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1. SCOPE OF WORK

The work described in this report is concerned primarily
with the calculation of IEMP and SGEMP fields in low-density
media. Thus, problems related to the photoemission of elec-
trons or to the transport of photons and electrons through
dense materials form no part of this work. Rather, the plasma
aspects of IEMP and SGEMP are emphasized.

A variety of problems are addressed here. In Chapter 2
analytic models of IEMP and SGEMP in vacuo are developed.
Much of this research is the outgrowth of the work described
in Reference 2.1.1. PFirst (Section 2.1), the basic problem of
the calculation of the electric fields and potentials in an
evacuated cavity is considered. Questions related to boundary
conditions (conducting or insulating) are examined. Also, the
effect of the angle and energy dependence of the electrons
emitted into the cavity is discussed. Next {(Section 2.2), the
effect of placing small dielectric obkjects in a cavity is
examined. The objects are assumed to be small in comparison
with the length scale of the variation of the fields. The
Child-Langmuir treatment of space-charge limited current flow
in a diode has served as a valuable scaling relationship for
many applications in IEMP research. In Section 2.3 an analytic
treatment of cases where the electrons emitted are not mono-
energetic and where the emitted pulse is time-dependent is
presented. It is based upon a perturbation expansion of the
electron transport equation. In Section 2.4 the fields gen-
erated outside, rather than within a conductor are analyzed.
This work is related to satellite SGEMP problems. The forma-
tion of plasma sheaths is examined and a method is presented



for calculating the size, density and time dependence of such
sheaths in plane, cylindrical and spherical geometries.

In Chapter 3 the conditions for the pinch effect to be
important in IEMP environments are examined. Pinching in
dense, collision-dominated plasmas is well understood and,
more recently, pinching of intense, relativistic electron
beams has been observed. However, the magnetic constriction
of diffuse, low-energy IEMP electron beams is less well under-
stood. Only recently have experiments been initiated in which
the effect might be observed.

It is possible to derive simple analytic conditions for
pinching in two limiting cases--namely, at zero density and
secondly, when the space charge is neutralized. However, under
intermediate conditions a numerical treatment is necessary. A
2-D computer code was written to examine the IEMP pinch effect.
Calculations of weak pinching in the presence of a partially
neutralized space-charge field are presented in Chapter 3.

Two computer codes were developed for application to
problems where analytic methods are not useful. They are de-
scribed in Chapter 4. Both are axisymmetric, two-dimensional,
particle codes. Both use the Fast Fourier Method to decompose
a 2-D problem into a finite set of uncoupled 1-D equations.

The codes are much faster in operation than those based on the
Green's Function method. They are also less cumbersome and
hence faster than the fully electromagnetic treatment used in
some IEMP particle codes. They employ the capacitance matrix
technique to solve the boundary value problem. As a result

they have a greater range of application than other IEMP codes,
inasmuch as they could be coded to apply to arbitrary boundaries
and, indeed, to arbitrary potentials on the boundaries. Of

the two codes, one solves electrostatic problems (Poisson's



equation) while the other solves magnetostatic problems
(Poisson's equation and Ampere's Law). The electrostatic
code has been applied to space-~charge limited flow in axi-
symmetric geotmetry. Also, it has been used to examine the
effects of nonconducting boundaries on the beam transport

in cylinders. These calculations are discussed in Chapter 5.
The magnetostatic code has been applied to pinch problems
(Chapter 3).

Thus, a considerable range of work is presented here.
The electrodynamic aspects of IEMP and SGEMP are emphasized.
Of particular interest is the cavity field generation prob-
lem under a wide range of conditions--from very low densities
where the current flow may be limited by the electrostatic
potential to higher densities where it may be limited by the
magnetic potential. This work is applicable not only to real
environments but also to simulation experiments. Finally, the
analytic work in Chapter 2, in addition to having direct ap-
plication to a number of problems (dielectric objects, satel-
lite sheaths, etc.), could also provide the impetus for nu-

merical studies of such effects.



2. FIELD GENERATION IN A VACUUM

2.1 GENERAL CONSIDERATIONS

The problem of calculating the electric and magnetic
fields either within an evacuated cavity or outside an object
in free space is a topic of perennial interest to IEMP and
SGEMP workers. Much effort has been expended toward under-
standing such problems and this has led to a variety df tech-

niques — both numerical and analytical.

In this chapter we shall deal only with analytical
methods and shall discuss in Sections 2.2 through 2.4 three
topics in which appreciable progress can be made without re-
sorting to the computer. This section will be an introduc-
tion to those sections. The notation used will be introduced

and the basis for the models used will be considered.

To begin, it is assumed that Poisson's equation is ap+
plicable to the problems under examination. The use of this
equation is valid provided the length scale of interest, L,
is traversed by photons in a time L/¢ that is much less than
the time t_ characteristic of the pulse duration. - Here ¢C

is the velocity of light. That is, we require
L << ct. . (2.1.1)

Thus, for a pulse duration tr = 10-8 sec it is clear that this
condition is satisfied for systems as large as one meter. In
addition to this condition it is also necessary that the elec-
trons have essentially non-relativistic velocities Bc. That
is, we require that B << 1. Otherwise the electrons would
interact directly with the electromagnetic waves — a feature
which is not taken into account if we use Poisson's equation

alone.

10



In one dimension Poisson's equation is written

a%y/dz? = -amp ) (2.1.2)

The charge density p is related to the current density

Jesu PY
PBC = =Josu
or
P = =Jogy/BC = -0.13/8 (2.1.3)

where j is in amperes/cm2 (j > 0). If the electrons are
not limited by space charge B may be taken as constant
and j(z) is just the emitted current density j(0) at
z = 0. With ¢ expressed in volts the Poisson equation is
then written
2 2 .

a“y/dz“ = 120wj/B . (2.1.4)
This is easily integrated and, with grounded boundaries

Yp(0) = (L) =0

the potential is given by

v(z,t) =-(60m/8) j(o,t) z(L - 2) . (2.1.5)

11



This simple result will be referred to on numerous occasions
throughout this report. This potential is negative and has
its greatest magnitude at 2z = L/2,

2

Voax = ~ (157/8) 3L . (2.1.6)

2 the maximum

Thus, with 8 ~ 1/3, L = 10 cm and j = 1 A/cm
potential is approximately 14.5 kilovolts. 1If, instead of
grounded boundaries, we have prescribed values v(o,t), v(L,t)

which may be time-dependent the result is
V(z,t) = (60m/B) j(0,t) z(L - 2)
+ [p(n,t) - v(o,t)] z/L
+ ¢ (0,t) .

Consequently, if the emitting surface z = 0 is grounded

but the receiving plate z = L becomes charged in the

course of the pulse then the absolute value |v¢] is in-
creased. As a result, an insulating plate (or more gener-

ally insulating boundaries) will cause the potehtial || to in-
crease and hence may lead to the onset of space-charge

limited flow under otherwise nonspace-charge dominated

conditions.

In two-dimensional axisymmetric geometry the Poisson

equation reads

(

H =

a—r3—+—2— ¥ = -1200 (2.1.7)
or or 2 - e e

12



where ¢ 1is expressed in volts and p is in electrostatic
units. With the walls of a cylinder, of radius R and

length L, the solution to this equation is

L
v(r,z,t) = 300 J/Bdr' r' J/ﬁdz' G(r,r',z,2') p{(xr',2',t)

0 0
(2.1.8)

where the Green's function G 1is written (Ref. 2.1.2)

JO(Gn %) Jo(“n %L)

G(r,r',z,2") =g£ E F(z,2')

2 . L
-1 a, Jl (un) sinh “. R
(2.109)
where
%n? L - z' =
1 _— : 3 ]
F(z,2z"'") = sinh = sinh o, TR — , 2z < 2
a_ (L - 2) a_z!'
. . n -
= sinh —E———ﬁ———— sinh R , 2 > z!
where
Jo(an) =0 ’ n=1, 2, ... .

The emitted current can be expanded in terms of the
functions appropriate to cylindrical symmetry, namely Bessel

functions

13



5c,0,8) = (&) . ag Jglag/R) (2.1.10)
s=1

In some cases only a few terms of this expression need be re-
tained (Ref. 2.1.2).

In the case where electrons are injected normal to the
2z = 0 surface the one-dimensicnal relationship (Eq. 2.1.3)
between the charge density p and the emitted current density
j can be used, as done above. We shall now generalize the
treatment given in Ref. 2.1.1 to include both angular and

energy dependence.

At a point (r,0) on the emitting surface of a cylinder
(Figure 2.1.1) let the number of electrons be

B 2 .
n{(r,0) = J/::1v0 vy deo sin BO d¢0 f(r,O,v0,60,¢o)

where f is the distribution function, 90 and ¢0 are the
polar and azimuthal angles, respectively, and Vo is the

velocity.

In order to calculate the charge density opo(r,z) at
an arbitrary point within the cylindrical cavity it is neces-
sary to first obtain the distribution function from the Vlasov

equation
3f L v .y -82 .23
d m >
oV

14
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Figure 2.1.1

Z

.,
©-
I.-‘—.

&

Showing the local coordinate system angles (0,
¢3) of an observer O at point (R=1r, 2 = 2z,
P

¢) with respect to a point P at (R = Tor
o, ¢==¢0) from which electrons are emitted.
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where E is the electric field. Since there is no absorp-
tion nor source of electrons in the cavity it is easier to
obtain the solution by noting that the Vlasov equation is
really a statement about the conservation of electrons in
phase-space. At a point (r,z) the number of electrons £
is obtained by integrating back along their trajectories to
the point of enission (rO,O). Secondly, in the guasistatic
approximation where electrons traverse a distance L in a
time much less than that characterizing changes in the
emitted current the time derivative in the Vlasov equation
can be neglected. This precludes discussion of space-

charge limited currents.

It is now useful to introduce the angles el, ¢l (Figure
2.1.1) in the local frame of an observer at a point (r,z,¢). In

terms of these guantities the charge density can be expressed as

plr,z,9) = —eJ/év v2 d¢l del sine1 f(ro,o,v,n-el,ﬂ+¢l)

where (2.1.11)

R 2 _ -
r,o=r + z tanel 2rz tanGl cos (¢ ¢l)

which follows from some straightforward algebra.

At this point we must make some assumptions about the
form of the distribution function of the emitted electrons.

First, we shall assume that £ is separable:
f(rO,O,v0,90,¢0) = fo(rO,O) fv(vo) f9(60'¢0) (2.1.12)

That is, the distribution of electrons emitted is independently

a function fo of position on the 2z = 0 surface, a function

16
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fv of the emission velocity Vo and a function fQ of
the angle of emission. Let us now consider a few specific

models of the emission.
1. Energy (velocity) dependence:

a. Maxwellian

fv(v) = (2.1.13)

b. Monoenergetic

(v - VT)
fv(v) = n, 5 (2.1.14)
v
Note that in either case
av v2 £ (v) = n (2.1.15)
v 0 T

2. Angular dependence:

We shall always assume azimuthal symmetry in the angle

of emission, i.e.,

H

_ 8
fﬂ (60,¢0) = o7 (60) . (2.1.16)

This is not a very restrictive assumption and is true in most
circumstances. Hereafter, p(r,z,¢) will be written as pl(r,z).

