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SECTION 1
INTRODUCTION

When incident photons cause the emission of electrons from exposed
surfaces, electromagnetic fields are created. In certain instances, these
fields become large enough to rapidly pull back the majority of emitted
electrons. This space charge limiting of the net emission current creates,
in effect, a boundary layer near the emission surface. Low-energy electrons
will be trapped inside this boundary layer, while higher energy electrons

will escape after having lost some kinetic energy.

The effect of space charge limiting is to reduce the net emission
current, thus decreasing the resulting electromagnetic fields and structural
replacement currents. Accurate calculation of such fields and currents is
made more difficult, however, due to the need for determining which electrons
are the prime drivers for SGEMP effects. This paper will investigate
several techniques for calculating SGEMP response under highly space charge
limited conditions. Such techniques include early-time approximations,
steady-state theory, finite difference particle tracking codes, and various

boundary layer calculations.



SECTION 2
EARLY TIME APPROXIMATIONS

A one-dimensional early-time approximation was developed by Karzas

and Latter!®

for determining when monoenergetic electrons will begin return-
ing to the emission surface. A non-screening approximation is made where it
is assumed that each electron moves in a constant accelerating field equal

to the field at the emission surface at the time of the electron's emission.

Up to the time,t;, when the first returning electron returns to the

emission surface, the electric field at the emission surface is just (MKS units)

t
E(x=0) = & [R(tyat' , ,_ (1)
0¥ .

wheré

Y = electron yield (number of electrons emitted

per unit area)

e = electron charge

€0 = 8.854 x 10~'2 farad/m
and

R(t) is the electron emission rate normalized so that

©

fR(t')dt' =1. (2)

0



For calculational simplicity, assume that R(t) is a simple tri-
angular function with a risetime and full-width-at-half-maximum of time T.
One can then show (see Appendix A) that for monoenergetic electrons
ejected normal to the emission surface with initial velocity vy, the first

returning electrons return to the emission surface at time

1/3 2q1/3
me voT
t]. = 3[320] [ oY ] » (3)

where m is the electron mass.

The time t: can also be expressed as

/3 1/3
me voT
o = 32 T [HH] (4)
where the peak emission current density, J, is defined by
_eY
J = T » . (5)

It is interesting to note that the time ti depends not only on the peak emis-

sion current density, J, but also on the pulse risetime, T.

Since t; is the time that electrons first start returning, the
time t1 also marks the point that the early-time non-screening approximation
begins to become invalid.

Note that t; varies as v%’i

Since kinetic energy, w, is pro-
portional to v}, it appears that t, is not highly sensitive to the electron
energy spectrum (t; < w'/®). However, ti is dependent on the pulse time

history (ti « T2’3) and the total electron yield (t: « Y'l’a),

Calculation of ti gives a useful estimate of just how long it
takes for space.charge limiting effects to become important. Figure 1
shows some typical values of ty as a function of initial electron velocity
and peak current density. (Note that Equations 3 and 5 are valid only if

t1 < T.) [
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SECTION 3
STEADY STATE APPROXIMATIONS

Steady-state calculations assume electrons are being emitted at
the same rate they are returning to the emission surface. Such approxima-
tions are accurate as long as electron transit times (time between emission
and return) are short compared to any other times of interest. Karzas and
Latter®, Hale?, and others have investigated the steady-state problem by

solving Poisson's equation for various initial velocity distributions.

For a monoenergetic electron source, the electron transit time 1is

found to be (see Appendix B)

172
- oi¥o B
t, = 2[A] , (6)
wflere
2
A= & YR(t) , 7
mep

and the variables have the same definition as in Section 2. Note that A

can also be written as

. 8J(t)
- MEg ' (8)

where J(t) = eYR(t) is the current density of emitted electrons at the

emission surface at time t.

