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SECTION 1
INTRODUCTION

Recently there has been increased concern about the potential vul-
nerability of satellite systems to system generated electromagnetic pulse
(SGEMP) effects. When a satellite is exposed to an incident X-ray pulse,
photoelectrons are backscattered from the surface of the satellite, result-
ing in skin currents flowing on the surface and electromagnetic fields
generated in the nearby space. Photons will also create electrons inside

any satellite cavities and deposit charge directly on cables (IEMP effects).

In this report we will concern ourselves only with the effects of
electrons ejected external to a satellite. The satellite itself will be
modeled by a perfectly conducting sphere and the resulting current and
charge densities on the surface of the sphere will be calculated. Such cal-
culations are obviously idealized; real satellites are not spheres and vulner-
ability depends on specific circuit response rather than skin currents
alone. However, our goal is to develop tools useful for SGEMP analysis
rather than to carry out an actual vulnerability assessment. Thus we are
trying to gain an understanding of the basic phenomena of SGEMP and such
parameters as skin currents have been useful indicators of vulnerability

problems for other weapon effects (e.g., EMP) .

Thus the basic problem being considered is a metallic sphere
being illuminated by a planar X-ray source. The X rays interact with the
sphere producing backscattered electrons. (See Reference 1 for a simple
model of photoelectron production.) These moving electrons form a spatial

current density, which in turn creates electromagnetic fields. The
3



motion of the electrons is then affected by the electromagnetic fields and
under some conditions many of the emitted electrons will be pulled back to

the sphere from which they were emitted.

For low X-ray fluences, however, the resulting fields are small
and have little effect on subsequent electron motion. Therefore, it is
possible to treat the problem non-self-consistently; i.e., once electrons
have been emitted they are assumed to move with a constant velocity not
perturbed by the resultant fields. A method for calculating the spatial
current density outside an emitting sphere is described in Reference 2.
All skin current calculations described in this report are based on the

low-fluence, non-self-consistent assumption.

In the following sections of the report two methods of calculat-
ing the skin currents are described. The first method assumes that the
photoelectron interaction time—the time photoelectrons are effective in
producing skin currents—is long compared to the periods of oscil-
lation of the system. The fields may then be treated in accord with electro-
statics. It is not necessary to calculate the fields external to the
satellite with this method—only one one-dimensional integration is required—
so calculations are rapid. The mathematical basis fof the code, FIELD,

which employs this quasi-static method is described in the next section.

Where photoelectron interaction times become comparable with the
fundamental periods of oscillation of the system, the fully time dependent
Maxwell equations must be used to accurately calculate the skin currents.
LFLUX, a code which numerically solves the time-dependent Maxwell equations,

is described in the third section.

Both computational methods employ an angular expansion
in terms of Legendre polynomials. The field problem is thus set up in one

spatial coordinate and time for as many polynomials as is necessary for an
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accurate solution (up to six were used in our calculations). The skin cur-
rents appear as a sum of Legendre polynomials multiplied by time dependent
coefficients. These coefficients are compared for two different X-ray

pulse durations and two different X-ray spectra in Section 4.




SECTION 2
QUASI-STATIC MODEL

THEORY

In this section we will derive the equation used in the code FIELD.
FIELD, which computes the skin currents on a metallic sphere, will then be
described. We will eventually relate the skin current, as a series of
Legendre polynomials, to the current of photoelectrons external to the
sphere. To make this relation it is necessary to express the photoelectron

current as a series in Legendre polynomials also.

As electrons are ejected from the sphere by incident X rays, the
charge density, o, on the surface of the sphere changes in time. Since
charge on the surface of the sphere must satisfy the equation of continuity
we can relate the surface current, K, to the time rate of change of surface
charge and the current of electrons leaving normal to the surface Jr(a). The

equation of continuity on the surface is

30 19

22+ - a5 aplksing) - I W

where a is the radius of the sphere and the first term on the right-hand
side of Equation 1 is the divergence of the skin current on the surface
of the sphere in spherical coordinates (see Figure 1 for a definition
of the coordinates). Due to the spherical symmetry of the problem,

K, 0, and J (a) can be expanded as follows:
T

K = 2K,P,(cosd) , (2)
%
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o = I o.P, (cos6) , (3)
2
0
Jr = %Jrlpﬂ. (cos®) , 4)

. . . 0
where Kl and g, are functions of time only, £ is an integer, P£ are the
ordinary Legendre polynomials and P; are the first associated Legendre
polynomials. We will use Equation 1 to relate the coefficients of Equations
2 to those of 4. Substituting Equation 2 into Equation 1 and using the relation
0
BPE

1
"0 - Py ()

we find

[o o]
o0 _ 1 d .on 9 0
9t  asind égiKE 55'(Slne 30 pl) - Je (6)

Using the defining equation for Legendre polynomials

o _ 1 9. 3 0

-2(2« + 1)?2’ = m ﬁ(Slne ’5‘6‘ P ), (7)
and also Equation 4 and Equation 3 in Equation 6 we obtain

2[%% a4 1) o

' 2‘ 5t * a Kl * Jr2 Pl =0, (8)

2=0

or
_ a 9
K=-z20+D [ﬁ Op * Jrﬂ,] . (®)

Equation 9 shows that if we can find Jr(a) and ¢ we can expand them accord-
ing to Equations 3 and 4 and obtain the coefficients of the Legendre

expansion of the surface currents, essentially solving our problem.

The spatial currents are known (Reference 2) and it is a simple
matter to calculate them at the surface and expand in Legendre polynomials.

