LOOR
INCREHENT CURRENT INTIME

370 cALL: (NAD--

- ZERQ, qﬂAcE CHARGES

WODE w,12T8) el

BN 380 11 NXNYNZ
S Q(IY=0w0
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C Talsl

360

WMINZ1,0

CALCULATE ELECTRIC FIELDS S e i e e

Ie=6’ )
bn 390 IIst,ny

13741 e e

T2ST#NX . -
JITTHHYMY. - - e e b e e e

145734 NX .
ISy 3 1 - . e s e s e s e e i 2t <+ e e oo s : - - .
Th=12+1. : : )

I7=154MX - . - —
ALEVIT7)ayv(])

A=y (1d)my (1Y) - . - . e
AZSu(IS)I=y(]2)

Agsy(re)ey I3y T R e e i e e o e ot oot e+ e
EXCIII=CO106) w (A mbengeha)

EY(]]):C(IOYJJ(ﬁj+ﬁaﬁh_‘+ﬂu.} )

EZCIII=CC106 w(a14ap4a3ay) -

TF (MORCYTHRXYuERe D) Is741 e ;

IF (MOD(IT KXKY) EN, 0Y Tu]4NX

CONTINUE o .H;m”mwm_h_QWMHNW_W“NHMmMWM"NW“*ﬂ“”vﬂwh“mwmh»uwA_db

EMIT PARTICLES i T
N=t - e .

MEWaNQ, ExmISsIOn MODES e o
DO 43%0. I=tsNFWw : : T ‘
F'T=FTI"'-E({‘.(<?E).:H e -
IF (FTLE.0,0) G5 TO 43n '
TLSIHT(MTY)

X1SELOATETT) T ‘
X2zut  hmY ) : - - '
145TE4(1) o ) . T
X35XIF(YL,14) . i
XAEYLE (I 410, 740) ' - )
X5ZY3a)2% (X 3myd)
XMESC (BS) 2 AR (1) 4%5 ) o T
XYuTEC(103Y4F TaXnE o )
IFCARS(C(an)) GEARS(XuTYY GO TQ 430
Je=18(1)Y
I5=1ACT5) V
QD(TS)=QQ({5)§C[qﬁ)*FT*xME
Teanmax(Ia)
CX6EXSRC(Re) . . . - BT
T=0(102) o i h
S I3my ﬁ ; - -

DO 410 K=si,11,2

OXIEFLDAT(K)

ngq.

X22y1xX6 '

251qmy ) o )

N e s i - eme - e e e e i et e e e e b 01 et e
T . l

YIFC12,14y007,X2) Gn 10 400
1 S



?‘.'ﬁ'

OO0

_ xe x?«x3/xu

410

XASENERGY, o PARTICLE (KEV)

YGAM-1.0+YR*C(Q7)

yvi{rs)s ctoa)*quwrti 0mi.0/C(YGAMKYG

I"GI-‘NFi

CONTINLE
12=3¢101) e
no 420 Ky eld
yx(ede YVIKENEG) 2CX (T oK)
VY (MISYVIKENEGY2CY (1K)

Svzin)= Yv(mFmEr)rrLfIcK)

420
430

gun

Hs0

oo -

XP(rJr\fPrl)
VP () sYER(T)
A EFINIG P
WT(uYsywT
Nzt
CONTINUE .

CONTINUE

TEMTIT 25Ny

KENEGRKENEGHY
CTF (KEMER,GT,J(91) KENEG=Y
RILIPEMAIS -
IF (TEMITR,.LE, 0) 6o TO 440
310RE RPAKYICUES INTH LCHM

TOUTI=d(4n) + )

snALlnHT(XP,Px(InUT11,1FM1T”)

CEMALLOUT (YR Ry (TOUTY), TENTTE)
qMALLouT(7P,P7fInUT1:.TFHJTE’

SMALLOUT (VX PuX(T0UTIY, fENTITR)
SHALLGUT (VY PUY{TOUTTY, TTHITE)
‘ﬁ%AiLHU1(VZrPVf(TUUT‘J.IFHITr)
S“AIlﬂUT(wT:P”T(yDUTl).]FMIT:)

Jaod= JOuoy+IrtiITe
END OF EM{oslou

. MOVE P&RTICLEa

r[‘L L: ' p e L

TRE0.D

NQH-uﬂ. CF SURFACE

- -pn 450 124 NXNYHTZ

TeETR+R()

ase e
N 4k 1= NEN

foMy THULE

TISTACT) '
n(lx),nn(11)+@(113

.CDkTINUF" _
- YF (J(HO) ‘LE, 0) GU O 470 e e
r(QRJ Qa O'l*TU/F‘Ll"‘T(!(un))