Using the same approximations, the maximum distance an electron

moves, X is given b
> “max’ & Y




alz2
xmax = - (9)
3VA

This simple steady-state approximation can thus be used to esti-
mate the thickness of any "boundary layer' formed by space charge limiting.
If this thickness is small compared to the local dimensions of a satellite,
such one-dimensional calculations are probably fairly accurate. Another

requirement for steady-state theory to be valid is that
ttR(t) << 1. (10)

This inequality just requires electron transit times to be short compared .

to other times of interest.

Figure 2 shows X ax 25 2 function of emission current density. It
is apparent that the boundary layer can become quite thin as emission cur-

rent goes up.

A more useful steady-state calculation would include realistic
estimates of the actual electron energy and angular distributions created by

low energy photoemission.

The electron distribution due to low energy photoemission is fairly

well approximated by3*"“
Flw, 6, ¢} = %-G(w)sinecose , (1)

where G(w) is the electron energy distribution at emission, w is the electron

energy, and 0 is the polar angle measured from the surface normal.

Note that the presence of an angular distribution complicates
even a one-dimensional, monoenergetic approximation. Because one must pro-
ject the velocity vector along the surface normal, a distribution of
velocities along the surface normal appear even though the length of the

velocity vector is constant.

8
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If the electron emission distribution shown in Equation 11 is
assumed, then the projected phase space density is (see Appendix C)

£1(x,W,) = sz/. E%?l-dw . (12)
wx—e¢

In this case, the surface normal is along the x-axis and

£1(x,V.) sff f(??)dvydvz , (13)

>
where f(v) is a solution of the Boltzmann equation. Also,

_1 2
W s Smv. o, (14)

and ¢ is the potential. The potential is assumed to be zero at the emission

surface, x = 0.

Equation 12 is derived by setting the electron fluence at x = 0
equal to twice the emission fluence as determined from Equation 11. The
factor of two comes about since we assume a steady-state case with the

number of electrons returning being equal to the number emitted.

The potential, ¢, is given by Poisson's equation

d2¢

e o Ve (15)

where N(x) is the spatial electron density. Now

N(x) = J/} (x, wx)dvx R (16)
0

which, using the steady-state value of f1, is given by

wdw ~ '
N(X) = 2\[“7‘_-[ X f CM¥) gy, (17)
SV

X w +V -

where

10



V = -e¢.

Note that N(x) depends on x only through V, so that N(x) = N(V),

and by interchanging the order of integration, it can be shown that

N(V) = 4EfL LB (18)
v

For convenience, define

No = N(V=0) = 4,/% %(wﬂ) dw , (19)
0
and
N(V
n) = 5 20)
0
Then, Poisson's equation (Equation 15) can be written as
dv _  e?
axz = " g5 Non(V) . - (21)

If V is also normalized to some energy Vy, then Equation 21 can

be written as

= - W (22)
where

‘w=%. (23)

E=3 (24)
and

NS (25)

11



3% _ 3 f1/0y\?
382 © W[i(a—") ] ’ (26)
it can be shown that
(g‘g) = a @ *C1, (27)
where "
M) = fn(w')dw' , (28)

0

and C1 is the integration constant

2
Ci = (gg) | (29)
£=0
Now, the expression for .#(J) can be written as
A(Y) =f[2¥:_ Gw) - V! dw]dl,b' ) (30)

wl
o sm(w,y)

zgoz_mfdw GE::N) TR

0 0

where sm(w,¥) means '"the smaller of w and Y" and w is also normalized

to vy. This expression can be reduced to

x©

) =+ ‘;_{f G (w) Vo7 dw

4

_f__G(‘:') W - lp)mdw} : (31)
v

12



Also, Equation 27 can be used to obtain the expression

dg = dv s (32)
V2[C1 - c4@)]

so that

dy!
£() =f : (33)
\V2ici - #W"]

0

Equations 31 and 33 give the relationship between the normalized
distance and voltage parameters for an arbitrary electron emission energy
distribution, G{w). The integrals in Equation 31 are first evaluated,
either numerically or analytically, to determine H(Y). It can be seen

from Equation 27 that .#(}) is related to the square of the electric field.

