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SECTION 1
INTRODUCTION

This report is the first in a series of reports to appear on
analytic studies of general SGEMP phenomena. They are intended to investi-
gate the physical phenomena involved in the generation of skin currents,
surface charge densities, and electromagnetic fields, and in coupling
mechanisms to internal circuitry. It is hoped to provide at least a
qualitative and preferably a quantitative understanding on theoretical
grounds, to provide a physical understanding of the various computer code
results obtained to date, and to help in predicting expected order of magni-

tude effects on real three-dimensional targets.

The spirit of our approach is to adopt. Fermi's philosophy that
"one should never do a (detailed) calculation until one already knows what
the answer is." We wish to outline the basic physics of SGEMP phenomena so
that we have a sound theoretical framework in terms of which we can under-

stand the more detailed computer results.

The present report deals with the steady state electron emission
boundary layer. In the future we hope to study the time-dependent transient

build-up of the layer.

If we think of the chronological sequence of events occurring in
a typical SGEMP problem, we have first the arriving X rays illuminating the
exposed satellite surfaces and ejecting photoelectrons. These electrons

constitute an electric current which is the basic driver of Maxwell's



equations. The exposed surface is left positive and this positive charge

flows away on the satellite surface producing the skin currents.

The photoelectrons above the positive surface produce a strong
normal electric field. At relatively high fluences, large numbers of low-
energy electrons are held back by this field and congregate near the surface,
producing a boundary layer of relatively dense charged plasma. Of the
subsequently emitted electrons, only the more energetic ones can penetrate

the potential of this layer and move through space around the satellite.

Hence the boundary layer greatly affects electrons that penetrate
it by reducing their energy. Also, the layer constitutes a dipole layer
producing its own external field. In addition, the structure of the layer
near the edges of exposed surfaces will determine how the electrons flow
around the edges, and may help in understanding the surge of replacement

current around the sides.

The boundary layer structure is a function of the X-ray fluence,
time history, and energy spectrum, and the photoelectric yield of the target.
Its thickness can be less than a millimeter for high fluences and soft
spectra, and larger than the satellite dimensions for hard spectra and low
fluences so that it hardly exists. This wide range of thicknesses makes it
difficult to handle by a single technique in SGEMP codes designed for a

wide range of fluences and spectra.

In this report we study the structure of the boundary layer in
the steady-state approximation and in one dimension. In this case the
problem can be reduced to quadratures, and so solved completely. Previous
workers have investigated various aspects of this problem!»2>3. Here we
consolidate these previous results from a unified point of view and present

some new results of interest.
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SECTION 2
CHARACTERISTIC DIMENSIONS

Figure 1 shows a sketch of the relevant geometry. The z direc-
tion is normal to the surface. The X rays are incident from
above in the normal direction. Electrons are ejected upward with some
angle and energy distribution. In the steady state, the electron number
density n(z), electric field E(z), and potential ®(z) will all be single

valued functions of z.

Let Wy be a characteristic energy of the emitted electrons, and

v, = \/Zwllm s (D)

be a characteristic velocity. The electron number density at the surface,
n(Q), which includes both emitted and returning electrons, defines a plasma
frequency wp by

2

_ 4me
(JJP = T l'l(O) . (2)

the Debye

The energy Wy defines the characteristic dimension QD’

length, by

! Vi
2 = 2 = “’—_ . (3)
4me“n(0) 2“%

This is the distance over which n, E, and ¢ vary appreciably.
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A @{z)
> E(z)
o 4" Electrons n(z)
N A IPYINY
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Figure 1. Sketch of geometry.

The other dimensional unit of distance is ezlwl. But this is not

a plasma quantity and is at any rate exceedingly small. Since e2 = 1.44 x

10710 kev cm, and w, is a few keV, ezlwljs 10_10 cm, and is not a dimension

1
of concern. It is the distance of closest approach of two electrons with

relative energy W, -

The average distance between electrons is

2 \1/3 2
> =, 4)

1 Yy

O~
ilm

neoy /3 - (&ﬂl

If electrons are ejected at a rate T, (electrons/cmzlsec), which

is the product of the material yield Y(elecs/cal) and the X-ray flux d¢/dt

(calories/cmz/sec),

ro - Y g%_ elegtrons , (5)
cm- sec

then the number density at the surface will be on the order of

6
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2r
n(0) ~ 7Tg elecs/cm3 , (6)
1

and the total number of electrons will be on the order of

mv.r
N ~ n(0)L, ~ 10 elecs/cm2 . (7)
s D 4 2
Te

The surface charge density ¢ will be

2
0 = eN_~ \fmv1r0/4n esu/cm” , (8)

and is, curiously, independent of the electron charge. If e were not a

constant, for example if it were larger, each ejected electron would leave

behind more charge, but the electrons would return more rapidly to the surface,

so that in the steady state o does not depend on e.