The surface charge is just the normal component of the electric field



multiplied by €0 (in MKS units), since the sphere is a perfect conductor.

Therefore if we can calculate the electric field at the surface of the sphere

as a function of time we can complete the solution of the problem.

Assuming we can calculate the electric field as though the system
were static at any instant of time we can jmmediately write down the Green's
function for the spherical conductor. With this Green's function, which
essentially solves Poisson's equation in the space exterior to the sphere,
we can find the electric field at the sphere's surface. The Green's func-

tion is

GR, RN

_ 1 a _ (1 - a/RY 1
Lﬁ-ﬁw VAT ]4 oo
where R is the position vector from the center of the sphere to the point
exterior to the sphere at which we wish to find the field, R is the magni-
tude of K R is any position vector from the center of the sphere to a
point exterior to the sphere at which electrons eJected from the sphere
have arrived. We denote the electron density at R' at the time t by
o(R', t). R' is the magnitude of R'. i
It is found to be convenient to expand the Green's function in
Legendre polynomials prior to solving for the electric field at the surface.
To do so we need the relation (Reference 3)
i T Y 2 YE (8", ¢') Yo (8, &) , (D)
_ 7L + 1L &+ 1 fm* ? m™"? s
>

where Ry .and R, refer to the larger or smaller of R and R'; ng are
spherlcal harmonics and 9, ¢ are the angular spherical coordinates of the
point at R. A similar expansion can be made for the second term on the
right-hand side of Equation 10. Primes refer to the point R'. Expanding
Equation 10 with the aid of Equation 11 while noting that the surface
charge o(t, 6) is given by the expression

8



U(t)e) = Er(a: e: t) €0 » (12)

where

3
|

Er(a, 0, t) = - -a_R_(b s s (13)
and also noting
o, t) = fp(ﬁ', t)G(R', R)dR' , (14)

(where again p(ﬁ', t) is the spatial charge density of electrons external to

the sphere) we find , after integrating over ¢!, that

att, 8) = 3 ¥ (2s 4 1)p§(cose)ff PE (cosb') ﬁﬁ'é'—fl))R'zdR'dcose'
=1 R

o)

+ %isz o(R', t)R'2dR'dcos’ . (15)
a

Taking the time derivative of Equation 15 we can relate the time rate of
change of the charge density on the sphere to the time rate of change of

spatial charge density. We find

do(t, 9) _

1 <~ _2- A o, - (-1
5t 7 Ea 1(211,+ l)PE(cose)ffP;(cose')% R! ( )dR'dcose'

=1

ll 3_p t2 '
*3 aZJ[]Pat R'2dR'dcos"' . (16)

We can relate %% to the spatial current densities by the equation of continuity.
If Jr(ﬁ', t) and Jefﬁ', t) denote the radial and angular components of the

spatial current density the equation of continuity takes the form

9p _ 1 3 (o2 1 3 ..
"%t T gz & U0t Risiner 90" (sinb'Jg) . an

Substituting Equation 17 into Equation 16 and integrating by parts, while

noting Jr(w,t) is zero and Je is also zero at 8 = 0 and © = T, we have

9



do(t, 8, @) _ g~ _%-1 (2% + 1) 5o 0 1., -
3t - = ééia — P, (cosd) | | (J Py + Jer)R' dR'dcos6’

-1
- 2 (22‘; l)Pz(cosB)er(a, o', t)P;’(COSB')dcose'
2=1

1

-1
J (3, 8', t)dcosf' . (18)
1

N~

If we expand the spatial currents in Legendre polynomials we can find the
Bomlat terms in Equation 9 in terms of integrals of the Legendre coef-
ficients of Jr and Je over the range of the spatial variable R'. If the

expansions of Jr on Je are

[2 5]
J ', R, t) = 5 J. (R, t)Pg(cos8") , (19)
T T 2
=0 2
and
Jg(8', R', 1) = > Jg R, t)P; (cos8') , (20)
2=1 % -

then we find by substitution in Equation 18 that

(& + 13(I. + %, )dR!
Ty 7

[+4]
90 0 %-1
90 (¢, 9, a) = 2 P,a
3t Fett .
o0
- 3P (a, t), (21)
4=0 ¥ Ty

comparing Equation 21 with the time derivative of Equation 3 we find

biTe]
at

L= - Jr (a’ t) > | (22)
0

and

10



CC P T F -2
So=a (e 1)f (Jrﬂ, + Mem)R‘ dR' - Jrg(a, t) . (23)

a

2z 1

Noting that Jrz(a, t) is just equal to Jrg in Equation 4 we can substitute

Equation 23 into 9 to obtain the Legendre coefficients of the skin current:

2

R’ o0
a ' ' L '
K, 0 = - 5 f(Jrz(R ;1) ¢ R (R, £)RITGR! (24)
a

Equation 24 is the simple relation referred to in the first paragraph of this

section.
CODE DESCRIPTION

We now discuss the coding of FIELD which solves Equation 24 for
the Legendre coefficients of the skin currents. The spatial currents Jr
and Je are obtained from an approximation or another code (Reference 2).
These currents are then expanded in Legendre polynomials. The Legendre co-
efficients Jpo(R', t) and Jeg(R': t) are found for various values of R' and
t, in the significant ranges of those variables, and the numbers stored
on tape in the form of a table. When a particular value of Jr£ (R', t) is
needed for the integrand of Equation 24, for example, a linear interpolation
is made between Jrlvalues in the table. Because of the rapid convergence
of the polynomial series for skin currents the maximum % in the table is

five.