The constant C; is determined by Equation 29 or, if the electron

energy distribution has a maximum electron energy, W_... then

C1 = "”(lpmax) ’ B (34)

where wmax is the normalized potential corresponding to Woax!

13



SECTION 4
FINITE DIFFERENCE CALCULATIONS

Finite difference techniques®-’ have also been used to calculate
SGEMP response and space charge limiting effects. A finite difference cal-
culation divides the space outside the emission surface into a number of
cells. The field or potential in each cell is assumed constant. Electrons
moving in space are represented by particles whose trajectories are calcu-
lated using Newton's law. The position and velocity of these particles are
then used as sources for the finite difference equivalent of Maxwell's
equations. Thus, fields or voltages, and particle velocities and positions

are calculated in a time-stepping procedure.

For a one-dimensional problem, this procedure is relatively easy to
set up and run on the computer. The surface electric field from such a one-
dimensional finite difference code is shown in Figure 3, along with plots of
the early-time and steady-state approximations. For these calculations, mono-
energetic 20 keV electrons were assumed to be emitted parallel to the surface
normal vector. Figure 3 shows good agreement between the finite-difference
calculation and the early-time approximation up to the time t; when electrons
first start returning. At later times, the finite difference code has an
oscillatory behavior, the average of which is fairly well predicted by the
steady-state approximation. This oscillatory behavior has been discussed by
Birdsall and Bridges® and others. This instability is quite evident when-

ever monoenergetic energy spectra are assumed.

Thus far, only one-dimensional calculations have been considered.

Such one-dimensional approximations are quite useful for providing a general

14
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Electric Field at Surface (arbitrary units)

Early Time
;‘///Approximation

Steady State

7 Approximation
/
_/I amgs_
J = 3800
/7 One-Dimensional peak m2
;/  [.—Finite Difference
/ Code
[ Monoenergetic Electrons ]
(20 kev)
t, = 5.2 ns Emission Time History ~e3t | Bt
— a=4.0x107 sec™! —
b=1.0x 10% sec™!

ST A 20 A T T Y T T I I
2 4 6 8 10 12 14 16 18 20 22
Time (ns)

Figure 3. Comparison of early time approximation, steady state

approximation, and finite difference calculation of sur-
face electric field (one-dimensional planar geometry).
(Jpeak is the peak emission current, before space charge
1imiting, and t: is the calculated time that electrons
first start returning.)
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understanding of the high space charge limited problem and application of
one-dimensional theory is valid when considering distance scales small compared
to any characteristic lengths of the system with which incident X rays are

interacting.

However, finite difference techniques can, at least, conceptually,
easily be extended to two or three dimensions and several 2-D, azimuthally
symmetric SGEMP codes are now in existence. Such two-dimensional calcula-
tions point out several important effects that are lacking in any one-dimensional

theory.

The most important difference between 1-D and 2-D calculations is
that one-dimensional theory allows only longitudinal field components
(longitudinal meaning along the emission surface normal) while two-dimensional
results have both longitudinal and transverse components. An important re-
sult of allowing transverse components is that in 2-D calculations, a magnetic
field will appear and skin currents will thus flow to replace emitted
electrons. These replacement currents are an important first step in the

overall coupling process from incident X rays to internal electronics.

Multi-dimensional finite difference calculations have a practical
disadvantage, however. Two- or three-dimensional calculations require in-
creasing amounts of computer time and storage as the number of grid cells
and particles being tracked increases. Under conditions of high space
charge limiting, spatial volumes near emission surfaces must be finely
subdivided due to the steep longitudinal field gradients and many particles
must be tracked inside this region. However, the rest of the space sur-
rounding the test object must also be gridded, perhaps with larger cells,
and some electrons will have sufficient energies to move significant
distances away from emission surfaces. These requirements may result in

very time-consuming and expensive computer runs.