END OF PARTTICLE MOVEMENTY

CEND OF STDRAGE LoGe
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' C . ZERQ QUT vPiTACE
470 SQ=0,.0 o
_ DN 4RO Tt ,NXNYNZ
e SO=SALOCYY
CHBO CONYIMUE L e e |
C CALC”LATF KEW VOLTAGE . . -
L M= e e e e e e et oot oame et oo e = 2ot e e e
DD 520 JZz1,7 : : ' _ X
S NO 520 JYRLEMNY o o e — : e co
' 00 G20 JY¥=z1.NY o , o
SJdEades ' e e e e e e e
IF (R(JJI),EQ,0e0) 6O TO S20 : ' R
KK‘O ) el e e e o em e e e e e e e ._‘_...._'_,._._....‘__., e e e et e e
DO si0 I2= 1pk , o ,
CLZETIARS(TIZ~dZ Y% P'Y"'V+1 S S e
00 510 IYs{,Ny . .
LYSTABSCIYRIYYRMXELZ. i
PO 510 1¥=ay,Ny : C
KKEKK$1 R
TF (KR.ER.JJ) GO 10 499 ‘
L LYSTABRS(IXedX)y,
T5). = STJ(LX+LY1
gl 1O 506 e
490 18IJEC(91)
© IF (TYPE(KK).FkQ,0,0) TsrJ= SII(‘I1 T i s
500 V({Kx)= V(KK)+H(JJ)*|§1J . . ‘ '
510 LOWTYMIE
520 CONTINIIE
c INCREMENT TIME AND ¢YCLE NUMagr .
ctgﬁﬁ C(az)+Cd)
JoRJ1(8) -
IFQJ(29),E0,1) WRITE (&,521) (YV(I),1R1,J9)
-T2 EﬂpvﬂngﬁXf*VtLDCITIESHAT WHICH pARTxLLLS ARE EMITTYED®)/s1X,

S12E10.39/, 1M1,/ ROX,*§TART OF TIME QuUTPUTH,/)

J(2g)y=Jd(fa)+1 e e e e e .
JOURY= a1+

CALL SECOMR (xCPvY) .
IF (1(u31,,_.J(L1)J GEoTn Hso

CIF CXGPYY GE (YORPIX4C(5)Y) GO TO %40 _ i

IF (XCPYY.RE.YCRYX, GR.[rQOJ'GEaJ(‘)J ue TO S30

GO 1O 370 SO

c OEND OF TTHE LooP
C LUWRITE QUTPUT
530 WRITE (6:,550) J(p9).J(ao1 C(92) ) 1(51Y,7Q,50,£(98)
 _WRITE (6 saO) m(1083,0t1n1) eCI0n), Qend) n(rua) @(1051 0(1063 Q1 oot
in7) o
. WRITE (bpqqu V(T108), vcxoinfv(lﬂp) V(I03), V(IUHJ'thosj V(I06) V(I
407 T
. ANT= 0(89).tn(701w+0t1La)+g(103)+ncynu>+u(1n5)+m(Iub)+a(1073+a(108)
L8y _
V&g MT*C(HBJ“¢4,M;M;JQMN




!-.

.C

550 FORMAT (1%, #CYCLE MO, =x,T5¢% NO, PART. =xeTSs% TIME =a,E10,3, 77

RRITF PUMp TAPE _ _

560 XCP1X=XCRYY
CBRITE (2) Crd,EX, tv EZ, 00 LV NORNMI OM,NX, NY,NZ hXKY HEW, KX KY; KZpNXN
LY p MYMYMZ g hiNy TYPE FTAL AR, xrpalﬁ IPH:XtPr7E”er'CY CZpN“AXrbIJ:YEPrCU
20,0, NS, KARN, DT DX, DY 07 ,MNSM, SUM,NODE, FRT STIL, FTLsFT2sFT3,FTUPX,PY

BePZaFVX g PYY PV, PHT, A, NOP . ”mymﬂmm““um”_wmwjumnﬁwm““”"mmuhﬂw_,_“_ﬂ'

END-FILE 2 -

RACKSPACE 2 e
J(199YaJ(109) 41 '

WRITE (6s170) J(1901,thg) J(29)