Two models of angular emission are:

17



a. IsotroEic

Hh

Q0
fQ (60) = Sm (2.1.17)
b. Unidirectional normal to surface
£
fQ (90) = 5= § (cos 60) (2.1.18)
Note that in either case
_/:”’o ds, sin 0y £o =1 (2.1.19)

From Egs. (2.1.11), (2.1.12) and (2.1.16) the charge density

can now be written as

en ’
- - 9 : -
plr,z) = T J/;¢l de1 sin®, fo(ro,O) fQ(r el)

(2.1.20)

The limits on the Bl integral are zero and ec (¢l) where

(2.1.21)

cos ec (¢l) = ]1/2

Ez rr 2 (¢l)

18
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where

rc(¢) = -r cos ¢ + V%z - r2 sin2 ¢ {(2.1.22)

The cut-off angle ec arises on account of the finite dimen-
sions of the cylinder. It is assumed that electrons are
emitted only from the z = 0 plane and that once they strike
another wall they are absorbed.

If fo(rO,O) is independent of r, we then have

£ 27 0. (97)
0 0 € :
p(r,z) = - s J/- d¢l J/P dBl 51n61 fg(w-el) . (2.1.23)
0

With the angular emission model (2a) above (see Eg. 2.1.17) we
have

2T
d¢l
pl(r,z) = -e n, f0 fQ = [l - c?s ec(¢l)] (2.1.24)

and for model (2b) (see Eg. 2.1.18),

p(r,z) = -e n, fo fQ(O) . (2.1.25)

In each of these equations time dependence may enter inde-
pendently through Ny, fO or the angular function fn.

19



Equation (2.1.25) is simply a generalization of the
result (2.1.3) to take account of the energy dependence.
Equations (2.1.24) and (2.1.25) can be used to check the ac-
curacy and statistical fluctuations in a particle simulation
code with isotropic and normal emission, respectively., for
arbitrary energy dependence.

T+ is now possible to use one of these emission models
to calculate p(r,z) and to substitute the result in Equation
(2.1.8). Apart from the simple angular emission case (2b)
(see page 12}, the calculations are quite complex and are
better treated by a direct nunerical scheme. In addition,
they are applicable to situations where dynamics are dominated
by space charge.

20
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2.2 FIELD DISTORTION BY SMALIL OBJECTS

2.2.1 General Considerations

In this section we investigate the distortion of field
lines in cavities when small dielectric objects are inserted
therein. Before doing this we shall discuss the various ef-
fects produced by such insertions. The electric field will be

modified for any of the following reasons:

1. The body will become charged. If it is an insulator,
the nonuniform charge distribution will lead to additional
fields. The time required for the charge distribution in an
insulator to become uniform is of order 0_1 where ¢ 1is the
conductivity (in sec_l in esu). If the body is a conductor

its surface becomes an equipotential surface.

2. In an electric field, a small body will become
polarized, either because of the polarization of the dielec-
tric or the flow of current on a conductor. The resulting
multipole moments will affect the external fields.

In either Case 1 or 2, the charges or moments of charge
on the body will induce image charges in the cavity walls.
The effect of the image charges on the fields in the cavity
may be appreciable if the distance of the small object from
a cavity wall is of the same order of magnitude as the di-

mensions of the body.

3. If the body has an atomic number different from
that of the walls, or if its thickness is of the order of or
greater than a mean free path for the radiation creating the
pulse, then there will be shadowing effects that lead to a

reduction in the current behind the object.

21



Let us now consider the relative importance of these
three effects. Ignoring space—-charge 1imitations and the di-
vergence of the exciting radiation the current in a cavity is
just equal to the current in the adjacent material. This is a
consequence of the fact that at low densities in the cavity there
is no source of electrons and no absorption of them either. The
current in the material depends strongly on its average atomic
number because the attenuation of the incident photons rises
rapidly with atomic number while the range of electrons is not
strongly affected. Thus, we expect the current in a body placed
in a cavity to be similar to that in the cavity as long as the
body has an atomic number similar to that of the cavity walls.
Also, we expect the current emerging from the far side of the
body to be similar to that elsewhere in the cavity for similar
atomic numbers unless the attenuation of the body is appreciable.
The net total charge delivered per unit cross section of the body
is therefore expected to be small for similar atomic numbers and
thin bodies, but of the same order as the time integral of the

current density to the cavity walls.

If the body is insulated from the wall or connected
by a high inductance path (e.g., via a long thin wire), the
charge on it may exceed the charge on the walls. Its effect
on the field in its vicinity may be correspondingly larger.
That is, the perturbation due to Cause 1 above may exceed the
ambient field. It will decrease as r"l or r-2 depending
upon whether the object is essentially cylindrical or spher-

ical.

It is well-known that a cylinder or a sphere placed
in an electric field concentrates it so that the field at the
pole may be several times the field far from the pole. Thus,

22
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for a cylinder the ratio of the two fields is 2¢/(e + 1) as
we shall presently see. Since for considered matter the di-
electric constant € 1is typically between 1 and 100 and for
conductors it is infinite the ratio is of order unity. Thus,
the perturbation of the fields due to Cause 2 is of the same
order as that due to Cause 1. In this case the field drops
off as r % or r ° for cylindrical and spherical geometries,

respectively.

As regards Case 3, the reduction of the current result-
ing from shadowing presumably affects the field in the entire
cavity but is of order (small body cross section)/(cavity area).
Since the electric field is proportional to the integral of
the charge density the shadowing effect of a small body should
not produce large local changes and, as an effect, it does not
compete with the ambient field anywhere.

To summarize, we conclude that (a) for small bodies with
an atomic number similar to that of the cavity walls, the
photons do not liberate much free charge. However, if the
body is insulated from the cavity walls,.charge may collect on
it as a result of the electron current. The charge thus col-
lected may change the field in its vicinity by an appreciable
amount. (b) The polarization produced by the small body placed
in an electric field will also change the field appreciably in
its vicinity. (c) The effect of shadowing by small bodies is

of less importance because influence is not localized.

We shall now see what progress can be made analytically

in situations where Causes 1 and 2, respectively, are important.

23



2.2.2 Cause l--Charged Bodies

In this case we shall calculate the field and potential
produced by a charged body placed between two conducting plates.
We shall then compare this with the field and potential pro-
duced by a uniform charge density between the same plates.

The plates are infinite and positioned at X = 0 and
x = L. A wire, thin in comparison with the interplate distance,
is placed at a distance X, from the x = 0 plate. The wire

is normal to the x-y plane.

The calculation of the potential produced by a charge
per unit length gq on the wire is straightforward (see, for
instance, Ref.2.2.1). The complex potential at (x, y) 1is

sin ‘rr(x0 + z)/2L
F(x,y) = 2 q ln | g3q T(Xg - L)/2L

where
z = x + iy
The potential VY (x,Y) is related too F Dby
¥(x,y) = Re F(x,y) .
It is largest close to the wire. At a distance r given by
2

2
r“ = (x - xo) + (y - y0)2

the potential (call it mw) is
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sin nxO/L]

Ipw ¥ 29 ln[ Tr/ 21,
where we have assumed that

r << X ’ r << L .

This result may be compared with the potential wu due to
a uniform space charge (per unit volume) p in the space be-

tween the two plates
X
b, (x,y) = 2 mp ( - 5) X , all y .

The charge per unit length gq on an insulated wire can be
estimated as follows. Assuming that all incident charge

"sticks" to the insulating wire (of radius r) then after a
time t the charge accumulated per unit length on the wire

is
g = pvt 271r
where v is the velocity at which the charge density moves.

With this (over-) estimate of the charge accumulated by the

wire, the potential in the two cases can be compared:

¢W(x,y) _ 2 vrt e sin nxo/2L
Wu(x,y): (L _ g)x nr/2L

It is assumed that the wire has a dimension r that is much
less than the diode width L. Consequently, the above ratio
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is generally small compared with unity until a time t0 has

elapsed where

The logarithmic term is slowly varying and is assumed to be of
order unity. Thus, if the electrons move with an average
velocity of lO10 cm/sec ( which is typical of 30 keV electrons)
the potentials wu, ¢w become comparable at a point midway

across the gap (x = L/2) after a time

t0 = 0.1 L2/8 r nsec .

With L = 10 cm and with a wire radius of 0.1 cm, t, is ap-

proximately 12 nsec.

Tt is difficult to proceed much further with this prob-
lem on a purely analytic basis. The assumption that all
electrons striking the wire must stick may not be valid. More
important, as the charge on the wire builds up it will distort
the space charge in its vicinity and electrons may be repelled
from the vicinity of high potential next to the wire. Never-
theless, it appears from the above calculation that the poten-
tial due to the uniform charge is dominant for most times of
interest. Moreover, we have overestimated the effect due to
the wire for two reasons, namely, the charge assumed here is
an upper limit and the potential is calculated at the wire
itself. Finally, if the current flow were limited by space
charge the charge accumulating on the wire would be even

smaller.
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To summarize, the effect of small charged objects is
not likely to be very important (particularly in space-
charge~limited situations) until late in a typical IEMP
problem. This somewhat qualitative remark should be tested
numerically with a particle simulation code.

2.2.3 Cause 2--Dielectric Objects

In this section, we consider the effect which a diel-
ectric object produces on the field in which it is placed.
In this context by "small" we mean that the linear dimensions
of the object are small in comparison with the length scale
on which the unperturbed field varies.

The simplest case to consider is that of a wire (cylin-
der) inserted in a uniform field. We might imagine the uniform
field to be created by diode plates separated by a distance
L large in comparison with the wire radius a. This case is
quite simple to calculate. The unperturbed potential wo is

given by
Vo = ~ Ep X

= - E, r cos ¢

0

where E0 is the uniform field and x is the direction of the

electric field. Here (r,¢) are the polar coordinates. The

boundary conditions to be satisfied on the circle r = a are

= e ¥ (a,¢)

outside ar

oY (a,¢)

3r

inside

v (a’¢)’outside =¥ (a'¢)|inside
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where £ 1s the dielectric constant. Since one of the

boundary conditions involves a derivative and since the po-

tential outside «r

tial within r = a
-k

as r with k > O

= a is not constant in r SO the poten-

cannot be constant. Also Y cannot vary

if it is to remain finite at r = 0.