16



SECTION 5
BOUNDARY LAYER TREATMENT

One method of avoiding the finite difference requirement of a
very fine mesh near emission surfaces when a high degree of space charge
limiting occurs is to combine a one-dimensional analytic approximation
with the finite difference technique. In effect, such a hybrid method
creates a '‘boundary layer" within the cells adjacent to emission surfaces.
Some electrons are pulled back so rapidly by space charge limiting effects
that they never leave the cell into which they are first emitted. These
electrons are assumed trapped inside a boundary layer. Other electrons
will escape through the boundary layer after having lost some part of
their initial kinetic energy. These electrons can then be treated as in
any finite difference, particle-following code. Thus, the boundary layer
treatment serves as a way of subdividing the finite difference cell closest

to the emission surface.

For a more detailed explanation, consider Figure 4. This figure
shows a section of a finite difference mesh containing an emission surface.
A two-dimensional azimuthally symmetric mesh is assumed and the field
components are calculated at points where Maxwell's equations are auto-
matically centered. The emission surface is assumed to be perfectly con-
ducting and the boundary condition of zero tangential electric field is
satisfied by placing the emission surface so that it passes through the Er
mesh points and -setting the field at these mesh points equal to zero. The
normal component of electric field, Ez’ is then calculated at the points
indicated by x, which are actually a distance of Az/2 from the emission
surface.

17
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Figure 4. 2-D finite difference mesh.

If space charge limiting causes an electric field gradient
varying significantly over one mesh cell (Az), then either the mesh size
must be decreased or a boundary layer treatment can be used within the
first cell of the mesh. In any case, it is assumed that the mesh is al-
ready small compared to any curvature of the emission surface; otherwise,

the finite difference calculation would not be valid.

One way of integrating a boundary layer treatment into a finite-
difference code is to use the steady-state, one-dimensional theory outlined
in Section 3 of this report. The method presented here, however, differs in
several ways from the ideal case discussed in Section 3. First of all, the
factor of two in Equation 12 is not quite correct, since not all of the

emitted electrons will be returning to the surface where they were emitted.

13



However, the very numerous low-energy electrons will be pulled back once
space charge limiting effects become important and the actual factor in
Equation 12 is probably only slightly less than two. Secondly, the boundary
condition to the problem is now the normal electric field, Ez’ at a distance
Az/2 from the emission surface. It is required that the slope of the
potential function, as calculated by steady state-theory, match the electric

field at this grid point, as calculated by the finite-différence calculation.

In our sample grid (Figure 4), let Az/2 = d. Then, from Equations
23-25, 27, and 33

Yq
_d dy!
€d =y = f , L > (35)
0 Vz[cl = -,”(w')]
and
(1% - _erde = 8 .
g l=d o dz l=d Vo Cz=d ° (36)
so that
2
Ci =2 (3E) + ok
Ed
2)\2
= ez_v—o— E§.=d + b”(d}d) » (37)

where Equation 31 defines ukde) as

M) = %‘%‘l fc(w)ﬁu‘dw
(1]
o R ARG O (38)
Vg

19



Now, the basic inputs are the distance d, the electric field
E (z =d}, and .#(y), which is a function calculated from the emitted electron
energy distribution, G(w). The problem is to solve Equations 35 and 37 for
wd’ the normalized potential. In general, .#(Y) is a numerical rather than

an analytic function and wd can be found by some numerical iteration scheme.

wd is the normalized potential across the boundary layer. This
potential defines the minimum energy required for an emitted electron to
travel across the boundary layer (i.e., the first cell of the grid). Thus
for the particle-following part of the finite difference code one can ignore
all those electrons in the emission distribution having energy less than
this minimum. Also, the initial energy of those electrons penetrating the

boundary layer must be reduced by this same minimum energy.

This boundary layer treatment thus simplifies the electron follow-
ing problem by indicating which electrons will "make it through" the boundary
layer and into other cells of the finite difference mesh. The boundary
layer may also have some direct effect on the external fields. A little
thought shows that this can be true only if the boundary layer is not fully
one-dimensional; i.e., a potential gradient parallel to the emission surface

is required.