It is necessary to evaluate the integral in Equation 24 only where
the integrand is non-zero so that the limits of integration are not really
from a to ©. Electrons emitted from the sphere travel at a finite velocity
so the integrand will be zero beyond the point where the fastest electrons

have arrived which were first emitted from the sphere. If we denote the

11



largest speed by VL and the time counted from when the X ray first strikes
the sphere, by t,the upper limit on the integration is a +VL multiplied by t.
The X-ray pulse lasts only for a time T after which the integrand is zero

in the R' range between the surface of the sphere and the slowest electron.
Denote the speed of the slowest electron by VS. The lower limit of inte-
gration in Equation 24 is a for t < T and a +VS multiplied by t for t>T. In
actual computation it turns out that the effective VS is actually somewhat
greater than the slowest electron speed and the actual VL is smaller than

the greatest electron speed.

At each time t the range of integration is broken up into fifty spatial
intervals. At this t the table is called for the fifty one R' values and
the numerical integration of Equation 24 is obtained using Simpson's rule
(Reference 4). For the problems considered T was at most 5 X 10-8 sec

and the interval between time steps was 1.0x1071'° sec.

FIELD is designed specifically for a sphere and for a non-self-
consistent approximation. The running time for a typical problem is 3.6 sec
on a CDC 7600. -

ACCURACY

One can get a quantitative idea of the correction the time-
dependent Maxwell equation solution makes upon the quasi-static solution
by looking at the equation for the scalar potential in the Lorentz gauge

(Reference 3 ). This equation is
2 1 3% _ _
Vo - o7 512 © 4mp , (25)

where as before ¢ is the scalar potential and p is the spatial charge density.

If we look for an asymptotic solution of Equation 25 which has the form

d =099 +0b; + 00y + . . ., ' (26)

12



where ¢, 1is the quasi-static solution and ¢; is the first correction to
it, we find that

2
0:/00 ~ () =t (27)

where A is the wavelength of the system and T' 1is the effective period

of the interaction. In the problems considered in this report T' 1is equal to
the duration of the X-ray pulse, T, plus the pulse lengthening due to elec-
tron flight time, plus the time it takes light (the X rays) to cross the system.
For the electron spectra considered in this report the upper limit on ef-
fective flight time lengthening is somewhat less than 2x10 ° sec (Reference 2).
The parameter « is calculated in Table 1 for the wavelengths corresponding

to the first three modes of oscillation of the sphere for X-ray pulse lengths
of 3x10™ % sec and 1x10°% sec. For example with a pulse length of 3x10 ® sec,
one would expect the quasi-static approach to be, in some sense, no more than
about 23% in error. With a pulse length of 1x10™® sec, this error should
increase to about 64%. As will be explained in Section 4, Table 1 compares

favorably with the code results.

13



TABLE I

A \2
MODE | WAVELENGTH | DURATION OF PULSE,T (c (T+zx10'8)

1 7.3a 3 x 1078 sec .23

2 3.5a 3 x 1070 sec .05

3 2.3a 3 x 1078 sec .02

1 7.3a 1 x 1078 sec .64

2 3.5a 1 x 1078 sec .15

3 2.3a 1 x 1078 sec .06

14



SECTION 3
FULLY TIME-DEPENDENT SOLUTION

INTRODUCTION

In the previous section, a quasi-static method for solving SGEMP
skin currents was discussed. In this section, we will derive a method
for finding the fully time-dependent solution using a finite difference

solution of Maxwell's equations.

The code used for solving Maxwell's equations is called LFLUX.
Again, we assume electrons are emitted from a perfectly conducting sphere
(see Figure 1) and azimuthal symmetry is required. Spatial current
densities are assumed known (see Reference 2) and tﬂus electron motion is

not treated self-consistently.

We will first develop the basic theory used, including such
factors as difference equations, stability criteria, and boundary conditions.
Then, the results will be compared with theoretical calculations for a

simple test problem.
MAXWELL'S EQUATIONS

In MKS units, Maxwell's two curl equations are

-
1 _ > JF
Ev><§-3+os+e-a—t—, (28)
->
z._9B
VXE= -, (29)

15



X-ray wave front

/

Aluminum
Sphere

Figure 1. System configuration.
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We now write these equations in spherical coordinates with the
assumption of azimuthal symmetry. (For a more complete derivation, see

Reference 5.) The two above vector equations then become

1 ] aEr

Trsind 26 [B&’sine] = Jr + 0Er + €3, (30)
9E !

1 3 0

- IF 3T [chL] = Je + oEé *ET s 31
and
oE oB!

1[29
HE ey -5 - &

We can now remove the 8-dependence by expanding in terms of

Legendre polynomials; i.e., we write

0
Jr = %:Jrzpﬂ. (cosB)

J, = 2.J, Pl(cos8)
6~ 40, % )
- ]
E. = %Erzpz(cose) (33)
E' _

3= %EéQ‘P;’(cosB)

==}
il

r pl
é Zg,: B¢2P£ (cosB)

where PE(cosB) is the ordinary Legendre polynomial and Pi(cose) is the first

associated Legendre polynomial.
Equation 30, 31, and 32 then become

22+ 1) 3
=2 B! =J  +ex-E_ , (34)
ur ¢2, Ty at T,

17



9E
1 3 _ Og
- [qu')E] - J92 re =, (35)
113 Y
L ey ) + Erz] RE-L (36)

where we have also assumed that all charge is included in the J tern so

that the conductivity, o, is zero.