5Y0 FORMAT (/nJX.QHDUNP N .Ixf>xf9HTAKFH AT Elo 3r10H SECONDS (s T6y

CLBH CYCLES) e/ /). U SR

TF (XCPYY,GE,yCPYX.ORJ(29) GE-J(H)J aTUP 10 _ L
B0 TOORTE L e e
EnD - i . . .
WRITE te'sao)pftrnqa yEYCTCR) g2 (T09), AMT,AYG
WRTITE (Gry70) (CURCI), Imq,KBRN,NAR)
WRIYE (%) I(?an1(“0)!1(“9)!(0“1\(1’),1‘ frRERNY, (G(]),
1(1), IsifrxNYAZJ.(tY(IJ RN’ (FY(I);I=1 NNYp (EZ(T)
Yl pHXYNZ)
540 FORMAT (2XeBE§5,.%)

1=
e I

[ FRART/CVCLE =%, IS/ % SPAcﬁ () ®%,E10a3s% TOTAL 6 Sxg -
AFLD,3,% AVh.-n «to510 3

Jea2)zo ' '

TF (XCPYY, FE-X‘"PX% (1R, I(E’Q) GE o Jfb)) GN TO 564

GO T 370
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SU?PUUTINE TF-?AI\;'T;\

r,uuasi ROUTINt_Tn;cALcuLgTE,x.vngtnnpotﬁATEs OF SAMPLE POINTS
EQUALLY PREBABLE #RNUT A SET OF EMISSION POINT NORMALS

DIRECT QUESTINNS TO ,,
CEQUATIGNS = DAN HIGRTHE o
F’ROGF"AHMING w JOHY SUNDERSCN, JR,

INPUTS FROM C4RDS (READ FROR DEVICE TUNIT) ~ 77 7777777
OwE CARD Fr EACH ExTegION POINY (MAXZ30) CONTAINING
TEbM = INTEGER IRDTCATING SURFACE MAT&RIAL (NOT FoUal 0)
X
Y

!ﬂCATTOM COURDIMATES

- Z “ P s s st wdma e m e a N meessmet e e s i
© THETA . :

- DIPFCTIDN OF SURFAGCE NORPAL (IN RADIANS)

PHY = DIREETINN NF cPRFACE NOenAl (IN RADIANS)

RY w RETARDATION TIME

. AREA o AREA REPRESENTED S S
COFDLLOWEDR ©Y & ALANK caRD ‘

EACH FHISSICN  CARD HAS THE FﬂLLneING FURNAT(IS SEf14 0,2E10 0)

prnTs FROM CrMMaN gLOCK ZEMMSET),
NTHETA » NUMBER nF FRUALLY PROBARLE THETAS UESIRFD
MPHT & NUMEFR nF pHIS DESIRED

NUTF......NTHFTA 18 FuRrED TO @F LESS THen OR EqUal To 5'(MIN=1)'

NPHT 18 Firceo TO BE LESS Trad OR EQUAL To 8 (MIN=1) -

nUTPLUTS TO c MEON RLOCK JEMMSET/ _ ‘
AM ARRAY (HAX {ENGTHZ30Y) FILLED WYTH IEMMS FROM CARDS

TFM L]
XEP o AN ApKAY (MAx | FNGTHs30Y FILLED wITH X LOCATION COORD,
YEF “ AN ARRAY (MAX ENGTHzZ30Y) FILLED WYTH Y LOCATION CDURD,
- LEF “« AN ApRAY (MAY [ FMGTH=30Y FILLED WITH Z LOCATION COGRD,
THER AN ARRAY (uAX LENGTH=30y FILLED wITH SURFACE NMURMAL DIREC™ ™
PrEP m AN ARNAY {4AX | ENGTHS 30y FILLED WITH BURFACE NUORMAL DIREC
AR w AN ApRAY (#AX LEHGTH230Y FILLED wYTH AgEa REPRESENTED
FRT . = AN ARRAY (MaX (EnNGTH=30y FILLED NITH‘RETARDATIOH TIME
Cx S _
CY = pOUGLE SUBSCRIPTED ARRAYS OF SAMPLE POINT CnDROIhATES -
ez T T UFIEST TRDEY (MAX=30) = EMISSTON POINT INDEX .

BECOND IHDEX (MAXzfdpye REPRESENTS PARTICULAR
| PHY PRIME« THETA PRIME PAIR USED S
ORRER s« SMALLEST THETA PRIHE ALL PHI PRIMES,
_ NEXT THETA PRYHE ALL PHI PRINES, ETC,
”MEH"W-:WCDU”T OF EMISSYON POINTS InNPUT - ~

- ROUTINES USED.

