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effects due to having an aperture in the source region and with those IEMP
effects due to X rays penetrating the surface of the system. A hardware
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SECTION 1
INTRODUCTION

Satellites, in general, are not completely continuous electro-
magnetic structures. Consequently, fields generated on the exterior of
the structure can leak through the discontinuities — holes and slots — and
possibly disrupt or destroy the circuitry within the satellite. 1In an
actual SGEMP situation photoelectrons are ejected from the satellite sur-
faces by X-rays striking the surface. A proportion of these electrons
escape to infinity leaving the satellite with a net positive charge. Thus,
over the long term (times much longer than the X-ray pulse length)
electrostatic fields are expected. Because of the electrical discontinui-
ties in the satellite, interior electrostatic fields are expected also.
If, in addition, the time duration for setting ﬁp the exterior fields is
comparable to or smaller than the fundamental periods for the interior

cavities then oscillatory fields may also be expected over the long term.

Competing with the effects due to slots and holes are similar
effects (electrostatic fields and oscillatory electromagnetic fields) due
to X-rays penetrating the skin of the satellite and causing the ejection
of photoelectrons into the interior of the satellite. The discussion in
this report will be mainly confined to the effects due to slots and holes.
Where it is possible, comparisons will be made between the effects of in-

ternal photoemission and coupling through surface discontinuities.

Two specific types of discontinuities are discussed. One of

these is a slot extending completely around the satellite, separating it
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SECTION 2
RESULTS

ISOLATED SECTIONS

In SGEMP problems, charge is removed from the part of the satel-
lite surface struck by X-rays. If the irradiated portion is conducting
and electrically isolated, charge can leak onto the inside surface causing
electrostatic fields and possibly stimulating the internal cavity modes.
Computer evidence already exists® which shows that this effect can be
considerable. We wish to address the question of the possible effects of
differential charging. Three static solutions will be discussed first.

Static solutions represent the state of a system after all the
charge has been removed to infinity and all the oscillations have died away.
If the charge is removed from the system in a time interval which is smaller
than or comparable to, the period of the lowest mode of the system (in-
ternal or external), then the mode will be stimulated. If the modes are
highly damped, as they are for the external modes of many systems, then
the quasi-static response of the system (a static solution which varies
continuously in time as the sources vary in time} will predominate. Apart
from being the correct solution in many cases%ﬁstatic and quasi-static
solutions enable one to make order of magnitude estimates of oscillating

fields if modes are actually stimulated.

Figure 1 represents a conducting system with a cavity. Although

the area of the gap connecting the exterior with the interior is



into two parts which are electrically isolated from each other. Another
discontinuity is that of a circular hole in the satellite skin. The radius

of the hole is taken to be small relative to the dimensions of the satellite.

The method used in estimating the importance of these surface
features is to solve a simple geometry which 1s tractable mathematically.
The Tesults and methods suggest genmeral rules which can be extrapolated to
more complex configurations. It is hoped that these rules will serve as tools
or frames of reference for estimating fields in practical situations. The

geometry chosen for the analysis is, for the most part, spherical.

A number of interesting results arise from the analysis. It ap-
pears that an irradiated, electrically isolated panel is probably the most
dangerous from the point of view of internal fields. Depending upon the
configuration, as much as 50 percent of the charge left on a panel could leak
to the inside creating internal fields of the order of the exterior fields.

The adverse effect of an isolated panel can be avoided in an actual system by
connecting panels with conducting wires in non-spinning assemblies, or brushes,
in the case of spinning assemblies. The isolating slot is effectively con-
verted into a long narrow "hole" by means of these conducting brushes or wires.
Internal electric fields due to a circular hole are of the order of magnitude:
Eo(a/R)S, where Eo is the external field value, o 1is the radius of the hole,
and R 1is the radius of the satellite. 1f o/R is .1, for example, then the
internal fields are only about one thousandth of the external fields. A hole
in the irradiated region may be a greater threat, however, especially when the

X-ray fluence is large.