For simplicity, we will now drop the £ subscripts and we will

make the substitutions

B¢ = rB$ R (37)

Eq = TE} , (38)

9B
_ 9. _g .2
5t E. - 35 B> (39)
3E J
_r___r A+l
il e aal (40)
oE
6.1 139
5t - " €Y% " enor 5’ (41)

MESH AND DIFFERENCE EQUATIONS

As a result of expanding the variables in Maxwell's equations in
terms of Legendre polynomials, we need to difference Equations 39, 40, and
41 in terms of time and radial distance r only. Let us consider an evenly
spaced radial mesh. If we examine Equation 39 and center the difference
equation, it is easily seen that we require B¢ and Er values at one mesh
point and Ee values at adjacent mesh points. This is consistent with
the other two differential equations and the resulting mesh is indicated

in Figure 2.
18
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| T3/, Fsy, P74, C+1r2 |
Ao ¥—o—¥%—-o—¥%o ¥——F—Oo—F—o—L
r ra rs ry r‘k

X indicates points where Ee is calculated
O indicates points where B¢, Er are calculated

Figure 2. Radial mesh used in LFLUX.

Let us assume that points in the time mesh are also equally

spaced with time step 6t and let n refer to time grid points and k to

spacial grid points. Then if we center Equation 39 at n and k + 1/2, the

resulting difference equation is

n+l/2

¢k+uz

n-i/2

B k+112

=B

+6t[-E

S -
ek+1 ek

N (42)
k+1 k

Centering Equation 40 at n+1/2 and k+1/2, one obtains

R e T 61:[—

Tk+1iz rk+112

n+/z (% z+ 1) B¢n+”2] (43)
k+u2 BT, Tk

Likewise, one centers 41 at n+l/2 and k, with the result

n+1_

% %

E

T
1 e

n+1/2 n+i/2
B - B
( Pysrsz k'“’z)

—(rk+1lz - rk-uz)- - @9

Thus Equations 42, 43, and 44 are the three difference equations used in

the LFLUX code.



STABILITY

One important question regarding any set of difference equations
is that of stability. One method of checking stability is to assume a small
perturbation and then see if this perturbation grows with time. For

example, assume

B¢ > B¢ * 6B¢

E, * E, + OE

9 9 9 > (45)

and E - E_ + O
T T T

where 6B, GEe, and GEI are all small changes in the fields. These new per-
turbed fields must also satisfy Maxwell's equations and if these new fields are
substituted into Equations 42, 43, and 44 we have the result that the
perturbations must be solutions of homogeneous forms of Equations 42, 43,

and 44; i.e.,

g - Eb
] 6
58,07 < 68NN v el 0By - i
k+1/2 k+1i2 k+1/2 k+! k
SN = sEL at[————)—“l; L 8By, ] , (47)
k+1/72 k+172 H k+112

and

(anﬂlz _ 63n+1lz )
n 1 /

¢ ¢
SERTY = GED 4 6t|- o m—s k-2
k k H ( k+1/2 k-uz)

. (48)

20



Let us refer to any of the three field perturbations as

8f(r, t). We then assume that the perturbation can be written

at-ikr
e .

Sf(r, t) = £, (49)

This expression is just one Fourier component of the Fourier expansion of

the perturbation. Now let

X = ¥ (50)

and

¢ = kér . (51)

Using a perturbation of the form of Equation 49 in Equations

46, 47 and 48, one obtains a determinant relating the coefficients, namely

W - = 5t T P
X p
2
- —(-’éu—;éi) 5t VX X - 1 0 =0
(52)
. -i¢/2
1 8t -ig 0 (x - 1) e3¢
o 3? '\’Y (1 - € ) :
By multiplying the first column by ¥X and the third row by ei(w2

and making
the substitution

sin & = L [«eiq’/2 -e‘i¢/2] (53)

the determinant equatibn becomes

21



x -1 dt 2i %%-sin %

(2 + 1) - -
- J_z_eur 8tX X -1 0 =0 (54)
%%—;—x(zi sin%) 0 X -1

which reduces to

2 2
(x-1)3+(x-l)ﬁ%*—ihg—ucx-nx(g—;) sin? $=0  (55)

ENT

Since we can factor out a (X - 1) term, X = 1 is one solution of this cubic
equation. After factoring out this (X - 1) term, the equation becomes quad-

ratic and can be solved for ¥ by the quadratic formula with the result that

2
PR | -

X = 5
where
_ 20 + 1) 6t% 4 (8t)\® . 2 ¢
B = 2 + = e o \57 sin® (57)

For stability, we require that the perturbations do not grow exponentially

with time. This is equivalent to requiring that
|x|2 ¢ 1 for all ¢ (58)

Let us first assume that the term under the radical in Equation

56 is greater than or equal to zero. Then

22



e m e as™m e e —m———— [

[x|2 = x% = 482 F B \B? -4 -1 (59)

and the stability requirement becomes

62-4Si6\132-4 (60)

Since we originally assumed that B? - 4 2 0, the minus sign solution is
immediately ruled out for positive B; similarly, the positive sign is ruled
out for negative B. Thus there is no region where both sclutions for ¥
satisfy the stability requirement (equation 58) and B2 - 4 2 0. We must

therefore investigate the case where B2 - 4 =< 0.
For 82 - 4 < 0, X has an imaginary part and |x|% = xx* (61)

where * indicates taking the complex conjugate. Then

g2 = 8eiNle? —al) (- 8- iVlg? -al) 2

4

Thus we have shown that our difference equations are stable provided that
B2 -4 <0 (63)

Going back to the definition of B (equation 57), this is equivalent to

T

2 2
2 + 1) EEQE] + 4 [%%E] sin? ¢ = 4 (64)
where we have assumed the medium surrounding the sphere is free space so that

£ = Ep (65)

W = Ho (66)
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and

2 1
= 67
¢ €olo (67)

where ¢ is the velocity of light in a vacuum.