-FLOAT - Tm INTEGER TO REAL CONVERSIUN
SIN ___»= SINES nF ANGLES
. cos ST = COSINES DF ANGLES S
o FINa o o o " MINIM”H OF & SFT 0F INTthRS
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oonoo

zErieNeleNeNe]

loNe Nl

0000

6 pHTEnTbO (NFRT 8T T

'_nsxm (NCN 484 STAHDAPD) = ARCSINE OF A NUMBER

PRDerM DFCL\QATTDNS

. COkMOM /EPMSET/ NTHETA, hPPIfoWpI&M(101 XEp(30), YLP(30) ZEP(10) TH
1EP(30), PHrP{SnJ ARC30),FRT(30),Cx(30,48),Cy(30, uaJ CZ(30, ue) -

INE“STNN prpfaJ, CTHETAP(B) s THETA:(?J S o
DATE P1C2/1. 3701063?6ﬂ" - o o
DATA. Tqulfb.aﬂzjs S L

CPROGRAM TRANTE i T ) o o
CREAD DATA CARDS S . e
'ﬁﬁwzﬂ ) wﬁf S T S

BRITE (6e5)

.5 FORMAT(®% EMISSIOM bATﬁ# Zo¥* EVMISSION X% 1aXsiHYSs$0X» {1MZe8Xs

SSHTHETAp TxXyIHRNT, UX, OHRETARD ) /o NOe#r2XsSC3Xs BHPOSITIOND » 3X)
SUHTIME,SX, 0HAREAY :
DO 10 I=1,30 :
REAED | (5,110) JEMCY),XEPCT)e YFcharzFﬂtxJ THEP (1), PHEP (1) FRTCT
1),AREYY
WRITE (6r110) TEMUTI XgpCIdsYERCY),ZEP (DY, THFP(IJ PHEP (L) FRTC(I) A
tR(TY .
CTF CIEMCIYCER,0) 6N YO 20
MNEVImNE K+ |
10 -CONTTIHUE .
READ (TUNIT,140)

CALCULATE A SET oF pHI prIMES 77 777

. DELpHr= =TROPI/FLOATINPHT) e e
PHIR(1)=0, 0 : - - R
D0 30 T=2,MPH]

PHIP(T)= FLUhT(1-1J*DFLP}j ST ) o )
K O L S S
pALcHLATE A SFT‘rF THETA ral;rI'Mt:'q . o _
CALCULATE A GET OF THETA1$ Frﬁsr o - .

CONTHETASMINO(NTHETA,6)
‘DFITH=1-UISHRT(FLUAT(NTHFTA))

oo THETALL(D) =00

o TREYAL(2)=a8IN(DELTH)

C T CNTHETA=2) 60,60,40
B0 DD By T3, NTHETA _

S THETAL(1)= ASINfDELTH*SFRT(FLDAT(Im!)))
;,ﬁSOJCDNTI“”E

et P

S e a4 r Ml s SR N auem b v it ar ra B AR e ime AT A A A e =1 LA EE e A B Atdnan(, A Ay e e 1 s .



60 THETﬂl(NTHETA+1) =Fing
L CALCULATE A &FT.OF THFTA PRIMES FRAM 1Hh QET OF THETALS
= DO 70 T2, NTRETA
THETAR(I)= THFTA1(IJ+(THFTA1(I+1) THEThl(I))tO.s
CONTINUE _

-~
=

__;%EltCT . pAQTICU|AR idrquQH POINT e e : e e e e )

0o

PO 100 JEPr= t;w&w :
THEP TS TPFszth o o T - R
PHERIGPFHFR(IFD) T e
CTCp= Lrs(rHtPt)trGh(PH&pI)
SPMewSIN(PRERT)
QTCP“sT"(TdFPIJ*FIG(PHFPI)
CTSP: CPHcrHEPI)*qI%(PH&PI)
CP=rNIS(FRER]) o
STSPATH(PHFP I xS IN{THERT)
 BTHzeSTIN(THERY)
CY=CNS(THERT)

SELECT A PARTICULAR THETA PRrime

OO

60.9@ 1THPS L, NTHETA
CTPRCORCTHETAP CITRPYY L o o o e e
STP=SIN(TKETAR(ITHP)Y) _ ; _ :

SELEET A P@FchULﬁﬁ BHT PRIME """'7”;"“" “f e | C .