The boundary layer calculation gives a potential ¢d at each EZ
mesh point (see Figure 4) at each time step. The gradient of ¢d along the
T direction is then just the tangential electric field created by the
boundary layer. The electric field of the boundary layer can then be in-
cluded in the finite difference calculation by setting Er along the emission
surface equal to this gradient (Er would equal zero at all times for a

perfect conductor without any boundary layer treatment).

20
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SECTION 6
SUMMARY

This report reviews various approximations used for calculating

the SGEMP response of an object under highly space-charge limited

conditions. An early time approximation is used to calculate when space-

charge limiting begins to become important. Steady-state calculations

are then considered and a theory for realistic emission electron angular

distributions and arbitrary energy distributions is developed. Finite

difference calculations are then reviewed briefly. Finally, the combina-
tion of a one-dimensional, steady-state boundary layer calculation with a
finite difference code is discussed. The use of this boundary layer treat-
ment is shown to help avoid the requirement for very fine zoning of finite

difference meshes near emission surfaces in cases of high space-charge

limiting.

21
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APPENDIX A

EARLY-TIME NON-SCREENING APPROXIMATION
(Adapted from Ref. 1)

Since
X=-—, (A-1)

and the initial electron velocity is vy, then

x=20, (A-2)
when
_ mvg _
t = eE (A-3)

The "turn-around time' for an electron moving in a constant field is then
just

2mv g
t eE

_ thvo (A—4)
&Y 14t
= S R(t")dr

using Equation 1 for the electric field.

For a triangular pulse,

t
2
N(t) E.]rR(t')dt' = %—%5-for 0<t<T. (A-5)

0

Therefore,

23



. 2mVgEg -
te(te) = e2YN(t ) ’ (A-6)

where 1:e is the emission time of the electron being considered. By minimiz-

ing t, with respect to t, one can solve for tg, the time when the first

returning electron was emitted. 1f tr is the return time,

tt =t - t, - (A-7)
Then

t (t)=t_ + M (A-8)

T e e ezN(te)Y ?
and

dtr(te) 1 4 ZWVoEop d 1 (A-9)

dt e2Y dt_|N(t) ]|
e e e

One minimizes the return time, tr, by setting the derivative on the left-

hand side of Equation A-9 equal to zero. Then

d e2YN2(ty)
— Nt )| =S (A-10)
dte e t =t, 2mVgEg -
but
4 Ny =6t (A-11)
dt e = 0 -
t =to

Assuming to < T, then

2 2\2
_eY (lto}) _ to -
2mvoeo(2 T ) T2 °? (A-12)
or, solving for to,
) 113
- o | WVeEoT7| | A-13
to 2 [ o2y ] ( )

In this approximation, then, the turn-around-time is just

24



The first returning

t, =

Note that

the assumption used

2ZMVg€ao
t, - =
1 - To eZYN(to)
/3
meg voT2]}
['gi‘ v ] . (A-14)

electron then returns at

to + tt
1/3 271/3
MEp voT
e (a-15)

if t > T, the entire calculation is not valid due to

in obtaining Equation A-12.

The maximum distance from the emission surface reached by the

first returning electron is then given by

X
max

2 2
_ mvy mVoEg

" 2eE ~ 2e?YN(to)

1/3 2\1/3 -
Vo {MEp voT
(-—‘) (—_Y ) B (A-16)

7 | e

25
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APPENDIX B
STEADY STATE

From Poisson's equation

dE(x) _ _ p(x) (B-1)

_ 2eYR(t)
p(x) = T (B-2)
Since
= voy DL SEe (8-3)
then
dX _ fdv\? d?v(x) _ e dE(x)
ax " (5;) PV TR T T nTax (B-4)

which implies that

Ae?YR(t) . (B-5)

4z e -
dx?2 v (x)) = meov (X)

This differential equation has the solution that

v = [vy'? - 3VEx]2 (B-6)
where
2
A = YR(t)e® _ eJ(t) , (B-7)
MEp meEg

where J(t) is the emission current density at time t.