Since stability requires that the inequality in (64) holds for all
values of ¢, we can replace sin ¢ by its maximum value, 1, with the result

that
(c6t)2 El%gI_EJ + 4 (%%E)z < 4 (68)

Thus the Currant condition, cét < 8r, is a necessary but not suffi-
cient condition for stability. Stability also depends on the order of the
Legendre polynomial being used (the value of 2) and the distance from the
origin, r. This dependence is quite reasonable when one considers that the
Legendre polynomial expansion must be equivalent to meshing Maxwell's equa-
tions in both r and 6. With such a two-dimensional mesh, stability should

depend on both the radial and angular mesh sizes.

In the LFLUX code, the radial mesh size, 8r, is an input parameter.
The size of the time step, St, is then determined by re-writing equation 68

as

1
s [2(2 + 1) 1
4r* (6r)*

where the fractional stability, fs, (also an input parameter) is required

(c6t)? = £

(69)

to be less than or equal to one. By setting r equal to a, the inner radius
of the mesh, and % equal to the maximum order Legendre polynomial being con-

sidered, Equation 69 gives the size of time step required for stability.
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BOUNDARY CONDITIONS

From the mesh shown in Figure 2 it is apparent that as boundary
conditions we must know the value of Ee at the inner and outer values of the
radial mesh at all times in order to determine the other field values.
Inner Boundary Condition

We assume that the inner sphere (which emits electrons) is a perfect
conductor. Therefore, at the inner boundary of the radial grid (i.e., at the
surface of the sphere) Egy is just zero at all times.

Outer Boundary Condition

We also need to know Ee at some outer boundary which is at a distance

Rmax' One useful outer boundary condition is to assume that a perfect con-
ductor also exists at r = Rmax' Then, as with the inner boundary, we just

have the requirement that Ee is zero at the boundary at all times. Such a
conducting outer boundary is useful for modeling such things as the SGEMP
response of a satellite inside a large vacuum tank being used for simulation
purposes. Such an outer boundary condition is somewhat unrealistic, however,
for modeling the free space SGEMP response of a structure because the inner
sphere is electromagnetically coupled to the outer conductor. The conductors
are isolated by transit time effects, though, and if Rmax is large compared

to the radius of the inner sphere the early time waveforms will be identical to
those in free space (i.e., no outer conductor). Moving the outer boundary to
large distances requires a large number of radial mesh points and thus in-

creases both storage requirements and running time.

A second method for treating the outer boundary condition is to
pick an outer boundary beyond which the source currents are zero and require

that only outgoing electromagnetic waves exist at this boundary. A similar
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technique has been used in the LEMP code (references 6,7) and the discussion

here is based on an improvement of that method*.

. =R y .
We assume that the radial mesh ends at T nax here Rmax is an

input parameter chosen so that no source currents exist for r > Rmax for times

of interest. Then for r > Rmax’ Maxwell's equations become (after being ex-

panded in terms of Legendre polynomials - see equations 39, 40, 41)

oB oF
b 0
5t - " Ep T O (70)
9E
r _ (R + 1)
= 71
ot €oHo B (71)
and
3E 9B
- 6. _ 1 _¢ | (72)
t €oHo OT

F = Eg+ cB¢ (73)
G =Eqg - cB¢ (74)

Sct-T (75)
r' =T (prime dropped after transformation)

*Developed by J. Longley of MRC.
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After this transformation, equations 70, 71, and 72 become
oE

r _ 22+ 1)
5o = gpr— (F - 6) (76)
oF _
37 - Er (77)
oG 9G _
2 3t - 3¢ - E, (78)

where each field component is actually the ﬁth part of a Legendre polynomial

expansion and the differential equations are now in terms of retarded time.

Now let us expand each of the field components in reciprocal powers

of r; i.e., let

E_ (r,T) = eO(T) + el(T) + ez(T] + ... (79)
T T rz

F(r,7) = £,(1) + £, 50 (80)
T T

G (r,7) = gy(1) + g, (M L 8 | (81)
T T*°

One can now take these series expansions plug them into Equations 76, 77 and

78, and then equate coefficients of equal powers of r. Equation 76 then

gives
eb =0
ei =0
(2 + 1)
& = 2 (fo } go)
LR+ 1)
]
®3 =73 (£, gl)
, _ 2+ 1) _
et = =7 (fi2 - 8.9 (82)

while Equation 77 results in
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0

e1 =0

£,=¢

£, = %es

£. = Le, (83)
i ivi+l

and equation 78 gives

g5

e

0
g] = %y
v o= 3 (-
gy = | 8%e;)
g =% @D 8;.1%%) (84)
where ' = 2—-and the subscript i refers to the coefficient of the ™! term

oT
in the series expansion.

If we combine these results, one obtains

|._i(i"1] 1
8 =T+ D i - (85)

Integrating this equation with respect to retarded time gives

_i@d -1
g; T2+ 1) fi + constant. (86)

The assumpiion that we have only outgoing waves js identical to the
requirement that the fields are zero at T = -«. Thus, the constant in equa-

tion 86 is zero.