DO 80 IPHP=1,NPHT

000 oo

"CALCULAYE X PplnfF, Y PRIME, Z PRIME
YPRIMZSTPRCOS (PHIP(IPKPYY
YPR1~=%TP*sIP(anr(jPHp))
ZPRIMaCTR

CALCULATL XeY,2 cG"HD1~'Tp

oo

J:(ITHP-ij*kPH1+tPHP
CXCTEP ]I mXPRTH *PTFF+YDR]M*9°V+£DQIMﬁbTCP
CYCTEP I oXBRIMACTEP+YRRIMKCP+IPRIMASTSP
CZCTEPpJ)sXPRIMAETHLZPRIMSET

'C7”
c END qF PHI PRYME LOODP . - .

C. , : o )

‘ ao,CQNTIMUE . - e .
c .

g“_ oo, END OF YHETS PRIME. LnnP N e e

90 CU“TINUﬁ e B )




END OF EMISSION POINT LnOP

o0

100 cOMTINUE
' " RETURN S
. .C :
. C FORMATS N
! €

110 FORMAT(IS, TE1pa3y

. END e o s reaes i i sl

wettoL




CFUNCTION: FTI”E (T 1) o S T

 COMMON C(gno),J(?on)errtlso 4Y pNMAXCU) YV (20)7TB(30),EX(1000) EY( .
11000), EZC1000)Y pFTICaY FT20L) s FTStui,pTu(aJ XP(1023),YP(1023)e2P (10
223, vx(iOPSJavY(10?3),v7(1023)'k7(1023)fFUfa) TYPt(1331JrsIJ(1331)
3.8I101331),00133%)

- COMMON ZENI'SET/ NTHETA, NPHI.Ntw,TEMtxo) pr(}OJ YEPcsoJ.ZEP(SOJ r TH
LEP(30) ,PHERP(30) ,aR(30), FRT(30),Cx(30,48),LY (30 48),(:2:(30;118)
COMHON /CONST/ DTsDXsDY,DZrNT)NX HY, NZ, KHhMpNSpNHL - "
Y'[ T-FDT(I) ) _ : o -_—

IF (YT,LE,0,0) FTIME=D, 0 '

Ty=1ENED) e e e e el

IF (YTGT.0.0,4,vT, LEdpTiCI1)) FTI“tTFTatll)*YT/FTl(IIJ

TF (YT.6TLPTLI15, 4. YT JLEGFT2(H1y) FTIME=FTY(LILY T
AR YT BT FT2CI1Y A YT L EaFT3(I1Y) FTIMES FTatll)*(l Ou(YTnFT?(IlJJ
17(Fr3 (I Fre(¢l ) _

CJF (YT,GT FT3(11)) FTIMEZ0,0 : : o _
CRETURR _ e e e e e
END ' :

172,




ono

OO0

10 CONTINUE -

A L T 2. ilz. Xehr15 . _YwAXIS 7-AXIS*)

-4 FHPrhT(SJHp5F10 2)

. 30 M3I=LZ4q

SUBROUTIMFE SFTUE

READ DATA AND SET UP TAA g
COMKON /TAHL&/ an(aoa oM
12500) o
COMMON /fHUka/ v(1331),00(1331), CUR(ann 11ACL000)
CCOMKON ZCONST/ 0T, DX,0v, D7, NT,NX, NY, N2, KBRu.nb,hML
DATA FPI/0,07987747151/

J)E(Evcnﬂ) D(da?UOJ AC200), ”OR“(loooJ:LN(

" BEAR SUREACE NPpE |“CATIFMS, RAﬁII. AND COMPUTE SPATIAL
NODE NYMBERS O
WRITE (6.5) '

C B FRREAT(& SURFACE HOpE DaTA*r/s*ftARQ NDDE*IEXi_NU.“.Nﬂ;” IX o I¥%,

$% . 17 ARE AN . ,

D00 N=L,NS e e e e
READ 130, TX,1Y, 17 ARLA
A(NIESHRT (FPIwARFA) -
Jalu)s IX+1*h\*IY¢“¥*MY*TZ :

MRITE (britig) '\lIAUi)pIXIIY'IZfAREA et e e

DEIX*DX .‘.,f,_”"ﬂ.mu“ﬂmw.mmmmm“m,wuh;fm‘
KWRITE (621902

READ SURFACE MORMAL DATA
CKXEMX e
KYELYw ‘
O HWRITE (&p1R) ‘
15 FORMAT(* SURFACE NORMAL pATA%,/ 'qy'*PUQITIﬂN*I10Xp*uDRHAL SR
Do 50 m~1,.3,3 e o v e

KKES Ix+1+Kx*1Y+Fx*kYkIz
NORM (KK )= M .
CTF (KKLEA,NTY 30 40'