In Section 2 of this report, we present the results of the investi-
gations together with some arguments to obtain order of magnitude estimates
of internal fields. The mathematical derivation of the results is left to the
appendices so that the discussion will not be obscured. Section 3 considers
the utilization of already existing computer codes which calculate exterior

fields, for exterior to interior coupling calculations.
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It is clear from Equation (1) that if the sphere is charged symmetrically,

9, equals dy» and no charge leaks inside; the internal fields are then

zero. If only one-half the system is charged, that is, q2 is zero, then

1
193 < =< 250 . (3)

1

(It is evident from Equation (1) that the ratio of a1 to ql, with q2
equal to zero, cannot be greater than .25 no matter how large £ is.} That
is, for extreme differential charging (q2 = 0) about 20 percent of the
charge gets inside the cavity. The electrostatic field on the inside of

the cavity is roughly of the order of magnitude of the fields on the

surface. (This is because the right-hand inside hemisphere charges to 91—
see Appendix II for proof.) In a dynamic problem, the inside and outside
charges distribute themselves over roughly the same time interval. In order
to maintain charge neutrality (when q, = 0), the charge on the outside of

the right hemisphere is equal to Inside and outside surface currents

o PR
1I
are then roughly comparable, at least on certain major portions of the

structure.

The effect of the right hemisphere actually enhances the internal
field in the case that q, = 0. Appendix II,Equation (II.12), shows that
if the right hemisphere were missing a1 exactly equals .1945 X ;> almost the

same amount that exists if the right hemisphere is juxtaposed.

The above discussion suggests that differential charging of an
isolated conducting section can, in a particular geometry, yield internal
fields and currents of a magnitude which is comparable with the external
fields and currents. The cause of these fields comes from charges flowing
into the interior. The reason only about 20 percent of the total charge
appears on the internal surface of a hemisphere, as Appendix II demonstrates,

is that the curvature "shields" the internal surface. If the isolated

7



Figure 1. Cross section through x,y plane of
two juxtaposed hemispheres.

infinitesimal, one-half of the system is electrically isolated from the
other. We imagine that this system has been exposed to X-rays so that a
charge 9 remains on the left hemisphere and a charge q, on the right
hemisphere. The charge on the inside of the left hemisphere 91 is,
from equation (I.20) of Appendix I,

28(q; —q,)

qu = 1 + BB » (1)

where B 1is expressed as an infinite series by Equation (I.19). Summing

six terms in this series shows

B < .424 . (2)



type of solution can only be effectively done with a computer code.

various levels of analytical approximations exist.

However,

For example, by knowing

the total amount of residual charge on the conducting surfaces of Figure 1

the final electrostatic state of the system was found.

approximate time variations of

mated.

By knowing the

the sources the skin currents can be approxi-

If the time variation of a significant portion of the source is close

to the lowest internal mode, then the fields associated with the oscillation

could be about the order of magnitude of the electrostatic fields caused by

that portion of the source.

If the internal modes of the system are known (assuming one can

speak of internal modes decoupled from the exterior) and an exact or ap-

proximate quasi-static solution V

exists, then the fields associated with

the various modes can be approximated more accurately than the preceding

paragraph by utilizing the Coulomb gauge®.

Expressing the modes of the system

by the orthonormal vector potential components Kkﬂn the amplitudes of these

modes can be obtained by solving the equation

> 1
VXV XA--——=
c2
where
-
Z=2 4, (1)
k&n kin

and the coefficients dkln(t)

and magnetic fields E and

kin

éfﬁ.- _lg v (4)
5 2 T c t’

t
-

involve only time. The oscillatory electric

-

Bkzn are given by

B o=ad IS
ken - 7 ¢ “ken"kn ? )
> >
Bkﬂ,n:__v)xAkEn’

(6)
i

k,2 and n represent modal indices; Weon is the angular frequency associated

with the mode.