The possible form for ¢ 1s Ar cos ¢. Outside the cylinder
the solution can take form cr cos ¢ + {B/r) cos ¢ which be-

comes Cr cos ¢ for large

r--which is correct since the po-

tential for the cylinder is the unperturbed solution

_EO

at r = a, we have

r cos ¢. Thus, using the two boundary conditions above

- Ea + B/a = Aa
—E-B/a2=€A .
Thus, we obtain
= = e -1 a_ —
ylr,9) = ( r+ 2 T T ) E, cos ¢ (r > a)
_ _ 2r _ -
= - ST By cos ¢ (r < a)

In Cartesian coordinates (x,y) this result is

P(x,y)

I
o
b
+
m|m
+{1
o
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TN,

It is convenient to introduce the normalized potential
¥ = w/aE0

and the normalized field magnitude
X = ImF/aE0 .

Similarly, the normalized electric field components €_, €
are defined

Ex/EO = €y = ~ ¥ /3E

Ey/E0 = sy = — 3¥/9dy
where

£ = x/a

Yy = y/a .

Thus, if a is measured in centimeters and E0 in volts/cm
then ¢, Yy are in volts. For a variety of values of € con-
tours of constant potential Y and field magnitude X are
plotted in Figures 2.2.1 through 2.2.4. Similarly, contours

of constant field components €y? ey are shown in Figures 2.2.5
through 2.2.12.

Let us take an example, simple as it may be, to illus-
trate the use of these plots. A dielectric cylinder (or
wire) of radius a = 0.25 cm is placed in a uniform electric
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Figure 2.2.1

x/a

Contours of constant potential ¥ and field mag-
nitude X for € = 1.
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y=-2
P=0

(3]

I

=
=2
X=0
[ X=-2
X=-5

Figure 2.2.2

Contours of constant potential ¢ and field

magnitude X for £ = 2.
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y/a

et

Figure 2.2.3

Contours of constant potential ¥ and field
magnitude x for e
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y/a
(e )

x/a

Figure 2.2.4 Contours of constant potential Y and field
magnitude x for e = 10.
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y/a

e = 1 everywhere

Figure 2.2.5

x/a

Contours of constant x-component of the elec-
tric field for € = 1.
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y/a

x/a

Figure 2.2.6 Contours of constant x-component of the
electric field for ¢ = 2,
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Figure 2.2.7

Contours of constant x-component of the
electric field for e = 5.
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y/a

Figure 2.2.8

Contours
electric

Xx/a

of constant x-component of the
field for £ = 10.
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y/a

Ey_

0 everywhere

Pigure 2.2.9

x/a

Contours of constant y-component of the

electric field for ¢ = 1.
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Figure 2.2.10

x/a

Contours of constant y-component of the
electric field for e = 2.
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y/a

Figure 2.2.11

x/a

Contours of constant y-component of the
electric field for € = 5.
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e/k

-5l

x/a

Contours of constant y-component of the

electric field for & = 10.
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field ;EO of strength 1 kV/cm. Thus, to obtain values of

the potential the normalized value should be multiplied by .
the scaling potential aE, = 250 volts. Positions in these

plots (&,Y) are measured in units of the radius a = 0.25 cm.

Thus, at the point x = 0.25 cm, ¥y = 0.5 cm the potential

is 250 ¥ (1,2) = 225 V in the case where € = 5 (Fig-

ure 2.2.3). Similarly, (Figures 2.2.7, 2.2.1) the x and

y field components have values of

e (L., 2.)

E0 X

Ey (0.5, 0.25)

1t

600 volts/cm

EY (0.5, 0.25) Ej g (L., 2.)

R

100 volts/cm

The uniform field Eq might, for instance, have been pro-

duced at a distance of 7.5 cm from the emitting plate of a <
diode of width 10 cm in which a current density of ~0.35 A/cm2

(produced by W30 keV electrons) flowed. In this case, the

field in the absence of the dielectric does not change ap-

preciably on the length scale of the wire radius of 0.25 cm.

The treatment given here can be generalized to more
complex geometries--a grid of wires, for instance. It is ap-
proximate in the sense that once the field lines have been
distorted by the dielectric object, the electrons which pxo-
duced the uniform field are, themselves, deflected by the
equipotential contours. However, unless the electrons are

nearly space-charge 1imited and have energies close to the

R
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potential in the vicinity of the dielectric this correction

is not of zero order. To treat the flow consistently in the
neighborhood of dielectrics a numerical treatment is neces-

sary and will form the subject of later work.

2.2.4 Summary

Three effects have been identified as causes for dis-
torting field lines when small objects are inserted in an
IEMP cavity. It was concluded that the photon shadowing by
such objects was less important than the field line distor-
tion resulting from charge build-up on the object or from
field-line concentration by the dielectric properties of the

object.

Formulas for the field distortion by simple, grounded
dielectric objects were presented and equipotential surfaces
for some configurations were generated. A similar program
was not possible for the case of charged, insulated objects.
Instead, the potential distribution produced by an insulated
wire in a vacuum diode space was compared with the distortion
resulting from a uniform space charge between the plates.
This effect, unlike the grounded dielectric concentration of
field, is essentially time-dependent and grows in importance

as the object alters charge.

The treatment given here has been directed to uncover-
ing the basic processes involved and giving approximate,
simple answers. However, the effects are of real interest
to the IEMP problem and deserve a more detailed numerical

examination to provide consistent and accurate results.
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2.3 PERTURBATION TREATMENT OF PARTIALLY SPACE-CHARGE~

LIMITED DIODES

Much of the early work on one-dimensional IEMP field
generation theory had, as its analytical model, the classic
work of Langmuir and Child. In that model of space-charge-
1imited current flow in a diode, the electron emission is
assumed to be (a) nmonoenergetic and (b) time-independent.
Here a model is presented in which neither of these assump~

tions is required.

The work is based upon a perturbation theoretical ex-
pansion of the energy lost by an electron to the space-charge
field during a transit across the diode. The method is quite
simple and it leads to simple analytic results which are readi-

ly utilized.

Suppose we have a beam of electrons emitted from a plane
surface z = 0. It is assumed that they are sufficiently ener-
getic to pass from the cathode to anode without being limited

by their own space charge. They obey the transport equation

¥4 3f e _ of _ )

The first term of this equation is characterized by the time
scale TP, the pulse length. The second term is characterized
by the time Ty = L/v taken to cross the cavity gap 1, where

A is the characterlstlc velocity. The third term in the above
equation is scaled by the time for acceleration in the electric
field T = nv /eE. Tt is assumed that the electrons are ener-
getic and that the transit time is the least of the three time
scales. Under those conditions, we define two small ordering

parameters

y -t _L
P T VoT

o
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m.v 1/2 m.v

where & = EL/2 is the characteristic electrostatic potential
of the system. Let us now examine the relative magnitudes of

these two parameters. In a one-dimensional cavity we have

— = -47p = 47T J /v0 = 0.47m jA/(vo/c)

where jA is the current in amp/cm?. Then the maximum potential

of the system is

0.47 jAL2 151chAL2

esy = —————— VoOlts .

d = ¢(L/2) §vg ) vy

By expressing the velocity Vo in terms of the kinetic energy

€9 (in eV) we have
R 2
lSﬂchL2 4 jAL
Yo = = 2.38 x 10 —373
E 5.93x107 803/2 €9
-8
y_ = L _ 1.69x10 L .
P 7 _ 1/2 1/2
5.93x10° €, T €g s

We thus have four variables to consider in estimating the size
of the two small parameters. If Ye << 1 then Yp can be con-

sidered small provided
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that is, if

Let us illustrate the relative magnitudes of v ., Yg with a

simple example. With €9 = 9 x 104 eV, L =5 cm, jA =1 A/cm2
Yg = 0.022
-10
= 2,82 10
p * /o

so that for 1_ 3 10-8 sec Yp is also small. It is under condi-
tions such as these that we can consider an expansion of the

transport equation to be useful.

Introducing the variables

T =t:/'rp
r = z/L
w = v/v0

the transport equation can be written
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To the zeroth order, we have

That is, the electron density is uniform to lowest order. To

next order, we have

of Bfl of

0 0 _
o3w tIg T Yeww -0 ¢

from which we obtain the solution

z
_ 5 3
0

At the boundary ¢t = 0 (z = 0), we impose the condition that

fl(C=0)=0, for all w > 0.

That is, the source of electrons enters only through fo. The
solution above in terms of t,z now reads

b 0°0 0 0
_ _etlz) %o 2 ¥
m.v v ot *
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We are now in a position to calculate the first-order charge 5
density Pq- Before doing so let us define the current and
charge density of both first- and zero-order magnitudes. Thus,

Po = --/va dvy dvz f0 .
Since there is no motion normal to the z=-axis we shall set
fo = fo(vz) 6(Vx) 6(vy) .

The function fo(vz) is arbitrary. We shall select a function

resembling the photoemission results of Dellin and McCallum(2'3'1)

n 2

_ 0 2 _v
fo(v) = —3-7: v~ exp -5
Vo T Vo

where n, is the electron number density and Vo is characteris-

tic velocity. With this definition

Po = -noe
and
jO = -./avz Ve fo(vz)
— _ 2
= -noev ' where v = — VT .
vy

The zero-order potential ¢0 is given by

2
d ¢4

d22

-

= —4ﬂp0 = 4ﬂn0e .
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With boundary conditions
¢0(0) = ¢0(L) =0
we obtain the result
¢0(Z) = 21Tn0e z(L-2z) .

The first-order potential ¢y then satisfies the equation

2
d ¢1
— = -4mp; = 4mela;¢,(z) + a,z]
where

_ e fav %%y no®

T wm ) VW T T

0 MoVep

n

v JT v

Inserting the above result for ¢, in this equation we find, on
0

integration, that

d¢, (2) dé, (0) 2 3 a,z
1 - 1 = 4men,e [a (EE- - E—) + 2
dz dz 0 1" 2 3 2

] .

Integrating once again and using the boundary conditions
¢1(O) = ¢1(L) = 0 we eliminate d¢l(0)/dz to obtain
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3
= Lz~ _ 2
$,(2) = ame[2mnje a, (<~ )+ =% 1 + 2z —55

3 4 3 a
Lz” _z _L 2z 3_ .2
41Te[21rnoe al(——6 17 -~ 12 ) + < (z L°2)) .

To check the validity of the expansion procedure let us
evaluate ¢l at z = L/2 (where it attains its maximum value) and

compare it to ¢0(L/2). We have

L, _ 4 3
¢l(5) = -4m1e[0.026 x 2mng e a, L” + 0.0625 a,L 1
whereas
L T noe L2
¢0(§') = 4 .
Hence,
6 (3 ,  a,L
— = 47e[0.208 alL + Tmn e] .
Now,
n n
e e g
0 Ve op
Thus, we have
6, (L/2) teg. 2 | g
A [0,208(— + ] .
¢0{L7§5 Vo VOTp
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The expansion is thus seen to be valid for the derived poten-

tial ¢1, the expansion parameters being

2
(mo'rt) << 1, rt/-rp << 1

where

2 _ 2
Wy = 4wn0e /mo .

