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Section 1

SUMMARY

The principle thrust of MRC's effort was to determine if the photon
induced differential voltages between conductors in a multiconductor_cable
can be a significant drive term when compared to the common mode excitation
of the cable.

Section 2 provides the numerical results of the analysis. Fiéure.S]
shows one of the interesting results of this study. For low impedance
. loads the differential voltage is always small compared to the conmon mode
voltage (V = -0.02 volt diff/5 volts common mode). '
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Figure S1. Shadowing Effect on Differential Voltages
with Low-Z Loads Normalized to 1 cal/cm?
2 keV BBT X-rays (from Table 5a).
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For these low energy photons it is the attenuation of the photons
in passing through copper wires that is primarily responsible for the
differential voltages.

The fact that the differential voltage is this small is due to
the low impedance loads assumed here, 10 ohms, and the high impedance
source of differential current. These calculations were repeated for an
assumed 10 k@ differential load, then the differential voltages are the
same magnitude as the common mode voltage of the i1Tuminated conductor
(Table 7) again reflecting the fact that onTy the directly illuminated
conductors are excited. '

The conclusion can be drawn that for shielded cables the photon
excitation of individual conductors is the dominant drive term for both
differential and common mode voltages. This conclusion does not sound
very profound to the average reader, however, it is a reversal of thé
result obtained for electromagnetic coupling, where bulk currents and
average common mode voltages are related to the incident E and H field
while differential voltages gre_determ1ned by electromagnetic coupling
within the cable and circuit imbalances in the terminations.

MRC's results confirm those of other writers in that vacuum gaps
surrounding the insulated wire within a shielded conduction result in.
large increases in photon jnduced voltages (Table 9). An interesting
note here is that some self-consistent effects could occur within these
vacuum gaps at high fluence. However, this does not appear to be a
dominant effect because the conductor voltages would only effect the
very low energy electrons. '

MRC also analyzed the differential voltage expected within un-
shielded multiconductor cables supported above an electron emitting
ground plane. For this type of cable the principle excitation function
is the electron emitted from the ground plane and sticking in the dielec-
tric insulation on the wires within the cable. The electrons emitted



by the individual wires within the conductor have a smaller effect here
than they do in the shielded cable because the capacity to ground is so
much smaller. For this case photon excitation is more like the E and H
excitation phenomena: the number of electrons striking each wire is not
very important in determining its response, and a more important parameter
is the termination of the cable and the electromagnetic coupling within the
cable.

We also noted that although termination voltages can be large
enough to endanger solid state components at reasonably high fluence
levels, the peak conductor voltage to ground would still only influence
1ow'energy electrons, Consequently, it appears that accurate estimate
of cable response can be made without including the self-consistent
effects of cable voltage on electron trajectory.

Two other short topics were considered during this study, and that
work is also discussed here.



Section 2

PRELIMINARY‘ESTIMATES OF BULK CABLE RESPONSE TO X RAYS

Monti Wilson

The purpose of the calculation to be described is to obtain prelim-
inary estimates of common mode and differential voltages excited in a
bundle of insulated wires (within a coaxial shield or near a ground_plane)
" “exposed to x-rays. We consider x-rays from a 2,5, 10 and 15 kev blackbody -
filtered through aluminum or copper (the sheath or wall) and incident on a
seven-wire bundle. -

Using Dellin-MacCallum [1,2] electron emission sources and s1mp1e
exponential photon attenuationapproximations,icurrent (or voltage) dri-
- vers are constructed for input to a time- domain multiconductor transmission
line model. Peak terminal line and load voltage predictions are presented
parametrically for the case of a short (1 meter) cable segment and an in-
cident s1'n2 photon pulse with a FWHM of 10 ns. )
2.0 TRANSMISSION LINE MODEL FOR A BUNDLE OF INSULATED WIRES WITHIN A

COAXIAL SHIELD .

The cable model is shown in Figure 1. The metal shield of radius
RS may allow a (vacuum) gap between RS and Rb’ the effective outer radius
of the bundle.

X rays incident on the cable create two principal driving sources:
1) electrons emitted from the inner shield wall strike and stick in the
wire insulation, capacitive]y coupling current into the wires, 2) electrons
emitted from the wires arestOpped'in the insulating sheaths (of thickness
greater than any electron range of jnterest) and also capacitively couple
a time varying wire charge to the ground.