For many cavities the orthonormal and complete set of modes




panel has no curvature, it is likely that even more charge will flow
inside. Consider Figure 2. Due to symmetry, if a charge q 1is placed on
the exterior surface of the isolated panel, the equilibrium configuration
will have a charge q/2 on both the inside and the outside of the panel.
For such a special configuration,the internal fields in some portion of
the interior will be of the order of magnitude of the fields on the

exterior surface.

Conducting Plane

Vs
AN

Isolated Panel

Figure 2. Cross section of an isolated circular
conductor within a conducting plane._

MODAL STIMULATION FROM ISOLATED PANELS

If the sources of the fields — the current distribution of
electrons exterior to the satellite in an SGEMP problem — have a time varia-
tion which is comparable to,or shorter than, the longest period of oscilla-
tion of the system,modal oscillation will be stimulated. These oscillations
make a significant contribution to the internal fields if they are not
severely damped. The goal of this section will be to try to estimate these

oscillatory fields in a simple way.

The actual mathematical solution to an SGEMP problem is very com-
plicated and involves the simultaneous and consequently nonlinear solution

of Maxwell's equation with the equations of motion of the electrons. This

8
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Ekin and Ekln are known. In practice finding the Kkzn cdmponents

amounts to solving Equations (6) zith the known Ekln and Bkln' Once an
orthonormal and complete set of Akzn are found the solution of Equation (4)
proceeds. by utilizing the orthonormal properties in the usual way to find

a second order differential equation for dkln(t)' This differential equation
is then solved, again in the usual way, by Laplace transforms. The approxi-
mation expressed by Equation (4) is most accurate when the problem is
approximately quasi-static. When the exterior problem is approximately
quasi-static due to radiative damping, the accuracy of the approximation

should be reasonably good.

The internal dynamic problem can be exactly calculated if electric
fields parallel to the boundaries are known. In general, specifying the
electric field parallel to the boundaries is not possible without the
simultaneous solution of both the exterior and interior problem. An approxi-
mate approach for computer solutions will be discussed in Section 3. This
approach decouples the interior problem from the exterior problem by specify-

ing the interior boundary condition by modifying the exterior solution.

It should not be overlooked that many of the problems associated
with isolated sections could be avoided if the panels were connected to the
main body by conducting material or rotating portions of the system were
conductively linked to non-rotating portions by brushes. This effectively

makes the isolated panel problem a slot problem.
STATIC FIELD OF A HOLE

We wish to calculate the internal field due to a conducting satel-
lite with a hole cut in it,after a charge q has been left on the satellite.
The static solution will suggest the form the dynamic calculation will take.
If we approximate the satellite by a sphere of radius R and the hole by
".disk of radius a (see Figure 3), then, from Appendix III Equations III.15
and III.16, the potential V(r, 6) at any point 1,6, (the problem is

azimuthally symmetric) inside the sphere far from the hole, is

10
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C = %('n _ 8 + sin B) (11)

if B 1is small then we can expand sin B in Equation (11) obtaining

3
~ B
C= R(l —ﬁ) . (12)

By the definition of capacitance, the charge, q, on the sphere is

3
a TRV, (1 —%) ' (12)

Thus, to a first approximation, the charge inside the sphere (qo SRV, =

q, if no hole exists) is about q083/6n. The field inside then is of the
order of magnitude of q083/6wR2. If the external field, E,» is equal to
qO/R2 and B is approximated by a/R, the internal field is of the order

of an.3/611R3 or the equivalent to a dipole of magnitude an3/6ﬂ.
MODAL STIMULATION INSIDE A CAVITY DUE TO A HOLE -