Collecting our results and expressing ¢O'¢l in volts, we have

64(T) = 600m nOeL2 Z(1 - z)

Lw, 2 .2

_ 0,“L%,,3 _1 4 1
¢1(c) = 6007 noe[(—V—T—) —6—(43 5 L 5 z)
an
1 0 L 2,.3
+ I2n; 3t v, Lo(&" - )]

where ¢ = z/L.

The number density n, is given by
n, =J/avz fo(vz) .

It is related to the current 3o given by
Jg = -J/avz v, fo(vz) esu .

It is more convenient to deal with currents jOA expressed in

amp/cm2 and these are related to n, as follows:
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. _ _ l0e
Joa ~ c Jfavz Va fO(Vz)

where e = 4.8 x 10719 esu. Thus,
0.11]3
ae = Dol
(v/c)
and
v=2v
¥ T

is the mean velocity.
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2.3.1 Summary of Results

The results of the first-order perturbation expansion
analysis may now be assembled. They are summarized below. The

potential ¢(z,t) is given by

6= by + 6p
where
e0m . 2 —
Lw, 2
_ 10w . 2 0 -

$;(z,T) = —_g- Jaml g(r){(;T—.—) $10(8) g(1)

1 L 1 og(t) —+

4+ — =
Jr VTTp g 9T ¢lp(C)}
where
r = z/L
= t
T /Tp
_ 4
Wy = 5.64 x 10" n
m

n, = 6.25 x 10°% 5 /%
v = Vo V2/m
T=%/c (c=3x10t%
VT = 5.93 ET (ET in evV) .
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The pulse shape function g(t) is arbitrary. The normalized

potentials $0, $1e' $1p are defined

Fy(2) = ¢l = 1)

310 (8)

N

c(1 + g3 - 229

t(l - .

(]

§pp(2)

These functions are tabulated in Table 2.3.1 and are plotted in

Figure 2.3.1.

In a similar fashion the electric field is given by

)

il
td
+
=
—

where

B (L,T) = - 5%1 L 9 (D) g (0)
2
Lw
1 . —
El(c,r) = —%1 jAmL g(T){(1a?) g(t) Ele(c)
1 L 13g(t) x

o4
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TABLE 2.3.1

NORMALIZED ZERO AND FIRST ORDER POTENTIALS AS FUNCTIONS
OF THE NORMALIZED DISTANCE ¢ = z/L

| ~

§q (2) 6, (2) EIE(c)
0.0 0.0 0.0
0.09 0.049 -0.05
0.16 0.093 -0.096
0.21 0.127 -0.137
0.24 0.149 -0.168
0.25 0.156 -0.188
0.24 0.149 -0.192
0.21 0.127 -0.179
0.16 0.093 -0.144
0.09 0.049 -0.085
0.0 0.0 0.0
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P

3

_1 2
E (2 =5 (1 + 4¢ 6z7)

_ 1 _ 2
Elp(c) = 7(1 3z7) .

They are tabulated in Table 2.3.2 and plotted in Fig-

ure 2.3.2.

In the results of the analysis presented here it has
been assumed that the energy dependence of emitted electrons

is of the form

£,(e) = ny V277 (r-:/s,I.)B/2 exp - EE- )

Using a different form for fo would simply change the relation

between vy and v.
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TABLE 2.3.2

NORMALIZED ZERO AND FIRST ORDER ELECTRIC FIELDS AS
FUNCTIONS OF THE NORMALIZED DISTANCE ¢ = z/L

E, = 1-2¢ E,, = %(1+4c3—6c2) Eyp = %(1—3;2)
1.0 0.500 0.500
0.8 0.472 0.485
0.6 0.396 0.440
0.4 0.284 0.365
0.2 0.148 0.260
0.0 0.000 0.125

~0.2 -0.148 -0.040
-0.4 ~0.284 ~0.235
~0.6 -0.396 -0.460
~0.8 -0.472 -0.720

-1.0 -0.500 -1.000
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2.3.2 Numerical Example

The theory already described is best illustrated by

means of a simple example.

A current is emitted into a diode space of width L =
8 cm. The emitted current is given by

U8 = dup 9(t/Tp)

where
. _ 2
Jam = 0.5 A/cm
gl{t) = 2.33 Tl/2 e ! ’ T = t/‘rp
T = 1078 secs

The electrons have an energy distribution

n
0 3/2
fo(e) = —3/3 /2/7 € / exp - €/€q
€
T
which peaks at
4
e =g, =4 x 10" eV .

T

We then obtain from the results of the previous section

Vi = 1.19 x 1010 cm/sec

9

¥ = 9.49 x 10 cm/sec

s’
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Wy = 1.02 x 109 sec_1
L/vT = 6.72 x 10_10 sec_1
(Lw,/v )2 = 0.47

o/ 'T ’
1 £ = 0.038 .
Y1 'T'p

The potential in the diode space (0 < ¢ < 1) at a time t = TPF
is then given by

o= ¢g + ¢
where
8 (z,T) = 3.818 x 10 T (2)g(r) - volts
6, (L,7) = -6.362 x 10° g(1)[0.47 T, (2) g(1)
1l 3g(t) —
+ 0.038 5 ot ¢lp(C)] volts .
Quite analogously, the electric field is given by
E = Eo + El
where
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Eo(2,7) = =2400 g(1) E_ ()

g
T3 Elp(c)] g(t).

-[188 g(1) E,_

il

Q|

El(C,T) e(z,') + 15.2

The functions, Eb, Eie’ Elp' are listed in Table 2.3.1 and are
plotted in Figure 2.3.1. In the same way the electric field
can be evaluated, the normalized electric field functions Eb,
Ele’ Elp being listed in Table 2.3.2 and plotted in Figure
2.3.2.

At a time, t = 4 nsecs (1t = 0.4), the pulse height func-
tion g is approximately

g = 0.99

and

We thus have at a position z = 0.16 cm (z = 0.2): .

¢, = 0.16
Ele = 0.093
¢1p = ~0.096
E, = 0.60
E;q = 0.40

1p = 0.44
g = 0.99
1 3g _
g 3’1’ - 0-25 -
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Then the potential has the value

¢ = =5.78 kilovolts

and the electric field is

E = 1.51 kilovolts/cm .
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2.4 THE MONODE PROBLEM IN SGEMP

Up to now the stress in this report has been with re-
gard to the internally generated field problem. However, in
many cases of interest the emission of photoelectrons from
surfaces into free space is important and will be addressed

here.

Consider a surface being subjected to x-ray photons.
The surface is part of a body in free space. On being emitted
the electrons produce a space-charge field which tends to at-
tract them back to the emitting surface--or monode. We are
interested in determining the evolution of the space-charge
field, the distance of maximum separation of the pulse of
electrons from the monode, the time when this occurs and,
indeed, whether the maximum separation is finite. All of
these questions will be examined here, not only in plane ge-
ometry but also in cases where the monode can be more accurately

termed cylindrical or spherical.

2.4.1 Plane Geometry

It is assumed that the electrons are generated by a
square pulse (in time) of x-rays and that they are monoener-
getic. For times t > 0, these electrons, of velocity v0
and carrying a current j(0) are emitted from a plane, con-
ducting wall at z = 0. The equations describing the electron

motion are

an 0 _

-5?‘}' 3z {nv) =0 (2.4.1)
dv _ v v _ _ eE

aE -3t T Vaz T T om (2.4.2)
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where n is the electron density. We also have, from

Maxwell's equations

JE

= T 4mne (2.4.3)
- s _ 3 (am L,  LREY}
div curl B = o (c j + c 3 ) =0
or,
] oE —
a—z" (—41Tnev + 'a—t) =0 . (2.4.4)

The description of the system is completed by the initial con-

ditions
E(z,0) =0
n(z,0) =0 (2.4.5)
v(z,0) =0

and the boundary conditions at z = 0

v(0,t) = Vo

n(0,t) = = j(O)/v0 (2.4.6)

o
and ahead of the beam front, 2z > zf(t)

E(z,t)
n(z,t)

]

Il
o
-

z > zf(t) . (2.4.7)
The equations (2.4.1, 2.4.2, 2.4.4) apply provided the velocity

field is a single-valued function of position. They cease to

apply when charge sheets (particles) cross one another. The
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time at which such crossing occurs will be determined in due

course.

From Egs. (2.4.2), (2.4.6) and (2.4.7) it follows that

-4tenv + %E = 0 . (2.4.8)

From Eqg. (2.4.3), namely
3E/dz = —4mne

we then have

Q

dE

E _
E +V—'—"—0 . (2.4-9)

Z

wl@
el

This means that the electric field is constant along a particle
orbit. The equation of motion (2.4.2) is immediately inte-

grable and yields the velocity and position of a particle at

time t
v=vy o~ (e/mo) E(O,to)(t - to) | (2.4.10)
z = vy (£ - ) - % (e/mg) E(0,tg) (E - t0)2 (2.4.11)

where tO is the time of emission of the particle.

To complete the solution we define the Lagrangian co-

ordinate 2z of the particle by
Z

z = = , - ' ]
noz(z,t) = M n, vot J[ dz' n(z',t) (2.4.12)
0
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The Lagrangian mass constant satisfies
— =+t Vv ee7=20 (2.4.13)

which can be seen by using the continuity equation (2.4.1) and
the definition of M (see Eq. 2.4.12 below).

We now utilize the Lagrangian coordinate z. For fixed

t we have (see Eq. 2.4.12)

n, dz = -n dz (2.4.14)

and the equation (2.4.3) can be written

3E/dz = 4mnge . (2.4.15)

From Eq. (2.4.12), we have

z(0,t) = v.t (2.4.16)

tg = [E(z,t)]/v0 (2.4.17)

is the time at which the particle (currently at position 2z at
time t) was emitted. We thus have, from Eq. (2.4.15), that

E(O,to) = E(z) = 4ﬂn0eE . (2.4.18)

The particle position and velocity can now be written in terms

of the Lagrange coordinate
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e w2z [e-Z
v =V, P (t 7 ) (2.4.19)

0
z “5 = z \? >
0 0
where
41Tn0 e2 1/2
w —
0 m0

is the plasma frequency.

From Eg. (2.4.19), we see that the beam front z =0
moves forward with a constant velocity v, for all t, > 0.
Other particles for which z > 0) may reverse their velocity
[see Eq. (2.4.19)] and eventually crossing of particle orbits N
will take place. The reversal time for any particle is given
by

£, = (vo/wy’2) + @V - | (2.4.22)

The first time t any of the particles reverse velocity

is given by

r,min

atr/aE = 0 (2.4.23)
Thus, we have
tr,min = 2/w0 . (2.4.24)

The corresponding value of z is
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Zoin = Vo %0 ' (2.4.25)

so that, from Eq. (2.4.20) this reversal occurs at the point

Zin = v0/2 0 (2.4.26)

mi 0. -

Having determined the position z and time t

min r,min
when velocity reversal of any particle first occurs, we shall
next turn to examine the gquestion of particle crossing. The
position z of a particle, given in Eq. (2.4.20) has a cubic
dependence on z. For small values of z, 2z depends linearly
on Z. For larger z values the quadratic and cubic depend-
ence produce curvature, inflection and eventually double val-
uedness of the curve z = z(z). When the curve ceases to be
single valued the theory breaks down. At the point of inflec-

tion
9z/%z = 0 , (2.4.27)
322/0Z% = 0 ) (2.4.28)

This marks the onset of particle crossihg. Using the above
conditions in Eq. (2.4.20) yields the values of the time tc
of first crossing at the position zg where it takes place.