27



One can also show by integration of Equation B-6 that

x = BYAYIvY?- (vo2-VED)?], (B-8)
which gives the time between emission and return, tt’ as
172
— »{Vo -
t, = 2(A) . (B-9)

Also, the maximum distance an electron moves, X .. is found to be

v3/2
X o0y AL (B-10)
3VA

The total number of electrons outside the emitting surface is

then given approximately by

Ngg = Y6(E) ty (B-11)

and the electric field at the emission surface 1is

€
NSS

€p

Ess(x=0) = (B-12)
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APPENDIX C

RELATION BETWEEN EMISSION SPECTRUM
AND PHASE SPACE DENSITY

Assume that electrons are emitted from a planar surface located
along the yz-plane of a Cartesian coordinate system. The phase space

distribution function, f, then satisfies the time-independent Boltzmann

equation

E_EE_if—z‘O’ (C_l)

where it has been assumed that the only force acting on the emitted electrons
is the electric field, E. The electron charge is designated by -e and the

electron mass by m.

The phase space distribution function, f, is a function of x, Vs

Vy’ and v, and the electron flux density is

. _ _ ->
flux density = vxf(x,v ,vy,vz) = vxf(x,v) . (C-2)

X
> ..

One now wants to relate f(x,v) to the electron emission spectrum at the

planar surface under consideration. If this emission spectrum is written as

F(w,0,0), where w is the initial kinetic energy of the electron and 9 and ¢

define the initial direction with respect to the surface normal, then

>
vxf(x,v)dvxdvydvz = F(w,0,¢$)dwd6d¢ . (C-3)

However,

dv dv dv_ = v3dvsin6déd¢ , (C-4)
Xy 2
and
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dw = mvdv . (C-5)

Therefore,

mF (w,6,9)

-
£(x=0,v) = vxvsine : (C-6)

where x = 0 since the phase space density is being equated to the electron

emission distribution at the surface.

Now, if the emitted electrons are due to incident low-energy photons,

the electron distribution is well approximated by
F(w,8,0) = = G(w)sinBcose , €-7)

where G(w) is the electron energy distribution at emission. G{(w) is a
function of the emitting material and the incident photon spectrum. The

angular distribution is measured with respect to the surface normal.

Combining Equations C-6 and C-7 gives

£(x=0,V) = %G‘E‘:) . ' (C-8)

Now define a new distribution function

£1(v) = f f £(V) dv dv, . (-9

3>
This distribution function is simply a projection of f(v) along the x-axis.
If the kinetic energy is broken down into components parallel and perpen-

dicular to the x-axis, then

WoEWo W (C-10)
where
21 2 -
W, = Smve o, (C-11)
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e

and
mv? . (C-12)

Thus

m G(w)
£ (Vx) ﬂff vi + vZ2 + vy2 dvydvz

y z
_m G{w)
= ﬂf R 2mv, dv,
X
L o]

= mf$ dw . (C-13)

w

X

This expression, then, gives the projected phase space distribution function

at the surface as long as none of the emitted electrons are returning.

Now, it is a well known property of the Boltzmann equation that an
arbitrary function of the constants of motion is a solution. Integrating

Equation C-1 over the y- and z-components of velocity

chy et o o (C-14)

Therefore,gﬂwa-e¢), where # is an arbitrary function, is a solution of

Equation C-14. In this case, ¢ is the potential

dE
d) = - -a; . (C"ls)

Assuming ¢ = 0 at x = 0, Equation C-13 gives f1(x=0,wx) and fl(x,wx) is ob-

tained by replacing W by W - edp; i.e.,

£ (xow) = mf S gy (C-16)
wx—e¢

31



Note that this expression was obtained by assuming that the
electron fluence at the emission surface was just equal to the emission
fluence. This is true if none of the emitted electrons return to the
emission surface (i.e., no space charge limiting). Another possibility is
the steady-state situation, where electrons are returning to the surface
at the same rate they are being emitted. For steady-state conditions, the
value of f; in Equation C-16 must be multiplied by a factor of 2 to account

for those returning to the x = 0 plane.
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