NORMIKK) = m(300“0+\-<*w3)
SOGD TN S0
40 N3z=n
. Ni=kK
50 CONTINUE
'NRTTF c&.qu)

READ nanrcu “ATA AND cALcn{ATt CGNqTANTS
WRITE (argg)

.55 FORUATOR RRAMCH DATA®)/, % RRN FQFM TO%e/rx WO, CARD CARD ITYPE*r

$Sxs 2HR Il}Xf!HL012Xﬁ1“f.1?X'?Hni J1x‘2HUE,11x:aHD3.11x.2HuaJ
NI 110 Ket,KBRRN

RFAD 150 angfi KY,NODF(2,K), ITvPF RfAL CC

rn 0 (60 70,30J. ITYRE

T 173




lale)

c
C

c

20 cosTImUE T

180 FORMAT (4I15,7(3X, 510.3))
190 FORMAT (1HOJ o

RESISTIVE CIRCUYT
60 COMTINUE _ ‘ - : | | ,
LIS FLSES TV e et e e L
D(2 K) fio »
NC3,KY=0,
D(d,K)ELa.0
GO TO 100

CRL CIrCUTT e e

70 CONTINUE - : . : o
TLE=0, . A T S AP
RTL=R*DT/AL - '
De2s KJ‘EXPT‘RTL)
DY, KISCL, 0-0(2 K)) /R : : _
n(3 K) 0. . C— . A Cemit e e e e T R .- e - PR . -
DCU,KIZL,N B ' :
IF (RTL,LT.0,8) 60 Y ypo0
PRINT 160, K : . ,

CRRINT 170, kTLaTlC D T e e e e

G0 TO $00 , '

RL,C CTRCULTY
80 CONTINUE
D1, KISOT/ZAL , | . :
pes, K)--FT/(AL*LC) e e s e e e e
,RTL-F*DT/AL ‘ ' ' -
TLE=DY*DT/(aLxCCY L
TF (RTL,LTL0.8,AND TLE.LT,0,8) 6GA TO 90 ' _ ]
PRINT 160, K AU . . .- ‘
PRINT 170, RTL:TIL;UT
90 CONTINMUE o U O ST
n(E.K)=1-0*0oR*(ﬂTL+TLC3
DU, KIE a0/ L D SH(RTLHTLEDD
100 CONTTINUE : '
WRITE (6s1R0) Ky hUWF(!.K),hDDE‘Z K¢ ITYPh,erL CCy D(l K):D(&pK);D(
l'gzK)an“-hK)
110 CONTINUE

INITIALIZE ARRAYS [T
DO 180 Iy KBRN ' ' :
CUR(TYEN, e o e e e e e e e e e e
SUM(IIRQ, o :

RETURN
130 FORMATC(ATS,E10,3)
140 FORMAT £%15.3xv510.3) L :
150 PORMAT(3T5,3E40,3) - o _ '
160 FORMAT (1HO, YOHBRANCH Mp, Iﬁ) o ST
170 FORVAT (i ,apH***** RT/Lr 1?/LC. 0T=:3(3X.£10.SJJ o

, "END



.éuuéhuTIne LEAD

!: . C SD[VF LIQEUTT E.,UAT]n\;q _ C _ S
A COMRON /TARLE, sn4f300) Noﬁﬁ(arenoi N(Us200), A(aOO)pMURH(1000) LN(

12%60)
S enray - /cnUPIpf v(1351) 90(1331).LNR(200)pTAtIOOOJ
v o SCOMMON /CONST, DT, 0Y, DY, NzeNT, Nx NY, Mz,KBkM;HS bML -

DO 1“ Kni KHRN
IR N c - {_)t TERMTN F s IRF. 4 l'“E I\l[ D F h; Ul Rf [‘ b R M e e e o et e mtreerin o e
Nl MOOE (L, KY

SN0DE(2, 1)

C DETERMINE SpPATIAL NODE HUPRFRS
Ii TA(NY)
T2STA(NZY

e memem a4, T o e e e v A ke et et e vas ke s onnam TN S nin it -t vt nn

oo

COMPUTE POTENTIAL BIFFERENCE
_Dv=vf113*v(12),

o

CCOMPUTE NEW CURRENT -
CTMpS (o(l-KJ*nV+D(P h)*rUR(K)+U(!;KJ*SUN(K))*D(ﬂnk)