These values are

t = £§ ’ (2.4.29)
c w
0
v
z = 6 0 . (2.4.30)
c 9 wq

69



For t < t_s % 1is a single-valued function of 2z. For

t > tC there are several solutions and Eq. (2.4.20) becomes
invalid. However, comparison of the results (2.4.26) and
(2.4.30) shows that the time of the earliest turnaround

t precedes the time t, when particle crossing first

r,min
occurs.

In order to obtain the electron density n(z,t) we
utilize the transformation (2.4.14), whereby

n(z,t) = -

n
0
o2 [(& - 7/vg)” - (@/vg) (& = BV +
(2.4.31)

where 2z = z(z,t) is found by solving Eq. (2.4.20). At the
point of crossing (zc,tc) the electron density becomes in-
finite.

These results might be most easily appreciated with the
help of a numerical example. An emission current density of
10—2 A/cmz, composed primarily of 30 keV electrons (B = 1/3),
gives rise to an electron number density n, at the point of

enission which has the value

0.1 x 1072
Ng = 1 -
3 x 4.8 x 10

With Vo = Rc = 1010 cm/sec and with the plasma frequency, given

by (see Eq. 2.4.21)

wy = 5.6 X 10% nol/‘-2 n 1.4 x 108 sec”t ,

70

-,



the time taken for the first turnaround due to space charge is

tr,min = 14.2 nsec

and the distance at which this occurs is at

z ., = 36 cm .
min ¢

Finally, crossing first occurs at

z =19 cm
c

after a time

tc = 17.4 nsec .
Thus, we see that 14.2 nanoseconds elapse before any electron
is brought to a standstill by the space-charge field. This
turnaround takes place at about 36 cm from the monode. Mean-
while the electrons at the front of the beam will have gone a
distance Vo tr,min
after the first turnaround, bunching and overlapping of particles

= 2 vo/w0 = 142 cm. Approximately 3 nsec

first takes place. This event occurs rather closer to the

monode, at a distance of 19 cm.

The model presented here will become invalid sooner if
the distance of the beam from the monode is comparable with or
larger than the radius of curvature of the monocde. In such
cases, it must be reconsidered in cylindrical or spherical

geometry.
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2.4.2 Cylindrical Geometry

In this case, electrons are emitted normal to the sur-

face of a cylinder of radius r The other conditions of the

0‘
model described already are unchanged. The electrostatic

equation is now written

3

I rE = - 4mne . (2.4.32)

R+

and the equation for electron conservation is

L] L
@l
|

g—t (ne) + (nevr) = 0 . (2.4.33)

Thus, by inserting Eg. (2.4.32) into Eqg. (2.4.33) we find

139 orE orE _
EE?(‘at*" ar)‘o .

Using boundary conditions analogous to the plane geometry case,

we find

d{rE) _ 9(xE) 2 (rE) _
3t = 5T + v T 0 . ) (2.4.34)

In other words, rE 1is a constant along a particle trajectory.
In the plane case above E Wwas a constant. The equation of

motion for an electron is

2 E.r

- - & E(r, ) = - e 2 0 , (2.4.35)
dt 0 0
where EO = E(ro,to) is the electric field at the monode at

the time ¢t the particle was emitted. Rewriting the second
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derivative in the form

the equation of motion can be integrated

. . 2eE .r
rz(r) - r2(r0) = - __HQ_Q 1n (r/ro) ’ (2.4.36)

where

r(ro) =V,
is the emission velocity. Evidently the electrons will even-
tually be stopped and turned around, since it is always pos-—

sible to find a position

2
mv

r =r, expl s/
0 2E0r0

at which the velocity é(r) in Eq. (2.4.36) vanishes. It is
possible to introduce the Lagrangian coordinate r in much
the same way as was done in the plane geometry case (see

Egs. 2.4.12 through 2.4.18). Here the gquantity r is defined

r=r, + vot0 ’ (2.4.37)

where t is the time that the particle (ring) in question is

0
emitted. Thus, for the first particle emitted r is just the

radius of the monode I,. Equation (2.4.36) can be expressed
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in integral form

t r
1
de' = t - t, = dr . (2.4.38)
0 ] 1-/2
t r v 2 _ 2¢e E.r. 1n _
0 0 0 m 00 r
0 0

Analogous to Eq. (2.4.14) we have

norodr = - nrdr (2.4.39)
so that Egq. (2.4.32) can be written

B(rE) = 41rn0er0

or

or

rE(r) = 4wn0er0(r - ro) (2.4.40)

since the electric field before the pulse is initiated (at

r = ro) is zero. On account of the constancy of rE along

a particle trajectory the term on the left of Eq. (2.4.40) can
be replaced by I Eq, where E; = E(0,tg) . Then Eq. (2.4.38)

can be rewritten

dr'
t -t = . (2.4.41)
0 d/f 2 _ 2 = _ ' 1/2
r, (vo 2w0 ro(r ro) ln r /ro)

The point r' where velocity reversal takes place is given by

r' (tr)

r

v = 20 r
0 0 0

0 (r - ro) 1n
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or

v02
r'(t,) = r, exp .
t 0 w.l r. (T -1,
0 0 0

Cconsequently, from Egs. (2.4.37) and (2.4.41), tr is given
by

r-r v 1 v.% u
0 _ 0 f du exp 0
v 2 ,— 172 2 —
0 2m0 (r - ro) (1 - u) 2m0 ro(r - ro)

0
(2.4.42)

The time tr min when reversal of velocity first occurs is de-
r

fined by
atr/af =0 (2.4.43)

and hence, from Eq. (2.4.42), by

v 2 1 v 2 u
1 = 0 j‘ du exp 0

N 2= 2 —1/2 2. =

2w0 (r ro) 0 (1-u) 2w0 ro(r ro)

4 1 2

v v u
3 L w8, S175 eXP 20 = . (2.4.44)
4m0 ro(r-ro) 0 (1-u) Zmo ro(r—ro)

This is a transcendental equation for ¥ and cannot be solved,
in general, in closed form. It is not so difficult to solve

numerically. However, we shall content ourselves with the
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examination of results in the limit -

V02
o = << 1 . (2.4.45)
2 w2 r. (T - xp)
0 0 0

To lowest order in this small quantity only the first term on
the right of Eg. (2.4.44) appears. Waen the integral is ex-
panded and the lowest order term retained the solution to that
equation is

r - ry= vo/m0

Hence, from Eq. (2.4.42) we have

tr,min = 2/“0 . 7
Thus, to the lowest order in the expansion parameter, we Ie-
cover the same result as that obtained in the plane geometry .

case (see Eg. (2.4.24)).

The eguation (2.4.44) can be solved numerically for ar-—
bitrary values of o. As pointed out already, even for large
values of «, no electrons can escape from the space-charge

field. That is, t is always finite.

r,min

2.4.3 Spherical Geometry

In this case the product Er2 is constant along any
particle's trajectory. The equation of motion can be shown,
in a manner analogous to that of the cylindrical and plane .

geometries, to be

ar_ _ &
m

2 00 i (2.4.46)
dt 0 r )
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This may be integrated

2
. 2eE.xr
0 0
(2.4.47)

it

2 2 2 = 1 1
vy© - 2wy Ty (r - ry) (;—-- ;)

0
r is the analogous Lagrangian coordinate--this time in a

where vV, is the velocity of emission at r =r and where

spherical system.

Unlike the plane and cylindrical cases here, there is
a possibility that electrons are not trapped in the space-
charge field. In particular, the velocity of a particle

vanishes at a point T given by

2 -1
r = —
L= |1 (2.4.48)

where we have used Eq. (2.4.37) to define ¥. Thus, for

2
v0/2 wg rot0 > 1 (2.4.49)

there is no solution (no positive solution, that is). Particles
having sufficient energy will thus escape. In fact, all particles

emitted prior to the time

B 2
t0 = v0/2 wy Ty

will escape.
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To take the example cited earlier (vo = 10 cm/sec,

W 1.4 x 1087sec_1), we see that particles emitted prior to

t0 2.5 x 10 /r0 sec will escape. If the radius of curvature
is large (r0 = 100 cm) the trapping begins after only 2.5 nsec.
However, for smaller emitting surfaces a large fraction of the

entire beam emitted may be lost (e.g., for ry = 10 cm in the

n

case of a pulse of duration 1 to 2 shakes).

It is possible to pursue an analysis similar to that
presented for the plane and cylindrical geometries. Indeed,
the integrals are more tractable than in the cylindrical case.

However, work on this topic will be pursued in a later effort.

2.4.4 Summary of Monode Analysis

The work discussed here is applicable to the problem of
sheath formation around satellites in free space. Using an
order of magnitude estimate of the conversion efficiency n

of x-ray photons into photoelectrons we have

n o 1078 coulombs/calorie
1078 (coul/cmz/sec)/(cal/cmz/sec)
1 amp/cmz/(cal/cmz)

if the pulse persists for 10_8 seconds. A fluence level of
10_4 cal/cm2 will thus lead to an emission current in the range
of 1074 A/cmz. The space-charge created by the emitted elec-
trons will cause them to turn back toward the monode after a
finite length of time. Repeating the numerical example pre-
sented in the plane geometry section, we see that the number
density is n, ~v 8 x lO4 cm_3 if the emitted electrons have a

velocity B8c = 7.5 x lO9 cm/sec. The resulting plasma frequency

(=]

is
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wy v 1.6 x 107 sec™? )

Thus, turnaround first occurs at

-7
tr,min v 1.25 x 10 sec

at a distance of approximately 2.3 meters. This gives an in-
dication of the size of the plasma sheath. The above estimate
of photon conversion efficiency n 1is very crude. In general,
it depends on the photon spectrum and the nature of the emitting
material. If the radius of curvature of the emitting surface
is comparable with or smaller than this distance the treatment
given in the sections on cylindrical and spherical geometries
must be used. If the surface from this distance away appears
spherical, then the electrons may not be trapped by the space
charge. In the case cited here, electrons emitted at a time

t after the initiation of the pulse will escape if (see Eg.