Similarly, one can show that

e 1)
i "G -2 8-l (87)
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and putting these results into equation 84, one obtains

£1,, = 2(i+1) [p,(z +1) - i(i - 1)] £, (88)

1+
This equation indicates that the reciprocal power series in r terminates
after i = & + 1 terms for F and G,while it terminates after i = £ + 2

terms for Er‘

Now, the quantity we are really interested in finding is the value
of Ee at the outer boundary of the radial mesh. From equations 73 and 74

_F+G
8 2

If we then use equations 80, 81, and 86, one obtains

2 i(i-1)
By = % [fo + 0 fzfl*'—z(n+1))+ s fi("'_z(n+1))+---] (90)
T

T Tl

E (89)

Now, from the finite difference equations for r < Rmax we can find
Ee at all mesh points except the last one (at r = Rmax)' The value of Ee
at the next to the last mesh point is used to match the interior problem with
the outgoing wave condition. The outgoing wave expression for Ee (equation
90) is then evaluated at r = Rmax to give the proper boundary condition. To
do this we must evaluate the various fi coefficients as a function of time.

If n refers to a retarded time mesh, then

n_+1 n n_+1 n
£ =g T4 [ff T, r] (91)
i i 2 i i

where 6T is the size of the retarded time step. However, from equation 88,
1 . .
fi = EI—[ﬁ(k +1) - (1 -1) (i - 2)] fi—l (92)

Putting these two equations together,

nr+1 n,. nr+1 n,
fi = fi + di f. 1t f, (93)
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where

_ 6t . .
di =1 [2,(2, +1)-(@1-1) @G- 2)] (94)
Note, however, that we can now write

n_+1 n n_+1 n

T _ T T T
£ = fiatdia [fi-z * fi-z] (95)
n +;|,

and that f -1 in Equation 93 can be replaced by the expreSSLOn in Equation

+1
95. By contlnulng this iterative process, one can write f r™" in terms of

fgr"'l and fi at the previous time step; i.e.,

nr+1 Dy Ny Ny
£. =! £~ +2d, £, + 2d. d. f. + oo
i i i "i-1 i-1 “i "i-2
v2d d1-1 di 2 " di-] f1-]-1 *
d. d. . d, , *°* d fnr +
i-1 "i- 10
n_+1
T
[d di—l d1- d£] fo (96)
For convenience, let
[ ] - B
i
n_+1
n+l _ T
then T =A B (97)

We can now re-write Equation 90 as
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E.T = Lf C+0D (98)

where

i(i - 1)
By , By (1 . &__)+ cee s Bi(l e 1))

2
(2 +1) T,
2B
L +1
M A (99)
T
A (1 g - 1
AL A 2:1 o 2+ 1)
D_r+§7(1+2(£+1))+ * ot
ZAi
G oo 4 y 1 (100)
1'E

The new value of fo is then just given by

n_+1

T
nr+1 2Ee -D

fo =— _ (101)

Overall, the outer boundary condition is handled in the following
manner. At a given time t the fields are known at all points in the radial
mesh. Difference Equations 42, 43, and 44 are then used to find the new
values of the fields at time t + &t at all points except at the outer boun-
dary. The new value of Eq at the next to the last Ee mesh point is then
used in Equation 101 to find the newtvalue of fO' In doing this, one must
convert from real time to retarded time (Equation 47), which is easily done

at a constant r. The values of C and D in Equation 101 are known since all

the f values were assumed known at the previous time step. New values of fi

are then calculated from Equation 96 using f nr+l found from Equation 101.
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Once all the new fi values are known, Ee at the outer boundary is then cal-
culated from equation 90 where T is set equal to R .. - This gives all the
needed values at the new time and the whole process can be iterated again.
Initially, all the fi values are set equal to zero since there is a transit

time delay before any fields can arrive at the outer boundary.

The relationship between real time variables and retarded time
variables is somewhat more complicated than indicated above. These relation-
ships are shown in Figure 3 which plots radius r versus ct. On such a plot
lines of constant retarded time appear as straight lines with slopes of 45°
while lines of constant real time are horizontal. In our problem, we assume
that Eg is known at time t" at all points in the radial mesh (i.e., at points
1 and 2 in Figure 3). The interior difference equations are used to find
Ee at the next to the last radial mesh point at ™ +1 (point 3). We then
need to find Ee at the last mesh point at time " n+l (point 4). By matching
the known value of Ee at 1 or 3 to an outgoing wave expression, values of
the f terms in equation 63 are found for a constant retarded time. By
51mp1y changing r in this equation, the field at all other points along the
lines of constant T indicated in Figure 3 can be calculated. We can thus
find the value of Ee at point 4. In LFLUX, the value of Eg at point 5 was
used, so that linearly interpolating one obtains
Eg, (6r-c8t) + Egg cét

Sr

Ee» =

(102)

SURFACE CURRENT AND CHARGE DENSITIES

Once the fields in space have been calculated as a function of time,
jt is simple to find the current density, K, and charge density, ¢, on the
surface of the sphere from the boundary conditions at a perfect conductor;
namely

- -+
x B = K (103)

=)

L E= (104)

=
o 5"
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= constant

c
////’/// ¢ = constant
f;*l:"+1 @ / ®
t )
cét
n
ct // o o
/// =20
e e
Tk-1 ’K=Rmax

Figure 3. Illustration for interpolation from retarded to
real time.
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where f is a unit vector normal to the surface of the sphere and E and B are
the electromagnetic fields at the surface. In this case, r is just a unit
vector in the radial direction and thus

Kg = - MoBy (105)

g = EoEr (106)

Note that for the inner boundary condition we just assumed that E4 was zero

so that Er and B¢ are the resulting fields when Maxwell's equations are solved.