—

Electrons emitted from the insulation and traveling between wires
p are neglected here to a good first approximation since insulation electron

emission is down considerable from the metal photoemission levels. Photo
conductivity of the insulation is also neglected.

Figure 1. A bundle of seven identical insulated wires of
] radius a within a metal shield.
A transmission line circuit section {representative of each wire i

- of the bundle) incorporating these two drivers is shown in Figure 2a.
Figure 2b is a Thevenin equivalent circuit.

Lis R b K
——F0 — 00—V .
Y ' ;
I. . .
Cs wi "Vocwi'4?w1(t) dt
m 3 C -
* 5 % s .
. csi-[' I. cGi1’ Isi§E§%-151
s S
6_l(r}af'erent):e ‘ {44. .
ground
(a) (b)
Figure 2. Transmission Line Circuit Section (a) and Thevenin

Equivalent (b) (Mutual capacitance and inductance not

shown. )

(8]



In Figure 2, I, represents the (conventional) current due to all
electrons ejected from wire i into the insulator. These electrons pene-
trate the insulation to a mean distance <Re> {implying a spectral average).
The capacitance of this electron layer is '

2ne .
Coo = — 1
§i (;IZFZ3?) (1)
In\—% .

C. in (1) may be different for each wire since <R;>js dependent on photon

)
attenuation.

In order to treat the electrons from the wall, the shield of Figure
1 is subdivided into 6 sections corresponding to wires 1..6. If CGi is
the total capacitance to ground of the ith wire computed with respect to
a reference conductor at radius Rb’ then the "new" capacitance to grouhd

kFigure 2b) is

1 .1,
1. .
Cei  Csi Cai , | (2)

where the sheath capacitance in general is

cs.i = :I_ 2 m i, o ) (3)
<7 8 n(Rs/r )Mn((R, - R)I/Ry) :
_— i
€
Q

In 3,<?;>1 again denotes a mean penetration range of electrons into the

insulation.

The current generator Isi shunting cSi is approximated by

Igs = Jd5 % D, . . | (4)

Si
where J is the emission current density of electrons from the wall seg-

ment near wire 1 and D is the prOJected area/unit length for electron.
capture. The ca]culat1on of Iwi <? >1and dyi is considered in the next

section.



For the center wire 7 in Figure 1, the shield quantities are de-

fined as

I
(2]

C CSi (any i<7),

s7 ~

s (5)

j=

Mo

Is7 -

From (5) and the equivalent generator IS' in Figure 2b, the center
wire is subJect to an excitation potential which the mean value for the
" outer six wires (common mode exc1tat10n)

The telegraphers equations to be solved for the. Figure 1 cab]e,
'us1ng the above sources are

CLARS ] -Ri +

ox -~ 3t
2 = .0V (6
wx ot tl | (6)

where matrix notation is understood and

_1 :
[L] [C] - V 2 . (7)
p
The voltage source in Figure 2b is treated by a transformat1on of variables.
The capacitance C6 in Figure 2b enters the voltage source Vo cwi but is

large enough to be neglected in series combination with the other circuit
capacitances. The numerical solution of (6) (and the boundary conditions
for loaded pairs) is described elsewhere [3].

The capacitance matrix [C] may be calculated by the integral equa-
tion method of Licking [4], from which Ezell [5] has abstracted some con-
venient approximations. In the hork, [c] for the model of Figure 1 is
calculated for the seven wires within a reference conductor of radius Rb’
assuming a uniform dielectric medium of permitivity e. In accord with (2),
the original diagonal elements of [C] are thenredefined as

-* 7
Cii = Cai "L Cy; | (8)
J#Ei



2.1 ELECTRON EMISSION: CALCULATION OF Iyq, Igj» and <Re>.

The electron emission sources used here are the,bﬁ1k photo-Compton
currents ofIDe11in and MacCallum (DM) as computed from the new code
QUICKE 2 [2]. The DM bulk currents include photoelectric, Auger and
Compton processes and result in electron yields in good ( <factor of 2)
agreement with both experiment and Monte Carlo predictions. To estimate
the current drivers for the cable of Figure 1, we use the DM sources di-
rectly, allowing no field action on emitted e]ectro;s.,'

Tables 1 and 2 show various final source qyantitieslused in the
calculations. The filter (50 mil A% or & mil Cu) is the shield in the
‘-model of Figure 1. :

In all cases the emission quantities are averaged over photon angle
~of incidence, since the variation is small at X-ray energies and unes-= )
sential to the purpose of these calculations. The photon angle of inci-

dence enters the cable response calculations through the attenuation of

the photon flux by the wires in the bundle.