Izdel

CALCULATE TRANSFERNED CHAwGE AND' RsDISTQrBH1F 17
nes oH*DT*(CTVP+FUR(h)) ~ :
ﬁ@(Tl)"””fljiwﬁu
BRETAYI=BOY2), np
SUMIKY=SUM(K) 400,

o CUR(KISCTHP

v 10 CONTIMUE . -

Eney : -




sunamu11~t MP
COMEON /COUPLEZ v(1131) nne1syy . LUR(EﬂO).[A(lOQO)
COMeQON /TABLE ﬂHlClhﬂﬂ;:MURV(1000):CV(a500)
COMMON. /CONST/ DTeOXeLY,DZ,uToNX, Y, N2 KBRNP NS NML
COMMON C(200),J(200),XTF¢150,4), NMAXf“]fYV(dOJ 18¢30), LxcioaO) EY(
L5000 EZCIOODY P ETLCU) eRTR(U), PTﬁrﬂJpFTU(QJ.XP(lnESJ Yp(toaSJ;zP(i@
_L22¥),yx10p a).yvt1n?z),vz(10233ertl023)'FGtBJ;TYPﬁtissllssIJt1331qum_ i
735311(1331),n(11ze) _
S LARGE PYX(30000),0Y(30000),PZC30000),PVX{30000), PVYCSOOOO): e
IPVZ300003,P%1C(3n000) _ s >
C . THIS ROUTIME WOVES pARTICLES. . . ... . . . __ |
JIN{Eg . .
i JINp= MIHn(1£51J.J(uo)J e e e e e e
' SJouri=y o _ . o o '
o YFCIINGERG O RETURN R S
S 10 J(37)=aTRReg TN 4 ‘ : " :
- JolT=g -
J3TRI(37)
SMALLIMOY P, PY CIINIY ,J37y

SMALLINCYP, PYfJ]M1),J§7)

SHMALLINCZP, PZ(JIM]),JS?) e e e

SMALLIN(VX, PV (gThT)r027)

SHALLTH(VY,PVy(JIN|IY 2 d37) . . e L -

SHALEIN(VZnPfoJIHIJrJI?) , ,
LTI SR FER EE 8 BRI K 3 5 B
nD 470 I=yeJdiy | .
C O TF MTCII~C98)) 20,800,870 i
20 JOUTSJNUT ¢4 . . ‘ o
c , FinD mEWw vELMCTITIES AND POSTITIONS. U
IXTINTIXPRIT))Y. - -
CYYEINTOYRCOTYY )
JZRINT(ZR(I)Y
KKz 1X+1+J(139)*1Y*7(1163*IZ
VXCIQUTIRVY(TIHC(O9)*EY (KK)
VY CIOUTISVYCTI4CITR)IAFY (KK)
VZOIDUTIRVZ(TI+C (99 *E 7 (KK )
XPOIOUTIEXP (T y+vX (InUTYCc(100)
CYPOIORTISYRPCIY VY LIOUTI<C (1 01)
e (JouT) = ZPCIYtvzlaauTyIsC(102)
FXETMT(XP YT ))Y
CIYSINTCYPOIOUT))
YZRINTCZP (JQUTYY
C XFF=(xP(JNUT) m FLnA1(1x))
XFT=XEFrRwT(])
XPTWT O X T e i e e e e
XMF=1,0mXFF ' _ ' oL
- YFF=e VP(JDdTJ-FlOAT(IY) ‘ o ‘
; : YMF=1,0nYFF -
L. ZFF=ZROJOUT)=FLOAT(12)
o ZMF 21, Qe2FF
KK= 1x+1+J(11P *IvtJ{i1e3In1Z
Ng= 1X+1+J(1J*1Y+J(t!0)*TZ

,' NI-NB*’ ) s T ‘ S S ) .. e .'..-__.. - e i e .

T TN AT SA M amn mibies L ML s b s el Smr A ST RE L SRS o ke e M ¢ = & dman s AL % e A 1 e 2V 5 o 2P A oae amn

e b Ly ) e W A ———r— e Y . B e e T LA




C
C
€

OO0

-jha NBed (1)

CNBEMBwJ(110)

'7'ua"w1+1(t)

NSER24ICY10)

30

NemN3Ed
NTENAYI (L)
AlEyFTeYFF
A2EYMTHIFF
AR=YFTwYME
CAUSYMTRINE
Falyd= AG*ZFF
FRIR)Y =8 URYFF
Falz)=4a2 ANy HE

,Eo(a)_Aj*zHﬁ
FR{gYzA3*xZFF -

FOlaI=ARXYFF

FRO7)=byxgFF -

FOQIRY=AldkyMp

n(Ny

(N0 (NI +FR(LY
f:G(N23'4(N6)+an")