TEST PROBLEM

With any reasonably complicated computer code it is good practice
to devise some test problem with a known solution for use in checking both the
accuracy of formulation and programming. In the case of LFLUX it was neces- \
sary to devise both a test source current and an electromagnetic problem /

with known solution.

Test Source Current

>
Thus far we have not discussed the source current term, J, in

Maxwell's equations. In practice, J is calculated as a function of space
and time from the time history, angular distribution and energy distribution
of backscattered electrons. 3-15 then expanded in terms of Legendre poly-
nomials and used as an input to the LFLUX code. For test purposes, however,

a simplified source current was developed.

For this test current it was assumed that monoenergetic electrons
are emitted in the radial direction uniformly over half the sphere. Thus,

at any time t, the spatial variation of the current density is described by .

- 2
J (r,0) = Jo %f U ( g--e)[U(vot-r) - U(ve(t-t1) -1)1F (107)
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where
Jo = the current density leaving the surface of the

emitting sphere (r=a) at time

u = unit step function

Vo = electron velocity

t1 = total emission pulse length
and £ = unit radial vector.

From this expression, Je is zero and we need only expand Jr in

Legendre polynomials; 1i.e.,

0
J. =2 J. P, (cosd). (108)
T R
Thus
il
g, =21 [ J_ P} (cos8) sin6dd
1 0
1
28 + 1 a?
= —"Q:-— Jo r—z-jPl(x)dx : (109)

0

where we have used Equation 107 and have dropped the step functions indicating
the spatial extent of the current. The integral in Equation 109 is easily

evaluated for the first few values of & with the result

i 2
Iy, =7 90 %, (110)
3 a?
JI‘1 = Z‘Jo Py (111)
., =0 (112)
7 a?
JI‘3 = -1 Jo Tz (113)
g, =0 (114)
3 =1, a (115)
Ts T 32 0 ;2_
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' Using these Legendre coefficients and the step-functions of Equation
107 to determine the proper turn-omn times we have expressions for Jr (r,t)

to put in the difference equations.

DELTA FUNCTION EXCITATION

The separation of variables technique has been used to analytically
solve for the resulting skin currents on a perfectly conducting sphere excited
by some delta function (in time) driver. (See reference 8.) After the driver
has shut off, the skin currents are described by a summation of the various
modes of the sphere, each mode having some characteristic oscillation fre-

quency and decay time. These modes are tabulated in several places.

Calculation of these spherical modes depends on a Legendre poly-
nomial expansion. However, as the order of the Legendre polynomial increases
there are correspondingly more modes (corresponding to roots of the spherical
Bessel function or its derivative). Thus for higher % values, the results of
LFLUX will correspond to the summation of several modes. For & = 1, however,
there is only one resonant frequency and one decay time and these should serve

as a good check between LFLUX and analytic calculations.

For this comparison the simplified source current previously dis-
cussed was used to drive a sphere of radius one meter for some short time.
The driving current is then set equal to zero at all points in space for all
subsequent times. The source current just serves to set up some initial
distribution of skin current and charge on the surface of the sphere. After
it is shut off, the skin current should just oscillate and decay in a manner

determined by the resonant modes of the sphere.

Figures 4 and 5 show the results of such a calculation using LFLUX.
For this calculation the driving current was shut off at 10 nanoseconds, a
one meter radius sphere was assumed, and an outgoing wave outer boundary
condition was used at r = 10 meters. Also, a fractional stability of £ =

1.0 and a radial step of 10 cm was used.
36
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Current Amplitude (arbitrary units)

Time (shakes)

Figure 4. Amplitude of Legendre polynomial expansion of skin
currents as a function of time: Test case——spatial
current density shut off at t = 1.0 shake.
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Charge Density (arbitrary units)

Figure 5.

e/ L =1
’J - 2l_= 3 -

lh———————————————d‘

Time (shakes)

Amplitude of Legendre polynomial expansion of surface
charge densities as a function of time:
spatial current density shut off at t = 1.0 shakes.
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Figure 4 shows plots of the 2 = 1 and 2 = 3 Legendre coefficients
of the skin current as a function of time. A number of important features of
of these plots should be noted. First of all, the curves are obviously very
nearly damped sinusoids for times greater than 10 nanoseconds (when the source
current is shut off everywhere). Note that the curves actually plot the
absolute value of the skin current on a logarithmic scale. The frequency and
decay time of the £ = 1 curve in this time interval can be measured from the
plot as

2.58 x 10° sec ! (116)

measured frequency = Wo_y

6.82 x 10°° sec (117)

measured decay time= To=1

In this case it has been assumed that the skin current is described

by the equation

K = Ko e e (118)

For the lowest frequency mode, w and T are analytically calculated to be

Wy, = .86c = 2.58 x 10° sec”! ; (119)
a
T,; = .5¢ "' =6.66x 1077 1
2=1 .c . sec (120)

It is readily seen that we have good agreement between the numerical and
analytic values.

The & = 3 curve is actually a combination of two modes (see Refer-
ence 8) but one of these modes damps much faster than the other so that the

resultant curve just closely resembles a damped sinusoid with the slower
decay time.