_ We treat photon attenuation crudely by interposing integral num}
bers of wires between source and emission point. Neglecting the insulation
attenuation, each wire contributes a projected mass average attenuation
factor ) '

g () = o=(72) sl | ©

where u is the photon energy, U, the absorption coefficient, g the metal
density, and a the wire radius. The shield contributes in all cases a

‘factor
: - u_t
g (u) = e gl spL . (10)
where ts js the nominal thickness of the shield. Thus-JNB3 in Table 1

incorporates a total attenuation factor gags.

The JWF’ JuBi quantities enter the I¢, calculation (4). The in-

dividual wire sources are Q = 2ma Jwire charge/unit length, where Jwire
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is a mean radial emission current. Q is calculated as ma x {back current
On source side + forward current on shadow side).
The mean electron range (Rce) required for (1) and (3) is obtained

here from

<C> = 2me = <Q>
e R Was
]n( = <e> , (1)

where <> denotes integration over the b]ackBody speétrum. The range-Re(u)
that enters the denominator of (11) is essentially the Berger-Seltzer [6]
path length multiplied by an energy dependent factor accounting for mu?l-
tiple scattering (straggling). This range and hence the layer capacitance
(I]) will vény accofding to the épectrum hardness (Tables 1 and 2). i

In comparing the Table 1 and 2 quantities it is helpful to keep

" in mind the blackbody épectrum. The normalized number spactrum versus
energy is characterized in Table 3.

2.2 NUMERICAL RESULTS
The cable bundle considered has dimensions (Figure 1):
Rb =] cm
a = ,2533 cm
insulation (polyethylene) thickness - .08 cm
£ =2.3 €,

other dimensions and parameters are indicated on the tables. Figure 3
- 'shows the resistive Joad configuration:



u(kev) SZ(U) SS(U) S]O(u)' 515(u)

a2 15072 3.957 1.797

5 116l 4887 1.6072  7.797°
10 572 .22 2427 1.307
20 0.4~ 2.4872 26072  1.767
30 14375 7.4873 Le62  1.7472
50 Le? 3.8t 7.057 1.1872
100 Loo'? 6868 1.8 1.5773
150 3.13-30  7.007'% 2865  1.267
300 336762 2.627% 350712 2.2970

Table 3. Blackbody spectrum (photon/keV) versus
photon energy u for temperatures 2, 5,
10, and 15 keV.

12



Vss' V]7, Vz3 are voltages

Each terminal 1,2,3,5, 6,7 ;
has the following open ]oad across the load resistor.
to ground.

Rf.
IOE:F

100 h Ry | 0
-16 O~v(D) I
107 '5F
: R

g i
1070 @OvAQ) 10718, 1078

—F

Figure 3. Resistive load conf1gurat1on (identical
terminations at both ends of cable).

The emission sources in Tables 1 and 2 may be multiplied by a
normalized time function. We choose here :

£(t) = & sin’(nt/t ) - (12)
0 .

= 20 ns

A cable length of 1 meter was employed, and in all cases the
conductor voltages followed the time integral of the source current I
(6), reaching peak values well before 30 ns. The differential Joad vo1tages
fo]]owed the pulse (12) Only peak voltages are given in the tables to fol-

Tow.

2.2.1 Photon Angle of-Inc{dénce

Table 4 illustrates the shadowing assumptions made for 0°, 30°,
and 60° photon angle of incidence. While these assumptions may appear
somewhat arbitrary, the scheme serves to vary considerably the photon exposure
of each wire in a Toaded pair.
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2,2,2 Shielded Bundle Response

The peak terminal voltages with respect to ground and differential
load voltages for various fluence levels, shield material, load resistances,
photon angle of incidence and distance of shield from the bundle radius
are displayed versus the x-ray source blackbody temperature in Figures 5a to
9. In certain cases, the cable sources for electrons ejected from the wires
(voltage source vocwi in Figure 2b) are turned off to see the effect of
the shield drivers alone.