0
2.4.49)

7.5 x 10°

14
5 x 10 rot0

where T, is the radius of curvature of the surface. Taking

100 cm, it is clear that the electrons emitted prior to
7

Lo

t0 = 1.5 x 10

this means that none will be retained by the space charge.

sec will be lost. In most cases of interest,

Tt must be stressed however, that the effects of finite
pulse width, nonmonoenergetic electrons and angular dependence
of the emission have not been taken into account. Nevertheless,
for the case just cited, it is doubtful whether these will make

the analysis essentially invalid.
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3. IEMP PINCH EFFECT

3.1 BEAM PINCH

When a strong current I flows, it creates a magnetic

field at radial position r

By (r) = =2 1(x) (3.1)

where B is in gauss and I is in amperes. The electrons pro-
ducing this current will tend to be deflected by this field
and the radius of curvature of the electrons is

_ 1 2 1/2
where € = (y - 1)e0 is the kinetic energy and €9 = m002 =
5.1 x lO5 eV is the electron rest energy. Thus,
r o= By 5.1 x 105 (3.3)
c 300 B9 - *

where

B=§, ve = (1 -8 ] (3.4)

The beam is pinched fully if the radius of curvature of the
motion is equal to that of the beam. Thus, from Equations 3.1

and 3.2 the critical current I, is given by

I, = 8.5 By kAmps . (3.5)
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This current I will be defined as the current necessary to
deflect an electron onto the axis of the beam. As Equation 3.5
indicates the critical current is proportional to the velocity
(Bc) of the electrons. Thus, at first sight, the nonrelativ-
istic electron beams generally encountered in IEMP environments,
would appear to provide good candidates for pinching. More-
over, a total current of 5 to 10 kA is not lmp0551b1y large.

For instance, a surface of one square meter (= 104 cm ), emit-
ting a current density of only 1 ampere/cm2 would provide a

sufficiently large total current.

The effect of pinch on an IEMP environment could be im-
portant. Let us consider the following example. The magnetic

field Be (gauss) associated with a current I (amps) carried by

a beam of radius R is

_ 0.21
BG(R) = "R .

The time rate of change of B is due to a change in both the

total current as well as the radius. Thus,

. _0.2 s .
B, = —ﬁf-(I IR/R) .

If I(t) = Im t/tr, we then have
.« 0.2 |R|t
B, = Rt Im(l + -y )

since R < 0 when pinching takes place. An estimate of the
second term can be obtained by assuming that pinching produces

a minimum beam radius at the end of the current rise and that
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R~n (R - RO)/tr ~ —Ro/tr if R, >> R where Ry 18 the initial

radius. Then, we have

0.2 I

m
6 e 1t
rr

e
[

WI O'JU
rl'lﬂ'

For a moderately strong pinch R v 0.2 R, and ée is enhanced
six times. Consider a situation in which R0 = 50 cm, R = 10 cm,
I, = 104 amp, tr = 10 nsec. This gives rise to the magnetic

field rate of change

B

g ™ 120 gauss/nsec .

The electric field induced by the changing magnetic field is

given by

E"\:ZR0

x 1078 B=2.4x 10% volts/em .
In addition to the large induced field created by the pinch

the current density is enhanced by pinching to a value of

4 2

0 R0
(g
TR

~ 300 A/cm® .

=

|

Y

o N

it is of interest to see how these values of E and j compare
with those possible in a nonpinching environment. The current
density enhancement, as already indicated, is a factor of
(RO/R)2 n 25, The maximum electric field possible outside of
the pinch environment is formed at very low pressures by the
space charge. Under the conditions indicated above, that is,

with an emitted current density of 104/nR§ v 1.3 am.p/cm2 the
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maximum electric field possible in a system of linear dimen-

sion L is, approximately
E ~ 1207 x 1.3 (L/B8) volts/cm

if the electrons have a velocity gc. For 30 keV electrons,
B ~ 1/3 and hence

E~1l.3 X lO3 I, volts/cm .

The system must be less than L = 8 cm in order that the elec-
trons are not heavily space-charge limited, in which case the
maximum space-charge is also limited and the maximum field
possible is not given by the result above. Thus, the maximum
field is about 1.2 X 104 volts/cm which is comparable with,
but less than, the inductive field possible in the pinching

case cited earlier.

3.2 PINCHING IN VACUO

There are conditions (other than those described in the
previous section) to be satisfied for pinching to take place.
Most important of these is the self electric field of the beam.
An electron is subject to the accelerating force given by

F=-e+Z<x3B) . (3.6)

Q<

In the treatment given above only the magnetic force was taken

into account.

At the very low gas densities frequently encountered in
cases of interest the electric field arises from the space-

charge p = -ne of the electron beam. That is,
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dE/dz = -4mne ,
or,

E = =4mnel

= ~0.4 1L

where j is the emitted current density and Bc is the electron
velocity. The magnetic field, as already indicated, is given
by

0.2 I(R)

B(R) = R

0.47jR .

Thus, in Equation 3.6 the magnetic and electric forces, on an

electron (FB, F_ respectively) are related by the ratio

E

o

0.47jRB K%T-j—f

‘1)

(3.7)

]
™
(o) e

Thus, in broad, short systems we expect pinching to be import-
ant provided the electrons are sufficiently energetic. On
account of the factor B2 it is now clear that the condition
(3.5) is misleading since it suggested that low energy electron

beam pinched most readily.

Thus, for 80 keV electrons (B = 1/2) the magnetic force
is comparable with the electric field in geometries for which
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the aspect ratio R/L is of order unity. However, for lower
energies (g = 30 kev, B Vv 1/3) the aspect ratio must be rather
larger than unity. As & result, the effect of pinching is not
expected to pe dominant at very low pressures where space

charge dominates.

3.3 PINCHING AT LOW PRESSURES

The presence Of air permits neutralization of the space
charge to take place. The primary electrons produce ioniza-
tion and, while the heavy ions remain immobile in the space
charge field the secondaries are driven out of such regions of
high space charge, thus leaving the positive jons to neutralize
the primary electrons. Of course, the secondaries themselves
may cause jonization. However, we shall look only at the "low"
pressure regime where this effect is negligible. The condi-

tions under which this situation obtains will now be examined.

At "low" densities secondaries have long ranges, and,
if strong local electric fields exist, it can be assumed they
will undergo acceleration. Ranges increase with increasing
energy, so it is likely that secondaries will escape to the
walls, forming very few tertiaries on the way. Thus the number
density of ion pairs created can be estiméted from the primary
ionization formula of Bethe(3’3'1) and the rate of neutraliza-
tion will be given by multiplying the ratio of ion production

by the fraction of secondaries that escape.

To examine the 1ikelihood of escape we can look at the
stopping power. From the tabulation of Nelms (3.3.2) we find
that for a 10 keV electron the stopping power (-de/dx) has the
value of 19.5 MeV/gm/cm?. With an NTP air density of 1.2 X
1073 gm/cm® this corresponds to about 3 ev/cm at 0.1 torr
(= 1/7600 atmospheres) . This loss in energy is very small
compared with the local field strengths to be expected in any
SGEMP environment of interest. Thus, at such densities ener-
getic secondaries will clearly escape and will create few

tertiaries.
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Quantitative estimates of energy loss rates for lower
energy electrons are not readily available, but if we extrapo-
late the stopping power formula down to 1 keV we get

- 3 = 100 MeV/gm/cm?

or about 13 eV/cm, still a reasonably small number. Below
1000 eV, loss rates tend to flatten out (and ultimately de-
crease) because fewer electrons per atom are ionizable and
because cross sections tend to peak. If we use a cross sec-
tion of 1.5 x 10718
tion of Ne at 100 eV) and an average energy transfer of about

(comparable to the ionization cross sec-

100 eV per "collision" we get

MeV

= 150 5
gm/cm

|
Y

as an estimate of the stopping power in the region around 100
eV electron energy. This corresponds to about 24 eV/cm at
0.1 torr.

On the basis of these rather crude estimates we see
that at 0.1 torr all the secondaries escape if local field
strengths are in excess of 100 V/cm or so. At about 10 V/cm
substantial numbers of secondaries will not escape directly
but will diffuse to the walls. Thus, for most cases of inte-
rest the streaming or runaway character of secondary electrons
will dominate the diffusion-type behavior. Finally, if we
use the data of McClure(3'3'3) for neon to estimate the number
of ion pairs/cm created in air at 0.1 torr we obtain the

following results.,
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TABLE 3.3.1

Primary Energy (eV) Electron Produced (per cm)
5 x 10° .006
1 x 10% .021
1 x 103 .105
1 x 10° .263

Having indicated what is meant by the low pressure OI
secondary—-escape regime we can now proceed to estimate the
time for neutralization to occur. A primary beam, with an
average electron number density ng and with an average veloc-
ity Bc moves through a gas containing ng, atoms/cm®. In a time

t the beam creates
anOGBct

gsecondary electrons. Here o is the jonization cross section
for primaries with velocity Bc. &S described above, only the
formation of secondaries will be considered. Once formed,

they escape from the region of the space-charge and that region
becomes neutral when the number of secondaries produced is
equal to the beam density. That is, for a constant beam density

Ngo neutralization takes place in a time tN given by

o
n

g = Dpoofty

or
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The quantity oBc can be calculated from the Bethe formula-

'on(3'3'l).

ti In air we have

il

A(V{I+x)/x nx - 1) + C(—l—i—ﬁg—) '
VR (I+X)

oRc

where
A=1.26 x 1072

c=1.08 x 1078

X = Y2 -1= s/mocz(z + eo/mocz)

e = kinetic energy {(in eV)

moc2 = 5,1 x 105 evV .

In Table 3.3.2 the quantity oBc is tabulated as a func-
tion of energy.

TABLE 3.3.2

Kinetic Energy (eV) oBc (cm3/sed)
4 x 10° 2.9 x 107°

5 x 10% 2.6 x 1078

6 x 10° 2.4 x 10°°

8 x 10% 2.2 x 1078

1 x 10° 2.0 x 1078

1.5 x 10° 1.7 x 1078

2 x 10° 1.5 x 1078

The neutralization time t is plotted as a function of the air
gas density (nO, cmﬂ3) for several values of the kinetic energy
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of the primaries in Figure 3.3.1. As an example, we consider
a pulse with a duration of 2 shakes (2 x 10_8 secs). With
pressures less than 0.05 torr only partial neutralization of
the space charge is possible, even for 40 keV electrons.

The estimate of the neutralization time is subject to
several sources of error. For instance; (a) the pulse is not
constant in time — a triangular pulse could increase the esti-
mate by as much as a factor of 2; (b) the slowing of the primary
electrons in the partially neutralized space charge field would
tend to enhance ionization and hence lead to a decrease in tN;
(¢) the drift velocity of the secondaries decreases as neu-
trality is approached, thus leading to an increase in .-

3.4 PINCH CONDITIONS

At gas densities such that space charge neutrality can
be achieved for the primary beam, pinching will take place if
the total current flowing, I, is comparable with or greater
than 8.5 By kA (see Eq. (3.5)). As was pointed out earlier
this constraint is quite possible in IEMP situations. However,
as it stands, it is oversimplistic. Impiicit in its deriva-
tion is the assumption that all the electrons are moving paral-
lel to the direction of the current beam. This is unlikely
either on account of curvature of the emitting surface or the
nearly isotropic angular emission frequently encountered.