Figure 5 is a plot of the Legendre polynomial expansion coefficients
of the surface charge density as a function of time. One can use these curves
and those in the previous figure to show that the surface continuity equation

(equation 1) is satisfied.
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Rather than the various Legendre polynomial coefficients, one is -

usually interested in the currents or charge densities at some angle 6 with

respect to the axis of the sphere. To find these values one uses equations
105 and 106. In the case of LFLUX, Kg and a, are calculated for only the
first few values of %. It is readily seen that the values of Kg and a,
decrease as % increases (except at very early times). Thus, the fact that
the series contains only the first few % values is not very important (i.e.,

the series converges VeTry rapidly).
Because of the expansion in Legendre polynomials, LFLUX is limited

to spherical geometries. A typical LFLUX run requires 15-20 sec of time on
the CDC 7600.

40



SECTION 4
RESULTS

In this section results will be presented which show the impor-
tance of X-ray time history on skin currents. Comparisons between two
methods of calculating skin currents will also be made in this section.

The X-ray pulse is described by the time function sin®(mt/T) where the
pulse ends when t = T, and where T is defined as the pulse length. The
emitted electrons that form the spatial current are the result of a black
body X-ray spectrum interacting with an aluminum sphere 1 meter in radius.
Electrons are ejected from the sphere with a cos® distribution. Figures

6 through 8 show a comparison of FIELD and LFLUX for the first three Legendre
coefficients of the skin current for T = 3x107° sec. (In Figures 6 through
14, a thin black line represents the quasi-static calculation, when the two

calculations differ.)

For each Legendre polynomial there is usually associated one
dominant natural mode of the sphere although for Legendre polynomials
larger than order 2 there is more than 1 natural mode. The periods of
these modes decrease with the order of the polynomial. The effect of
stimulating these modes can only be described by the full Maxwell time de-
pendent equations. Differences between FIELD and LFLUX will be increasingly
evident the more the natural modes are excited. The first mode of a sphere
with a 1 meter radius has a period of 2.4x10°° sec, the second a period of
1.2x10"8 sec, the third mode a period of .8x10"% sec. Since the pulse
length of 3x10~° sec is close to the first mode of the sphere we should
expect to see the greatest difference between the two codes in the skin
current coefficient associated with the first Legendre polynomial coefficients.
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Figures 6 through 8 show about a 20 percent difference in peak current for
the first Legendre coefficient of the skin current and almost no difference
for the second and third coefficients. Figures 9 through 11 show the same
comparisons for T = 1x10"°% sec. Here the differences are greater, even

for the second Legendre current coefficient. Table 1 (page 14) gives a
quantitative idea of the correction the full time-dependent Maxwell equation
solution makes upon the quasi-static solution. The calculated correction

is described in the end of Section 2 and is based on viewing the difference
between the two methods of solution as arising from modal excitation. The
differences appearing in Figures 6 through 11 agree quite well, qualitatively,
with the calculations. Figures 6 through 11 indicate that time dependent
electromagnetic effects are apparent for a sphere when the lowest mode of

the interacting system is about 2/3 of the X-ray pulse length.

In Figures 6 through 11 the electron energy spectrum contained
electrons with energies ranging from 5 to 100 kev. If E denotes energy,
these electrons have an energy distribution with the functional form e-'lE.
Cutting off the electrons whose energies range from 5 to 50 kev yields a
spectrum where the electrons have an average velocity about three times
higher than the average velocity of the electrons whose energies ranged from
5 to 100 kev. Figures 12 through 14 compare the two methods of finding the
skin current for this high energy spectrum (with T = 3 X 10~ % sec). By
comparing these latter figures to Figures 9 through 11 it appears, if one is
concerned with currents above 1/10 of the peak value, that X-ray time history
may be a more important variable, where time dependent electromagnetic ef-
fects are concerned, than average electron velocity. These results are
dependent on the radius of the system, the form of the electron distribution

and the pulse lengths considered.

The magnitude and time dependence of skin current depends upon the
magnitude and time dependence of the spatial currents at the points external

to the sphere. No matter what the velocity of the electrons they will
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Skin Current X; (amp/m)
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Quasi-static

1072
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2.0 4.0 6.0

Time (shakes)

Figure 6. Comparison of £=1 skin current amplitudes.
Energy range of X rays: 5 - 100 keV.
Pulse duration: 3.0 shakes.
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Comparison of £=2 skin current amplitudes.
Energy range of X rays: 5-100 keV
Pulse duration: 3.0 shakes
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Comparison of £=3 skin current amplitudes.
Energy range of X rays: 5-100 keV
Pulse duration: 3.0 shakes
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Figure 9. Comparison of =1 skin current amplitudes.
Energy range of X rays: 5-100 keV
Pulse duration: 1.0 shakes
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Comparison of £=2 skin current amplitudes.

Energy range of X rays:

5-100 keV

Pulse duration: 1.0 shakes
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Figure 11. Comparison of £=3 skin current amplitudes.
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Figure 12. Comparison of £=1 skin current amplitudes.
Energy range of X rays: 50-100 keV
Pulse duration: 3.0 shakes
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Comparison of £=2 skin current amplitudes.
Energy range of X rays: 50-100 keV
Pulse duration: 3.0 shakes
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Comparison of £=3 skin current amplitudes.
Energy range of X rays:
Pulse duration:

50-100 keV
3.0 shakes
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continue to be emitted for a time T, sin

T. Thus, after the electrons first arriv

ce the X rays interact for a time

e at a spatial point they will con-

tinue to arrive, in the non-self-consistent 1imit, for a time T (in general

they will arrive at a spatial point for a time greater than T, since it

takes time for the electrons to get to a
is clear then that the time history of th

spatial point, see Reference 2). It

e <patial currents is very directly

related to the time history of the X-ray pulse. The importance of the X-ray

time history in determining skin currents

fluence limit.
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