Consider first a high fluence Tevel (1 cal/emé ) incident on
""cables with no gap between R and R (Figure 1) as in Tables 5a, 6, and 7.
With 102 loads and a 50 mil a]um1num shield (T5a), the differential lvo]tages[
are all £1.5 volts, the Targer values occurring with the hotter =10 kev
spectra. The corresponding values given the 4 mil copper shield (T6) are
only slightly smaller in magnitude. ‘

The approximate open circuit voltages across 10 k@ loads (T7)
are substantial. Note especially that the shield currents contribute little
to the differential voltages. This is due to the large values of csi in (3).

In the no gap cable, essentially all of the important electrons
are slowiny down in condensed matter (insulation), hence self-consistent

effects should be negligible. Of course, the electrons jumping between.the air
spaces 1in F1gure 1 may be seriously affected by the flelds, but the low emission
rate for these polyethy]ene ejected electyrqns in. cqmparlson with the metal sources

would seemingly preclude any major perturbations to these simple estimates.

This conclusion should be verified, but an extension of the
present mode] will be required. Since the differential voltages can be
of order ]0 » particular attention should be paid in such a future investi-
gation to the retardation or enhancement of Tow <100 eV electron emission
between insulated wires, though Tittle experimental or theoretical data is
available regarding this emission contribution.

Evidently, a "no-gap" shield of "normal” thickness offers
little protection to the bundle, at least in the high fluence cases with a

15
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Peak Differential

Vo]tege Squrce BB Temp :oltages Vaj =V, ;Vj _Reak_andijOh“Volti?es“
ocwi keV 17 23 _65 1 2 5
on 2 10.4 10.8  10.8 9.72 9.91 - a7

5 237 231 231 , 224 228 -2.83

10 620 607 607 595 604 . -1.87

15 793 777 777 783 793 17.0

off 2 -.69  -1.04 -1.0 152 2139 . - .35
5 -13.6  -20.4 -20.4 -29.9  -27.2 ' -6.79

10 -31.3 -46.7 -46.7 -68.7 -62.4 - -15.6

15 -38.2 -56.9 -56.9 -84.0 -76.2 - =19.3

Table 7. Cable Response. Incident fluence 1 ca1/cm2, shield 50 mils aluminum,
copper wires, 10KQ loads, Rs = Rb (Figure 1) = 1 cm, incidence angle=
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blackbody source temperature 25 keV. Table 8a shows the very small differential
voltages (compared with Table 5a) developed across 10 ohms at a fluence level
of 0.1 caI/cm

The photon angle of incidence is important in these examples
due to the significant attenuation of even a single copper wire of the size
we consider. Compare, for example, in Table 5a, the (I5 keV BB) voltage Ves
between cases 0° and 60°. In the 0° case, wire 6 gets a full voltage source
while the voltage source for 5 is greatly reduced. This source imbalance -
lTeads to a larger |V65| than in the 60° case where equal voltage sources
" appear on both wires and the differential voltage is developed primarily
through the remaining circuit imbalance.

The numbers in Tables 5 to 9 were actually obtained from a pre-
Timinary version of the cable model of Figure 2 in which the mean electron
ranges R were the same for all wire of the bundle. Subsequent investi-
gation 1nd1cated as shown in Tables 1 and 2, that‘<P é>»can differ by as
much as an order of magnitude due to wire attenuation. Note, however, that
although the wire voltage sources are « Ce:>f0r<<? e;><< Twire? the current
ISi for copper wires is reduced significantly by even one wire attenuation
-factor. The single case of the close shield at high fluence (Table 5a) was

recalculated with "wire dependent" <?ce:> and the results for V and V. ij were
found to agree well (factor of two in a few 1nstances Ausually much c1oser)

with the "s1ng1e<<ﬁ e:>" calculations. The rema1n1ng cases were not recal-
culated in order to coneerve computer time §ince the’ dlfferences should be
comparable to the test case.. Any futuré ‘calculations along the.lines:of.:
Tables 5 to 9 will include the “vary1ng<<Rcé> " and additional refinements.
The calculations presented here which are “compIete" with respect to code
development are summarized in Tables 10 and 11. In particular, voltage
drops across R in the RLC terminations are included, and somewhat more

realistic circuit parameters are employed.
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While no examples are given, it is evident that aluminum wires
will lead to smaller |Vij| due to an emission yield smaller than that of
copper (Table 1). Additionally, the smaller attenuation through aluminum
wires (Table 1) will tend to reduce the "voltage source imbalance" between
wires of a pair at any angle of incidence, also tending to reduce |Vi'|'

J

2.2.3 Shield With Vacuum Gap Rg-Ry

Consider now the case of a vacuum gap between Rs and Rb' Ca-
pa?1tance Cj in (3) may be reduced considerably, thereby increasing the
..sh1eld ?urrent generator (Figure 2b) Igi. Tables 5b and 8b are appropriate

to & shield radius Rs = 1.2 cm (Rb =1 cm). '

The purpose of this example is to j1lustrate the change in the
bundle response due solely to the change in the sheath capacitance. Fér
| this reason, the wall emission currents Is. are not changed from the pre-
. vious values appropriate 1o the "close-in" shield.