Bethe® has constructed a solution for radiation penetrating a
circular aperture in an infinite plane. His solution is valid in the limit

that

(5)2 << 1 (14)

where A is the wavelength of the radiation. The fields due to the hole,
at distances far from the hole, are equivalent to an electric and magnetic

dipole, PE and PM, respectively, given by the expressions

3
E , (15)

13
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2 2 ¢
P (r‘ - RY) 5
V(r, 8) = V_ + o + O[(a/R)7] , r>a
°o 2R g2 12 _ 2R cos 6)7/2 M
where )
=1 2 43

and Vo is the potential of the sphere with the hole in it. Equation (7)
expresses the fact that the internal field is that due to a dipole P. The
dipole is formed by bringing a negative charge up to the surface of the
sphere. The negative charge and its positive image form the dipole. To a
first approximation, the potential Vo is just REO; where Eo is the
field at the hole in the absence of the hole. Substituting for Vo in

Equation (8) we obtain the expression for the dipole moment:

E . (9)

A Green's theorem argument and intuition strongly suggest the
following method of calculating the internal static field due to a hole:
if the radius of curvature, R, of a system is greater than the radius a
of the hole to the extent that

(%)2 << 1 (10)

then the internal field is that due to a dipole. The dipole moment is
given by Equation (9) where E0 is the field at the hole when the hole

is not there. The dipole is formed by bringing a negative charge up to

the surface and forming a dipole with its image. Constructing the dipole
in this way ensures that the boundary conditions at the surface of the con-
ductor are satisfied. This method of construction is equivalent to

finding the internal Green's function for the body and taking its normal

derivative at the surface.

We can make some qualitative arguments to find the order of mag- ~3
nitude of the internal fields. The capacitance®, C, of a sphere whose hole '

subtends on angle B 1is 12
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rise to a large electric field at the surface--call this stage one. Large
numbers of electrons return to the surface due to the high value of the
electric field giving rise to a relatively quick drop (of the order of 10

to 50 percent) in the electric field value—call this stage two. The
electric field maintains itself at a high value preventing most of the elec-
trons from going more than the space charge distance from the surface (of the
order of a centimeter); electrons which got to large distances from the

surface during stage one slowly return to the surface—call this stage three.

We first assume that no X rays get through the hole. From Section
2—Static Field of a Hole—the charge (not electrons) that gets into the
interior through the hole is of the order of (0A) a/R, where A 1is the area
of the hole and ¢ is the charge density on the surface. During stage one,
when no electrons go through the hole, the dipole field of the hole dominates
the interior fields (see Section 2—Static Field of a Hole and Modal Stimula-
tion Inside a Cavity Due to a Hole). During stages two and three charge of
the order of o returns to the surface (per unit area). Therefore charge of
the order of OA enters the hole. Since a/R is assumed small the
electronic charge entering the hole is probably the dominant effect during
these latter two stages. If the radius of the hole is of the order of magni-
tude of the space charge distance, probably far more charge than oA will

get into the hole.

X rays directly entering a hole perpendicular to the wave front will
cause a great many electrons to be ejected into the cavity when they strike
the cavity walls. It is unlikely that these electrons will be as severely
space charge limited as the exterior electrons if they strike a conductor.

It seems possible to get, over a time equal to the pulse length of the X ray,
many more electrons backscattered off the interior surfaces than coming
through a hole whose radius is large compared to the space charge thickness.
(If the X rays strike an interior dielectric surface, space charge limiting

may be more severe than for X rays striking a conductor; positive charge

15



and

2 3

Py = 37 B0 - (16)

Here E, and By are the electric and magnetic fields in the absence of the
hole. Note that Equation (15) is exactly Equation (9). E5 and By in Equa-
tion (15) and (16) are time varying but consistent with Equation (14). Given
any surface S which satisfies Equation (10), where R 1is the radius of curva-
ture, and where Equation (15) is satisfied the generalization is clear: the
internal fields are due to an electric and magnetic dipole, whose magnitudes
are given by Equations (15) and (16) and whose fields, on the inside of the
cavity, satisfy the boundary conditions on S (with the hole absent):

xn=20, 17

(o=l o v N2

n=20. (18)