The effect of angular spreading of the emitted beam
electrons can have important consequences for beam pinching.
The numerical treatment described later in this report can
be used to address this question, although this has not been
carried out in the work reported here. The results of a

simple fluid beam model are illustrated in Figure 3.4.1.
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Figure 3.4.1 Showing the influence of the initial emission
angle 6 on the pinching distance. Rg is the
initial beam radius. The current flowing is
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In order to achieve space charge neutrality, finite gas
pressure in excess of 0.05 torr is necessary for pulses with a
2 shake duration. Depending on the energies and current density
of the primary electrons, pressures much greater than 1 - 10
torr can provide conditions which lead to gas breakdown. Thus,
pressures between 0.1 - 1 torr are most favorable to pinch con-
ditions although they do not guarantee that pinching will occur.
Sufficient conditions are provided by constraints on the total
current flowing and on the degree of spreading of the beam.

These features are not amenable to simple analysis. To
illustrate how pinching might occur in representative situa-
tions a computer code was developed to investigate the effect.
A description of the code is given in the next section. Brief-
ly, it solves Poisson's equation

Vzw = 4mne

from which is obtained the electric field
E=-vp .
It also calculates the magnetic field from Ampere's Law
§B - a8 = 0.am I
where I is the current (in amperes) and ds is an element of

the current loop.

Two sample calculations were performed. In the first

of these a current of uniform beam density 3} 5 A/cm is in-
jected from the z = 0 end of a right cylinder. The length L
of the cylinder is 16 cm and the radius R = 16 cm also. The

injected particles have an energy € = 100 kevV (B ~ 0.5). 1In
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Figures 3.4.2 - 3.4.5 the progress of the beam in the tank is
shown. By the time it has crossed the tank (t ~ 1 nsec) some
pinching of the beam is apparent. In this case strong pinching
is not expected since (see Equation 3.7) the ratio B R/L is
much less than unity (where R is the beam radius) and because
the total current I ~ 250 A is so low. It is clear that (see
Figures 3.4.4 and 3.4.5) neutralization of the beam is also
important for pinching to take place. In these figures the
presence of the space charge field is still evident as elec-
trons are turned back. If the same calculation were éarried
out later in time greater neutralization would be achieved and

the constriction would be more pronounced.

In the second calculation a more space-charge neutral-
ized situation is considered. With quasi-neutrality taking
place in less than a nanosecond and with a much broader beam
carrying a larger total current the pinch effect is much more
evident (see Figures 3.4.6 - 3.4.9). Here again the electrons
emitted have an energy of 100 keV. The current density is 10
A/cm? and the total emitted current is 1.77 kiloamps. The
strength of the pinch is determined by (a) the ratio of the
total current I to the critical current I, (see Equation 3.5)
and (b) by the rate at which secondary electrons are created
to neutralize the higher charge densities that occur near the

neck of the pinch.

As regards {(a) the ratio I/Ic v 0.21 so that the
pinching, even if the space-charge were totally neutralized,
would not be expected to be complete. As regards (b), the
potential contours show that even though the space-charge
field is somewhat less than it would be under vacuum condi-
tions it is still fairly large (V60 kV) primarily because the
tank is large (L = 32 cm). However it is not sufficiently

strong to slow many electrons appreciably.

Conditions such as this might be encountered in simula-

tion experiments where direct beam injection takes place. At
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Figure 3.4.7 Field potential contours at t = 3 nsec, ranging
from -5 kV to -70 kV.
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Figure 3.4.9 Field potential contours at t = 9 nsec, rang-
ing from -5 kV to =60 kV.
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the time of writing this report, work is in progress on electron
transport at finite pressures under conditions where appre-
ciable beam pinching is important.

While finite gas pressure enhances the self-pinching
of a beam it is of greater importance for SGEMP applications
to examine the weaker pinching that occurs under vacuum Or low

pressure conditions. It is for such cases that the code de-

veloped here is useful.
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4., COMPUTATIONAL DEVELOPMENT

4.1 FAST-RUNNING ELECTRODYNAMIC (FRED) CODES

Much of the basic IEMP phenomenology is amenable to
analytic treatment. However, the analysis of real, as dis-
tinct from idealized, problems requires numerical treatment.
Existing IEMP computer codes deal with the generation of fields
in simple 1-D and 2-D cavities. During the present contract
period a family of computer codes has been developed which
are (1) fast, (2) modular and (3) applicable, in principle,

to arbitrary 2-D geometries.

A description of the theory underlying the FRED (Fast-
Running-Electro-Dynamic) series of codes is presented in the
following section. Some effort has been expended toward un-
derstanding the physics relevant to a variety of IEMP field
generation problems instead of developing a generalized IEMP
code which would be cumbersome and slow running. The result
of this work has culminated in a series of codes which are,
at once, much more rapid computationally than even the simpler
electrostatic IEMP codes currently in use and, in addition,
are less cumbersome that the fully electromagnetic versions.

These codes have been applied to a variety of test
problems {(see Chapters 3 and 5), such as the pinch effect at
finite gas pressures and the transmission of space-charge domi-
nated beams in evacuated cavities. Little progress can be
made analytically in understanding these problems as the beam
transport is two dimensional and strongly coupled to the

self-generated fields.

103



4.2 ELECTROMAGNETIC FIELD MODELS

For many situations relevant to SGEMP the electric
field is longitudinal (curl free) and may be calculated from

>
v . Ez = 4mp

where p 1is the charge density. This is valid whenever the
length scale of the system is small in comparison with the
distance Bctr travelled by electrons {with velocity Bc¢) in

a time t. characteristic of the pulse that creates the elec-
trons. Thus, for 30 keV electrons (B ~ 1/3) and with a pulse
time t_ v 1078 sec, it is apparent that for systems smaller
than 1 meter the longitudinal field model constitutes a reason-

able approximation.

For systems larger than this or for less energetic elec-
trons errors may, in principle, be appreciable. However, the
argument given above requires some qualification if space-
charge limiting and turn-around of electron trajectories are
important. In most SGEMP situations this is the case and
there the length scale of the system is characterized by the
distance traveled by the electrons from the emitting surface
to the turn-around point. Thus, the longitudinal field model
has a wider range of application than that indicated above.

The generation of magnetic fields is less frequently
discussed in SGEMP problems. Provided the transverse elec-
tric fields are negligible the magnetic fields are calculated

from
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It is important to retain the longitudinal displacement cur-
rent in the above displacement since it guarantees charge

conservation

|

o
+
<]

Its neglect introduces spurious charge fluctuations in SGEMP

problems as currents are not divergence-free, in general.

To summarize, the equations to be solved are:

Poisson's Equation

v2y = -dmp (4.1)

from which we obtain the longitudinal electric field

E, = -V ,

and Ampere's Law

Vv x B = (4n/c) Et (4.2)

where

J, =3 - (3/3%) V¥

is the divergence-free part of the net current (conduction +

longitudinal displacement).
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Finally, if the transverse electric field Et is not
negligible, we must solve
Faraday's Law

vV x B, = - (1/c) (3B/3¢t) .

These equations comprise the full set of Maxwell's equations
if the transverse displacement current can be neglected. Gen-
erally speaking, many SGEMP problems involve knowing only the
longitudinal field El' However, it is not consistent to
move electrons in the field Ez alone since the equation of

motion {nonrelativistic) is

The ratio of the electric and magnetic forces in this equation
can be shown to be of order 82 times a geometrical factor.
Thus, if the electrons are more energetic than ~30 kev (B ~ 1/3)
then the magnetic forces may be appreciable in certain geometries

{(see Chapter 3).

In the work performed the electromagnetic models have
been based on:

(a) Poisson's equation alone, i.e., only longitudinal
electric field acceleration on the electrons.

(b) Poisson's equation and the divergence-free current
form of Ampere's Law, i.e., inclusion of magnetic forces. It
should also be stated that if we are interested in calculating
currents flowing in struts of an assembly then this model should
be used for consistency.

(c) Inclusion of Faraday's Law has not yet been car-

ried out but should be considered in future work.
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In the next three sections the emphasis is entirely
upon the model (a) above, as applied to complex two-
dimensional geometries. However, the method described ap-
plies to model (b) also.

4.3 POSING THE PROBLEM

Given an initial source function, the electric and
magnetic fields that influence electron motion can be found
from the electron spatial and velocity distributions. For
many cases the influence of magnetic fields on the electron
motion can be neglected, and the problem reduces to solving
the following equations:

Vzw = -47p ‘ (4.3)

=F =qE = q (-Vy) : (4.4)

Equation (4.3) is Poisson's equation and must be solved with
the appropriate boundary conditions which, for conducting

walls, is

=
Il
o

on the walls. Equation (4.4) is just Newton's second law for
charged particles in an electric field. For the case in point
the particle motion has only the added regquirement that par-
ticles disappear when they hit the wall. However, the calcula-
tion of the fields can be extremely tedious if proper care is
not taken to organize the problem efficiently. Below we de-
scribe a procedure that would enable one to calculate fields
within an arbitrarily shaped two-dimensional region with either
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cylindrical or Cartesian symmetry. This procedure in gen-
eral would offer greater spatial resolution and greater
computational speed than the currently used Green's Func-

(4.1) as well as having

tion technique of dePlomb and Woods
the added advantage of being able to treat cavities of ar-
bitrary {(noncylindrical or rectangular) shapes. This in-

cludes conducting objects within the cavity.

4.4 CALCULATION OF THE POTENTIAL

When setting up a problem, we construct a rectangular
grid that entirely contains the region of interest. When
finding the charge density on the grid, each particle's
charge is shared among the cells surrounding the particle's
position as if the particle was a finite rectangular charge

(4.2)

cloud. This is the usual cloud-in-cell model used to

minimize finite grid noise and "shot" noise due to the small

number of simulation particles compared with a real system.(4’3)

There are extremely fast transform and direct methods
for solving potentials with periodic or regular zero boundary
conditions, e.g., that w(rmax) =0 on a cylinder.(4'4) For
example, to solve the potential on a 32 X 32 mesh with per-
iodic boundary conditions takes about 0.5 seconds of Univac

1108 time.

The solution to the problems proceeds as follows. It
is a well-known mathematical device to replace boundary con-

ditions on the solution of Poisson's equation

2. _ _
vy 41Tpp (4.5)

by introducing a surface layer of charge py in the boundary
of the system under consideration. Here pP is the charge
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density in the system. Then, instead of solving Eq. {4.5)
subject to ordinary conducting boundary conditions, we solve

the equation:

v3y = -4m (o, + pp) (4.6)

subject to the boundary conditions that are the grid coordi-
nate system. By "grid boundary conditions" we mean those
conditions that permit the simplest solution of Poisson's
equations. Thus, with rectangular coordinates, periodic
boundary conditions are appropriate. In cylindrical (r,z)
coordinates the conditions are that ¢ be periodic with
respect to 2z and that ¢y = 0 at r =R and Y'(r) =0

at r = 0 where r = R(z) is the radial boundary surface.
The actual choice of the grid boundary conditions is arbi-
trary, but those described here permit use of the Fast

(4.5) on at least one of the coordinates [on

Fourier method
z in the (r,z) system and on either .y or 2z in the rec-
tangular system]. The boundary charge density Py will

depend on the actual conditions chosen.