At the higher fluence (T5b) the Vij range from ~1 to 21 volts
while the terminal voltages lV | reach ~14 keV. Note that the effect of
the wire voltage sources is bare]y noticeable.

In this case, the large terminal voltages may be expected to
cause significant limiting of electron currents traveling from shield to
wires. The differential voltages are across 108, so the currents are'~2
amps leading to tens of keV were the 1oad resistors ;hanged to 10 kQ
Even with 1imiting, however, it is likely that several volts may appear
across 100 loads at the high fluence level. '

Tables 8b and 9 compare the response with 102 and 10 k2 loads

respectively at the lower fluence (0.1 cal/cm?). The voltages in these cases
are not so high as to indicate severe 1imiting, and again it appears that
several volts may be expected across low resistance loads, particularly for

a blackbody source temperature 25 keV.
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2.2.4 Unshielded Bundle Adjacent to a Plane Wall

Examination of the "voltage source on-off" cases in Tables 5b,
8b, and 9 for the bundle within a gapped shield reveals that to a very ade-
quate approximation in the different voltages, the individual wire sources
may be neglected with respect to the shield drivers. This fact allows a
similar approximate treatment of the unshielded bundle adjacent to a (flat)
electron emitting wall.

The problem geometry is shown in Figure 4. The seven-wire
is identical to that previously considered, jncluding the termination

" configuration of Figure 3.

=

Bundle radius Ry = 1 cm

ays/\ /\=— €

Figure 4. Unshielded seven-wire bundle
: adjacent to electron emitting wall.
As before, we subdivide the bundle rim into six sections and
use equation (2) to find the "new" capacitance to ground. In this case the
exterior capacitances are

1 Zneo
= . (13)

C.= —
si~® cosh” (h/Rb)
In the results to follow, the capacitance of the central wire
was treated in the coaxial approximation.used previously. We have observed

in other calculations regarding the Figure 4 model (same range of emission
currents as below) that "turning off" the center wire source makes no
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detectable difference in the results. Thus, the Tatter approximation is
not all critical since i: cij is small due to the effective shielding of

the outer wires. Also, for these calculations, the large electron layer
capacitances in series with (13) are neglected.

The primary effect of interest here is the sensitivity of
resultant differential voltages to assumptions regarding the distribution
of knock-on electrons over the outer wires.

4

The IRT PC code has been used to compute the angular distri-
bution of knock-on electrons impacting the surface of a solid wire re- -
placing the bundle of Figure 4, for various standoff distances and wall
emission currents. This code incorporates space change limiting and
Timiting due to a load in the external circuit. In this work we use.
the PC code data in a simplified manner and make no attempt to include
loads to ground in the bundle equivalent to the IRT loading of the (in-

. finite) wire. We further assume in all cases that

ka(e) = ka(o)cose,leli90° .
0 |e|>90° (14)

where ka(o) is the peak knock-on current density at & = 0 from the IRT
- data, for given Je and h/Rb (Figure 4). The time history of Jknock-bn
is again chosen to be (12).

We consider two distributions of (14) over wires 1, 2, 3
and 6 (Figure 4), in defining the current generators Isi as in Figure 2b.

" Using (14) as is, we assume that

) . &0
Igq = I, =Ry {ka(e) de = .866 Rbka(O)
-]

90 _

Ig3=14=R, fa£k(e) dg = .134 Rbka(o), . (15)
The uniform distribution is just ,

I =1/4 [2Rbka(0)]. . (16)
i=1,2,3,6

26
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Section 3
COMPARISON OF MULTICONDUCTOR CABLE CODES
Paul Trybus

The transient response of a multiconductor cable is solved
with either a distributed parameter model (1ike MCABLE) or a lumped para-

.. meter model of the cable and a circuit code Tike SCEPTRE.

For straight cables MCABLE computes the solution significantly
faster than the Tumped parameter model. However, MCABLE does not allow
cable bends that can easily be a part of real cable.