An electromagnetic formulation which satisfies the boundary conditions and
which should give an accurate approximation to the modal stimulation is the
Coulomb gauge mentioned in Section 2—Modal Stimulation from Isolated Panels.
It is necessary that the electrostatic and magnetostatic Green's functions
together with the first few modes of the cavity (without the hole) be known.
It is also necessary that the external fields at the hole in the absence of the
hole be known. The oscillating field due to an electric dipofe (at the
position of the hole) can be found by substituting the electrostatic potential
(constructed by utilizing the electrostatic Green's function) of the electric
dipole for V in Equation (4). Constructing the formulation equivalent to
the Coulomb gauge for magnetic charge would yield the modal stimulation due

to the magnetic dipole.
A HOLE NEAR THE SOURCE REGION

Since we have an idea of the magnitude of the electrostatic fields
in a cavity due to a hole we can take a stab at comparing these fields with
those caused by electrons or X rays entering the cavity through the hole.

We consider only the circumstances of high space charge limiting. The
electron scenario is proposed to be the following: just after high fluence

X rays strike the surface, large numbers of electrons leave the surface giving

14
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)‘(”"<;;X-ray Wave Front
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Figure 4a. X rays striking a surface.

Direction Normal to
X-ray Wave Front

Exterior

// /// Surface

Interior Emitting Surface

Figure 4b. X rays passing through a hole of area A.
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will remain on the dielectric rather than being conducted away. Whether
the positive charge is conducted away rapidly enough to reduce space charge
limiting significantly depends upon the pulse length of the X rays and the
magnitude of the electron flux.} How many more electrons will be emitted
into the interior will depend upon the geometry, the surface involved, and

the fluence.

At glancing angles of incidence with respect to the normal to the
plane of the hole the X rays will be less effective in producing electrons
in the cavity. If © is the angle the normal to a surface makes with the
direction of the X-ray wavefront (see Figure 4.a) and I is the energy flux,
then the energy deposited per unit area per unit time is IcosB. The
number of electrons emitted from the surface is proportional to the number
of atoms in the path length of the photon within an electron free path
length, d, from the surface. This length is equal to d/cosf. Even at
glancing incidence the number of electrons emitted per unit area from a
surface is then proportional to Id, since the number of electrons emitted
per unit area is proportional both to Icos® and d/cos6. It is unlikely
that X rays entering a hole of area A at glancing incidence will also strike
an interior surface at the same angle of glancing incidence (see Figure 4.b).
The number of electrons emitted inside the cavity will then be more nearly
proportional to the total energy entering the hole, IAcosf, since the cosB
no longer cancels out on the average. At some angle 8 the electrons enter-
ing the hole due to space charge limiting will dominate those arising from
emission within the cavity. This angle will probably be close to 90°

(example: cos 85" ~.1).

Suppose now that X rays penetrate into the cavity of interest
through the walls and the electron production of the attenuated fluence is
reduced by a factor 7y from the exterior electron production. Since the
area that the X rays fall upon in the cavity is of the order of Rz, in
order for the hole processes to compete effectively with the electrons produced

by X rays penetrating the cavity one would expect (A -a2) that
16
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SECTION 3
COMPUTER AIDED SOLUTIONS

In Section 2—Modal Stimulation Inside a Cavity Due to a Hole—
it was suggested that the fields inside a cavity due to a hole can be found
by a knowledge of the fields at the hole if the hole were absent. Fields
at the surface of satellites are exactly the output of dynamic SGEMP code
calculations. Internal fields due to a hole in the skin of a satellite
can be calculated in two ways using the SGEMP output: either an internal
finite difference Maxwell equation code, which can model a complicated
interior is written, or the Green's function and a few internal modes for
the interior are found.

If the satellite consists of an electrically isoclated panel it
may be possible, by correctly choosing the capacitance of the gap between
the panel and the main body, to obtain the electric field in the gap from
SGEMP codes. Finding the field in the gap would constitute a boundary
condition for the internal problem. The internal problem could then be
solved by means of a computer code or analytical techniques. The computer
code SEMP has the capability of attributing to a given set of surface points
a capacitance, inductance and resistance. This technique has been quite
successful with capacitance between two solid objects but, as yet, no

problems have been run with parameters representing a cavity.