The latter is calculated as follows. If we solve

2
v = -4 4.7
Yo mon (4.7)

subject to the grid boundary conditions, we then have the
potential along the boundary. That is, in r,z coordinates

v [B(r,2)] = g (8)

P

where S is the curve defining the boundary. For computa-

tional purposes (8) is evaluated at a number of points
P b
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along the boundary and so is stored as a column vector and
denoted by $b' In the same way, the boundary charge
density is denoted by Sb'

The remaining part of the problem is to calculate ;b'
This is done using the capacitance method of Hockney.(4'4)
We place an arbitrary charge distribution, Ea, on the bound-
ary. Then the potential distribution on the boundary, $a’

that results from the surface charge is given by
A B, =7, (4.8)

where A is obtained either analytically in simple geometries
or numerically in an arbitrary geometry. It results from a
simple superposition of the Coulomb fields of individual
charges on the boundary. The inverse of A is termed the

capacitance matrix (, where

c=At . : (4.9)
The capacitance matrix is purely a function of geometry and
is calculated only once. Thus, having calculated the bound-

ary potential $b from Eq. (4.5) we obtain the effective
boundary charge distribution Eb from

p.=C b)) (4.10)

Finally, we calculate the total charge density 0. given by

P =, + Py . (4.11)
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The circle is now closed and the potential ¢ is found by
solving Eq. (4.6) subject to the grid boundary conditions.

The basic idea behind the method outlined here is to
solve Eq. (4.6) subject to simple grid boundary conditions
rather than to solve Eq. (4.5) with the ordinary conducting
boundary conditions. The reason for this is numerical ef-
ficiency. Using the Fast Fourier Method for linear coordi-
nates and finite differences for the curvilinear coordinate

renders the computation very rapid.

Thus, a cycle of computation involves (a) computing
the potential, given the particle charge distribution
(Eq. 4.3) and (b) moving the particles in accordance with
the new charge distribution (Eq. 4.4). The potential is
found by first solving Eq. (4.7) (using grid boundary con-
ditions) for the boundary potential density, wb' created by
the particle charge distribution pp' by then computing the
boundary charge distribution, Pp using the capacitance
matrix, and finally by solving the Poisson equation (4.6)
using the grid boundary conditions. Thus, two solutions of
Poisson's equations are involved in each cycle, but as al-

ready indicated they are performed very rapidly.

The particle-moving part of the problem is straight-
forward. However, for efficiency it is important to avail
of a variety of computational techniques--binary arithmetic,
parallel processing and assembler routines for operations

that are performed very frequently.

4.5 COMPARISON WITH CURRENT METHODS

The method described here for calculating the elec-
tric field and potential and derived guantities (such as

transmission factor and magnetic field) is new in the
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IFMP/SGEMP area. It enables calculations to be performed
in realistic geometries. Such calculations would form part

of future work in this area.

In addition, the method is superior to other currently
available schemes (such as those of the TEDIEM codes) for
simple geometries. In Ref. 4.1 it is stated that to per-
form a calculation with a mesh of 20 x 20 points requires
25 minutes of Univac 1108 time to set up a 4-D table of the

Green's Function G(r,r',z,z'). Each cycle then involves the
integral
R L
P(r,z) = 4m Jf ar' r' Jr dz' p(r',z') Glr,r',z,2')
0 0

where L, R are the axial and radial dimensions, respectively.

While this integral appears to involve a similar number of
operations as the method described here, the Fast Fourier
Transform method needs only operations proportional to

mn log2 n to solve for the potential with g 2radial mesh
points and n axial points as opposed to mn for the
Green's Function technique. This will show up as a signifi-
cant time savings when the number of cells is very large.
Since, in addition, performing the integral (in TEDIEM) re-
quires very much less time (by several orders of magnitude)
than the preparation of Green's Function tables, it is clear
that the method proposed here is decidedly faster than the
TEDIEM or other schemes. The advantage of the new method
becomes increasingly superior for larger grids since the
size of the Green's Function table grows as the fourth power

of the linear number of cells.
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Our method can be applied to complicated geometries.
Consider the situation illustrated in Figure 4.1. There, oOn
a 32 x 64 mesh a considerable amount of detail is possible.
To solve for the potential on such a large mesh about two sec-
onds of Univac 1108 time is involved. This must be done
twice per cycle. Add to this one second (or rather less) to
move particles (about 100 usec per particle with efficient
coding) and to perform the matrix multiplication (Eqg. 4.10).
It is clear that even with such a large mesh and with several
thousand particles a calculation of over 100 cycles takes on
the order of 10 minutes or less of 1108 time.

It is interesting to note that the Green's Function
scheme, which cannot be easily applied to such a complex ge-
ometry, would require in addition to a comparable time for
performing the calculation, a set-up time for the Green's

Function of order

32 x 64
20 x 20

2
) x 25 minutes .

or approximately 1l hours!

4.6 SUMMARY OF CURRENT CAPABILITY

The current capability includes (a) two-dimensional
electrostatic code in (r,z) geometry (FRED/E) and (b) two-
dimensional nonradiative electromagnetic code at zero or
finite gas pressures in (r,z) geometry (MANFRED) . These
codes are based on fast numerical techniques, as described
already. This method has the following advantages over
other IEMP/SGEMP codes.
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(L) It is much faster (by an order of magnitude in
typical problems) and the relative speed increases as the
size of the problem grows. The reason for this is the
smaller number of operations required with the Fast Fourier

Technique.

(2) It is applicable to a general two-dimensional

geometry of arbitrary shape.

(3) The electrical properties of the problem might
be those of a conductor (uniform potential on the walls), a
dielectric (nonuniform potential) or a section of the bound-

ary might be a vacuum.

(4 It is applicable to both electrostatic and non-

radiative electromagnetic field problems.

it should be emphasized, however, that so far the code
development has not led to implementing the generality indi-

cated in points 2 to 4 above.
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5. BEAM INJECTION CALCULATIONS

The electrostatic code FRED/E was used to calculate
the current transmitted and the fields produced by a beam of
electrons injected into a cavity. The experiments considered

were performed at the SPI facility by Osborn (unpublished) .

A beam of electrons is injected through a fine wire
mesh anode into a chamber of which the pertinent dimensions
are
14 cm
15.24 cm (6 in.)

Anode--Faraday cup separation L

Cathode (i.e., beam) radius RB

The chamber cross section is octagonal with the centers of

opposite forces separated by a distance

d = 45.72 cm (18 in.)

For the purposes of the calculation the octagonal
cross section was replaced by a circle of the same area,
that is, the average radius R of the cavity is given by

nRz = 8(d/2)2 tan m/8

or

R = 24.11 cm

The electrons injected into the cavity (Figure 5.1)
are created in the anode-cathode space (not shown) of the
electron beam machine. The voltage VD(t) and current
ID(t) in that region are plotted as functions of time in
Figures 5.2, and 5.3, respectively. Much of that current
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R COMPUTATION PLANE

Figure 5.1 Showing the (R,Z) geometry and the
computation plane used in calculations.
Electrons are injected into the 2 =0
plane as a beam of radius Rg. The
transmitted current is received at the
exit face Z =L on Faraday Cups.
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Figure 5.2 SPI diode voltage, VD.
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Figure 5.3 SPI diode current, ID.
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is not transmitted by the grid. The beam current injected

Iinj(t) is measured separately (Figure 5.4).

The following assumptions were made in connection

with the electron emission:

1. The energy € (in volts) of the electrons

emitted is given by

e(t) = vD(t) - LD (dID/dt)

where the diode inductance LD is taken to have the value of

20 nanohenries.

2. The injected current I is assumed to be ini-

inj
tiated 5 nanoseconds after the beginning of the diode pulse

(Figure 5.1, 5.2).

3. At any instant t the electrons injected into the

cavity are monoenergetic with energy e(t).

4. The injected current density ‘jinj(t) is uniform

over the emitting surface and is given by
5. (&) = I._.(t)/mRg°
inj inj B )

5. The electrons are injected normal to the emitting

surface.

In the above assumptions no account is taken of the loss
in energy of electrons in passing through the mylar wire mesh.
Also, no account is taken of the beam transport in the diode
region which, in the experiment, contained gas at finite pres-

sure.
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Other assumptions include:

6. The anode mesh and the other walls of the cavity

are assumed grounded.
7. The cavity is evacuated.
8. Electrons, once they strike a wall, are absorbed.
9. The electrons are treated classically.

10. The chamber, with octagonal cross section, is re-
placed by a cylinder with circular cross section. Also, the
recess at the receiving end of the cavity (not shown in

Figure 5.1) is not taken into account.

With these assumptions three calculations were per-
formed (termed I, II and III). In I a mesh of 16 x 16 cells
was used and 10 particles were injected per time-step
(At = 2.5 x 107
times as many particles were injected (so that the average

sec). In II the same mesh was used but three

charge per particle is 3 times smaller). Comparison of these
two calculations indicates the degree of approximation associ-
atea with the number of particles followed. Finally, in III

a finer 32 x 32 mesh was used (At = 1.25 x 10711
40 particles were injected per cycle. This resulted in hav-

sec) and

ing as many as 4000 particles present in the mesh at any time.

The results of these calculations are shown in Fig-

ure 5.5. They are quite similar except near the tail of the
pulse where fluctuations in the transmitted current in I were
greater than either II or III. The rise of the pulse is

similar in all three calculations. The peak current is slightly
less in III than in I or II. The abrupt fall off in current
which follows the onset of space-charge limiting (at approxi-
mately 19 nandseconds) differs slightly in the three calculations
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with the result of III being intermediate between the two

others.

The dynamics of the beam transmission are illustrated
in Figures 5.6 through 5.8. Before the onset of space-
charge limiting the flow is laminar with some radial expan-
sion taking place. The maximum potential at this time
(~ 16 nsec) is approximately 65 kV and this is less than the
energy of the electrons being injected. At -~ 19 nsec the
energy of the electrons falls below this potential and space-
charge limiting ensues. By 31.9 nsec (Figures 5.7, 5.8) the
current injected is very low and the maximum potential is no
greater than 32 kv. However, the emitted electron energy is
rather less than this and the transmission is limited by

space-charge.
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Figure 5.6

Electron flow after 16 nsec. The elec-
trons between Z =4 and Z =7 cm
are moving most slowly and are most
densely bunched.
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Figure 5.7 Electron flow after 31.9 nsec. The
transmission is still limited by space
charge.
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