In this subtask we examine the increase in computer core and
- in computer time that would accompany the alteration of the MCABLE code
to handle cable bends; the resultant code was called BCABLE. '

3.0 MCABLE

MCABLE is a uniform multiconductor transmission code that solves
the telegraphers equations in the time domain. For this study a seven
wire configuration was used (Figure 5). Forty nodes over the 1 meter
length resulted in a Ax = 2.5 cm. Licking's capacitance code [4] calcu-
lated the capacitance matrix which was then used to create the associated.
inducfance matrix. A dielectric constant of 2.5 was associated with the
cable. A plane-wave E field drove the cable, incident tangentially. The
-form of the field was a unit sin2 pulse of 10 ns duration. Core require-
ments were 43K (octal) and 163 CPU secs for a time duration of 100 ns on
a CDC 6600 machine. '

Figures 6 and 7 show the termination conditions of the cable
and Figures 8 and 9 present bulk currents at each end of the cable.



The V' in Tables 10 and 11 are peak values of
V,(t) = tR"Lf tR/L v(t)dt” (17)

the voltage drop across the load resistor R in the RLC terminations to
ground at the wire ends. It is evident from the tables that the currents

to ground vi/R may be quite substantial at high fluence levels.

30

N .
'



Wire Radii = 2.533 mm
a = 6.666 mm
b= 10.mm

Figure 5. Seven-Wire Configuration
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3.1 BCABLE
BCABLE is a modification of MCABLE. A nonuniform or bent

7-wire cable configuration is allowed through the use of distinct capaci-
tance and inductance matrices at each node. For this study the first 38
nodes were taken to be identical to the MCABLE run. The last two nodes
used the configuration of Figure 10 to simulate a bent cable. Termination
and drives were the same as in the MCABLE run. BCAQLE needed 55K {octal)
core and 171 CPU secs for the 100 ns time duration. The extra core comes

~about from the fact that two 7x7 matrices (L and C) are required at each
of the 40 nodes. The increased time is due to the additional manipulation
that must be done to these distinct L and C matrices, although the increase
in time is only 5% over the uniform case. :

. Figures 11 and 12 present bulk currents for the ends of the’
bent cabie.

A three-wire version of MCABLE was set up and run using a
drive on the left end of e(t) = 10.4 x 104 (e'at—e'Bt) as the source.
Figure 13 presents the terminations used at each end. A 40 foot cable. of
‘the geometry presented in Figure 14 took 70 CPU sec and required 36K (octal)
for a 900 ns time duration. Figures 15 to 20 present currents for each cable

at each end.
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Figure 6. Seven Wires:
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Wire radii = 2.533 mm
a-s 6.666 mm
b = 100. mm

Cable Simulated

Figure 10. Bent Seven-Wire Configuration

38



Wire 2 Wire 3

Ry = Ry = Ry =
Lh=ly=lsg=
€y =Cp=Cz=
Ry p = 3.30

Figure 13. Three-wire terminations (left and right ends).
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Section 4
MAGNETIC TURNING EFFECTS AND CABLE RESPONSE

Monti Wilson

Consider a wire of radius ~few tenths cm Tocated several cm from
a ground plane. If the turning of electrons in the H field due to the
wire current is to have a significant self-consistent effect on the wire
current, then the electron Larmor radius must be comparable to the wire

standoff distance. The Larmor radius is

4
2

R(cm) = 8.48x103

| <]

"where V = electron kinetic energy (kev) and H = magnetic field intensity
(Amp/m}.

Assuming the maximum H at the surface of a wire of radius r{cm)
for estimation purposes, the Larmor radius given a wire current I {Amps)

is 1

v 2
R{cm) = 53?rv .
Some typical values of R are shown in Table S1, assuming a wire radius
r = 0.2 cm.
I(AI‘JP) V(kEV)
1 10 30 100
10 . 10.6 33.7 58.4 108
50 2.12  6.74 11.7 21
100 1.06 3.37 5.8%4 10.7
560 . 212 .67 1.7 2.13

Table 12. Entries are R{cm).
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Thus, for cable currents <50 Amp and electron kinetic energies ~10-30 kev,
it appears that magnetic turning cannot have an important effect on cable
response. Better estimates of J turning effects could be made through
modification of existing quasistatic 2-d particle codes for predicting
radiation induced cable response; however, there seems to be Tittle rea-
son to do so. | '
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