19




l(5)2 > 1 (19)

Y \R ’

at the least. Under some circumstances—particularly for low energy photons—
Equation (19) may be satisfied. It is more likely, however, that internal
fields caused by an ‘exposed isolated section will compete with those due

to X rays penetrating the cavity walls. An example of this phenomena can

be found in Reference 1.

It should be noted that the frequency content of the electron
currents due to X rays penetrating cavity walls, will be roughly that of
the X-ray time history; little space charge limiting will occur. Internal
fields arising from electrons entering through the hole or arising from
dipole fields will contain higher frequency components. If cavity mode
stimulation is important, in certain circumstances, the restrictions of

Equation (19) will be relaxed.

18
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Knowing the general material contents of a cavity, the composition of its
walls and general geometrical shapes could aid the development of relevant

mathematical tools.

21



SECTION 4
SUMMARY AND SUGGESTION FOR THE FUTURE

By solving some tractable mathematical problems order of magnitude
estimates and general techniques have been suggested for analyzing the ef-
fect of circular holes and slots which electrically isolate one section of
a conducting body from another. If the hole is not circular, and the slot
is not long enough to separate one section from another, an estimate of its
effect can probably be made by approximating the aperture by a circular
hole of equivalent area. This suggestion along with some of the techniques
suggested in the report may require a deeper mathematical investigation as

proof.

Where a hole is in the source region, electrons pulled back into
the hole and X rays passing through the hole also constitute an electromag-
netic threat. Although it appears that the X-ray fluence passing through a
cavity wall would have to be considerably reduced in order for the '"hole"
processes to compete with it electrostatically, some of the''hole 'processes
may be more efficient in stimulating cavity modes. Internal fields due to
strong differential charging of isolated sections of a spacecraft are

the greatest surface discontinuity threat.

The extent to which surface discontinuities present a problem will
depend on the particular system. Nonetheless it would be useful if a systematic
study could be made of general surface discontinuities and cavity shapes for

a number of representative systems. Analysis of the effects of discontinuities

—t

rests, apart from computer codes, on 2 knowledge of Green's functions and
modes. A modal analysis is relevant if the modes are not highly damped.
20



APPENDIX I
ELECTROSTATIC FIELD OF TWO JUXTAPOSED CONDUCTING HEMISPHERES

We consider the geometry of Figure 1 and, assuming that a charge
has been placed on each hemisphere, we wish to find what percent of that
charge has leaked inside. Both hemispheres are conducting although in-
sulated from each other. We consider the problem electrostatically and so
solve Laplace's equation both inside and outside the sphere. The potential
inside the sphere, VI(I', 0), 1s given by the expression

©
VT, 8) = 2 an(ﬁ)npn(cose) , (I.1)
n=0
where r and © are the spherical coordinates defined in Figure 1 (the
problem is independent of the azimuthal angle), Pn are Legendre polynomials,
R is the radius of the sphere and a, are expansion coefficients. Letting a
subscript "1" designate the left hand side and a subscript "2" the right

hand side,the potential on the left hemisphere, ¢,, and the potential on

1
the right hemisphere, ¢2, are written:

[22]

¢ = > a P (cosg) 0 <6< /2 , (1.2)
n=0
- 0
¢2 = Z anPn(cose) 7 = g <7, (I.3)
n=0
Using the orthogonality properties of Pn’ and the fact that
0 1
_ (130
an(x)dx = (-1) an(x)dx , (I.4)
-1 0

23
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1
q $, + ¢ (o, - ¢,) 2
120 - 14R 2, 14R 2% (@n® o+ 1)[an(x)] . (I.10)
0