QENTI=0( W?)ffﬁ(Aw
R C(Na)x Q(Nu)+ﬁﬂ(a1
QMR =N (NS +FA(S)

CR(HRYER (N +F O (&)

. G(Mli*ﬁ(m7)+p.(7}
S B(HBI=A(NA) +FR(R)

CIF (MORMCKK)) T, 170ed0
,HORE THAN ONE SURFACE

'Ka:.mnam(KKJ/{qogd
K1=wNORMIKK) =1 0000¥KR

G0 TO S0

40

T3

'OME'SUR?AtE |

Kl-HURH(hK)

Ke=y .
no 1
K3TK

60 l'l kE
141

L KURK142
IF. ((V*(‘ﬂUT)*CN{K1)+VV(JﬂUT)*CN(K3)+VZ(JUUTJ*L“(KQJJ GE 0 ) GD TU

xr G
L JF LENERS), LT 0.) x4z By )

1 150

. oLi® IFIX(AHG(FUCK1))+? AARSCCN(K3Y 44, *ABGCCN(Ka))) .
GO T0 (60,70,106,B0,110,120),L1 g

X{SYEF

1F (CNEK!).LT 0.3 X1® xup
6O 1O 90‘

X18YFF-

Te0 YO qn

ffneo X122FF

177




IF (CHOKAYLT,.O0,Y X{SZw4p
90 IF (Xq,.5T, 0(7)) 60 TO ys0

GO 70 $do
_ 100 XisXFF e e e e e et et v mt i = e et e o e
: X25YFF ,
IR (CMIKY) . LT 0,) X1TXWHF e -
IF (CNEKSYLLT, 0_) X22YME ' _ . B i

GO TN 130
110 Xi{=xFF . , ' ‘ A
1F (CMIKLYLLT, 0. X{SXMmp ' : :
IF (CNCFL) ol T, 0 ) X23ZMF
6D T0 130
120 x{=YFF
X2=7FF )
1F ¢(CH(K3Y ., LT 0 3 X18YME
TF (CuER0Y LT, 0, Xps7wyp
- 1%0 Xi1syi+¥2
IF (¥1.67,4.04CC7)) 6D 10 §50
1ao MY{(gnOuT) = Fm(13*1v95(w1)+pr( )*TYch+p)+Fﬁ(1)*1YPL(N3)+F0(UJ*TYPE(N
1d)+F0(HJ#TYPF(*5)+F&(6)*TYPE(Mb)+F0(1)*TYPFl”7)+F@(B)*TYp&(NS) o
QNI =N (NI)=FR(IVX (] 0nTYPE (N1))
QINRI=R(MP)=FOI2Y (1, 0=TYPE(N2))
Q(NBY=R(R3Y=FR(3Y%(§,0mTYPRINZ))
QENE)=R(Hu)=FR{d) £ (1, 0nTYRE(NG))
Q(Mqlzthslng(S)*(l.O-TYPE(NSJJ
Q(N6)=G(Nb)“FQ(b)*(ﬂ.OnTYPE(MB))
NENZI0CHYI=Fa (7% (1, CaTYPE(NTYY
QINEISG(MBY=FO(BY* () 4 0mTYRE (NR))
NEMNIEER D +F o) = (1aa=TYFE(NTY)
NR(MEI=UN(N2Y4FL )2 () 0uTYPE(NZY)
QEINI)ENC(NEIGFGE3 YA (] naTYPE(M3YY e
no(ua)»uwcr4)+iu(u\*(1_nn1YPF(Na))
CRQINSYEAGENE) ¢ FO (S« (1, 0aTYPE(NSY) e
QECNEIEAGIRA) 4FhtaY % (1, 0vTYPE(NGY)
CRRIMTISHC (R +F (T R (1, = TYPE(NTY)
QQINAY=CR (NI FO )% (L, o-TYkE(N8)1
. rO TO 170
IR0 KESKI+R
160 CONMTINUE
170 coMTINOE
Joure=Jruri+JntT-y
TIF (JOUTLLEL0Y GO TD 1nn
CSMALLOUT (XP,PYLINUTLY, JanuT)
SMALLDUTOYP, Py (GnUTY ), anuT) : o : _
o SMALLOUT CZP p PZOIMUTEY 00T oo e e oo e oeerrme s e e remia -
COSMALLOUTCYX, Pu%(a0UTLY, J0UT)
CCSMALLOUY CWY PV Y CI0UTI) L aauT) o i e =
SMALLOUYCVZ,PyZ C10UTLY, gt T) . .
,MTSMALLDUT(WT PuT(lﬂUTlJ JOuTy) '
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