R n=1
odd

It is clear from Equations (I.9) and (I.10) that

1 2
-1_20 =+ 14R - = }; (2n + 1) [fpn(x)] . (I.11)
R R n=1 0
odd

By integrating Equation (I.1) from 6 equal zero to w/2, at r equal to

R, we find, using Equation (I.5) that

1
® 2
1=73 (2n+ 1)[fP(x)dx] . (I.12)
n=1

0
Substituting Equation (I.12) into Equation (I.11) we see that
¢;R
90 - Q1 = 7 ¢ (1.13)
if q, is the total charge on the left hemisphe;e then
990 * 3371 = 9 - _ (1.14)

Denoting the charge on the inside and outside of the right hand hemisphere

by 91 and 450 respectively we know that

A * 931 = 93 > | (1.15)

where a, is the total charge on the right hand hemisphere. By integrating
the charge density on the inside of the sphere from 8 equals zero to 7

we find that

91 * 91 = 0 . (I-16)

By integrating the charge density on the outside over the whole 08 range

we find that

25



we find

1
a =B v 0y [ 000k 1.5)

n

0

Since the integral on the right hand side of Equation (I.5) vanishes for
even n, & exists only for odd integers and zero. This checks with the
fact that if ¢l equals ¢2 the potential inside the sphere is a constant
by-

The potential outside the sphere V0 can be written as

o n+l
R

Vo, 8) = 2(;) b P_(cosB) . (I.6)

n=0

Analogously we find
1
bo=222L g -1, [P (x)dx (1.7)
n 2 1 2 n ’ '
0

b, =0 , n odd .

The total charge q on a conducting surface is given by the expression
2L @y oa
q = 41Tf(w) ndS > (1'8)
S

~

where n 1is the normal to the surface S and V 1is the electrostatic
potential. Substituting expressions (I.1) and (I.6) into (I.8) while using
(I.5) and (I.7) we find the charges on the inside of the left hemisphere

47 and outside of the left hemisphere, CINY
q (0, - 9, 2 -
11 1~ 72 2n° +n 2

odd 0



APPENDIX II
ELECTROSTATIC FIELD OF ONE CONDUCTING HEMISPHERE

We consider the effect of the right hand hemisphere on the left
hand hemisphere in Figure 1. The right hand hemisphere is removed and a
charge q, is placed on the left hand hemisphere. The solution for the
problem can be obtained by a dual series approach? The potential V is

given by

>

n 1
n
Vi, 8) = — (12 + 1) + -k Z (R) P

odd
r <R (I1.1)

¢1 (-1) n
z (n+1)()p

even
0 ¢ (-DEL i+l
o0 Sonn g R,
odd
r >R
¢1 ( n/2 . n+l
' Z n+1(r) Pl (11.2)

even

where in Equations (II.1) and (II.2) the variables have the same definition

- as in Appendix I. We find by a procedure similar to Appendix I that
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oy * 0,
ql*‘qz-—'—i_R. . (I1.17)

Equations (I.13) - (I.17) together with equation (I.9) are six equations

for the six unknowns A19° 93717 920’ ¢l

find
where
) 1
%g 2n +pUP (x)dx] , (I.19)
0

and B is positive. Solving the system of equations by simple algebraic

manipulations we find that

ZB(q.l - qz)
1~ " 1+88 ° (1.20)

ql(l + 6B) + qu2

Q9 = 1+ 8B s (I.21)

and

ql(l + 48) + 4Bq2
¢, = ﬁ( 1+ 88 , (1.22)

The expressions for , and ¢., can be found by substituting ¢
1 Y20 2 2

for q, and 9, for q, in Equations (I.20) - (I.Z21).

We now find a numerical value for- B. Noting that*

1

T Rf
fpn(x)dx = (2249“;11) .(’1) R n= 28 + 1 . (1.23)
0 @&+ 1!

We see, summing the series in Equation (I.19) from n =1 to n = 11,

that

B < .4238 . (1.24)
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1 * 91 = 9 - (11.10)

Solving (II.10) we have

- (m+ 1)

Y1 =% 7+ 7 - (I1I.11)
- | S

7 = 9 75 5 = .1!'-J4Sq1 . (I1.12)
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-1
q01=+1(n/2+1)R+ﬁR Z (1)7(1+ l/n)fP dx
odd
and
-1
qH=+—-R ):(1)_2—

odd

combining II.3 and II.4 we find

¢ ¢ n-1 1
G = LR(m2+1) +q., + =R (1) 2 = [Pdx
01 2m ’ I1 27 el n n )
odd 0
Integrating Equation (II.2) over the hemisphere we have
n-1 1
¢ ¢ 2
S 1 (-1)
tial—T,(Tr/2+1)+1T)_:,1 - andx.
* odd 0

Substituting Equation (II.6) into (II.5) we find

+

AQp =91 * 7% -

(I11.3)

(II.4)

(I1.5)

(I1.6)

(I1.7)

Integration of the radial derivative of Equation (I1.2) over the entire

sphere we find
RO, = il
1 w/2+1°

Substituting Equation (II.8) into Equation (II.7) we have

9
B1 ~ 991 T T+ 2/7

We also know that the total change on the hemisphere 9,
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(I1.9)
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APPENDIX III
ELECTROSTATIC FIELD OF A SPHERE WITH A SMALL CIRCULAR HOLE

In this appendix we will demonstrate that the electrostatic field
of a small circular hole in a sphere is equivalent, in the first approxima-
tion, to a dipole field. The potential, V, of a spherical cap can be
solved by a dual series approachs. In spherical coordinates, for points
inside the sphere the solution (see Figure 3, page 11, for a definition of the

variables) 1is:

_ n

V=3 ar Pn(cosB) R (I1I1.1)

n=0
. where

VO

ao == (oo + sina) , | (111.2)
V0 -nfsin(n+l)e . sinna

a =—R + , (I11.3)

n m n+l n

VO is the potential of the sphere while Pn are Legendre polynomials. Mak-

ing the transformation
o=mT- 8 N (111.4)

we can expand a in a power series in n:

Vv be
g = O feny™l 13 G 403 6n?adn+1) +. ) (II1.5)
n Rn'n 3t 5!

and
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If a charge -q is placed a distance "d" from the inside surface of a

sphere the internal potential ¢, to order dz, can easily be shown to be

s - - 2ad ®% - r%)
2R (R2 + r2 - 2chose')3

77 (111.15)

Let d approach zero and q approach infinity in such a way that
-2qd ~ P , (II1.16)

where P is a dipole moment opposite in direction to the surface normal. Then
Equation (III.15) becomes the potential of a dipole. From Equation (III.14)
it is clear that the hole is equivalent to a dipole P whose magnitude is

given by

1 2.3
P = 3 VOR 8§ . (I11.17)

(Since & 1is small it can be approximated by a/R.)

33



a0=v?0(1r-§—::+g—?+ ) (III.6)
Letting

8' =17 -8, (I11.7)
and noting that

P (-cos8') = (-ljnPn(cose') , (I1I.8)
we find to order 63 that

GSV0 od n
V=v, - m-n);b (r/R)"(2n + 1)P_(cos8') . (111.9)

The error in Equation (III.9) is small where the field point is
not near the hole and where
2

8° <1 . (I11.10)
We know, from the Legendre polynomial generating function, that

(x? + R? - 2rRcoso') 1/2 - ;_Iéo(g)n P (cos8") , (III.11)
for

R>r . (I11.12)
Taking the derivative of Equation III.11 with respect to r we find that

(=]

1 r\' '
377 = ﬁ:éo n(ﬁ) P (cosB') . (I11.13)

r(RcosB' - r)
(R2 + r2 - 2r RcosB')

Substituting Equation (III.11) and (III.13) into Equation (III.9) yields

3
8 VOR

R2 r2 )
V=V, - — . (I11.14)
0 6m ((R2 + r2 - 2chose')3/2
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