Likewise the surface electric field, E(0), will be of order

E(0) = 4m0 ~ Vammv.r esu , (9)

170
1/2

and is also independent of e. Both © and E(0) increase as ro and there-

fore with the square root of the fluence.

The potential @1 of the surface relative to a distant point will
be of order
S
e

2
®l—~ E(O)lD ~ 4ﬂen(0)2D = (10)

Thus the characteristic potential depends only on the electron energy

spectrum, and is independent of fluence.

The dipole moment per unit area of the boundary layer will be of

order

w

= ORDA--—E— esu—cm/cm2 , (11)

P~ eng 4Tie

D



also independent of fluence. Thus one might expect that the quasi-static
field produced by the boundary layer's dipole moment will become relatively
less and less important as fluence increases since this field is independent

of fluence whereas other sources of dynamical fields increase with fluence.

The kinetic energy stored in the moving electrons will be of order

mv.,T

1 2 170 2

K «owlenv 5 mvl\j 3 ergs/cm” , _ (12)
qme

and the energy stored in the electric field will be of order

2
_ E(0) . 2
u T QD K ergs/cm” . (13)

Later we show that general principles actually imply that U = 2K exactly
for the normal component of motion. Subsequent detailed calculations in this

report confirm all of the above dimensional arguments.

TIME CONSIDERATIONS

The characteristic turn around time for an electron trajectory will

be of order

o

mv

"1~V—D~wi~ ——21 . (14)
1 P 8me T
We estimate t1 when W, o= 2 kevV, Y =1.25 x 1013 elec/cal (2 keV blackbody
on Aluminum), and the X-ray pulse FWHM is 3 shakes. Then
-3
t, ~ 1.4 ___lg__Tf— nanosec , (15)
$(cal/cm™)

where ¢ is the X-ray fluence, and we have approximated d¢/dt in Equation 5

3

by its average value ¢/2 FWHM. Hence for fluences above 107 cal/cmz,

t, < 1 ns. This indicates that the steady-state solutions discussed in this

1
8
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report will be applicable when the X-ray flux is not changing appreciably

over times of order 1 ns at 10_3 cal/cm2 or of order 0.1 ns at 10_1 cal/cmz.

The steady-state solution should begin to become a good approxima-

tion when the total number of electrons ejected
t

N(t) = Y“[‘%%-dt elecs/cm2 s (16)
0

is larger than the steady-state number

mv
Ns(t)~\/—12Y§%(t) , (17)
4me

from Equation 7. Assuming a triangular time pulse with a rise time tise’
and a full pulse width T = 2 FWHM,

t

bl
trise

0<tst , (18)

21
n
[\

=l

Tise

for the rising portion of the pulse. Using 18 and equating 16 and 17 one

obtains
mv
3 1 T
t> =t . —== , (19)
Tise 2ne2 Yo
or
VT 1033 1073 Y3
t = 2.28 wl(keV) trise(shakes) T (shakes) —7r—-—75—] ns . (20)
Using Y = 1.25 x 1013 elec/cal, T = 6 shakes, trise = 1 shake, W, = 2 keV,
10-3 1/3
t =4.3 — nanosec , (21)
¢(cal/cm™)

which varies from 10 to 1 ns as ¢ increases from 10_4 to 10_1 cal/cmz.



SECTION 3

THE RELATION BETWEEN EMISSION ANGULAR DISTRIBUTION
AND NORMAL ENERGY DISTRIBUTION

In our one-dimensional problem only the normal component of motion
is affected. Electrons are ejected with some energy and angle distribution
dzn/dwdQ (electrons/cm2 sec keV ster), but the dynamics influences only the

z component of velocity V. The emission energy distribution is

2
dn _ d™n electrons
aw - f Twag 4@ ’ (22)

cm2 sec keV
2m

with the integral taken over the emission hemisphere, and the three-dimensional

velocity distribution is

3 2
n d™n electrons ) . (23)

v dwd@2 cm2 sec (cm/sec)3

[=9

<|3

(a7
(]

The z component of velocity is distributed according to
[»v]

3
" f dvydv S
z Y 3 v

-0

2 A 2m 2
1 d™n :
m.[-dvl Tf—__dwdﬂ do , (24)
0 0

"

where

- V2 2=\[2 2
V= Vet vy v -V (25)

10
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and ¢ is the azimuth angle. We now assume the emission spectrum factorizes

into energy and angle parts,

2
d'n _ dn
dwd§ - dw g(6,¢:) ’ (26)

where 6 is the polar angle from the normal as in Figure 1. Then using

dw = mv;dv,, valid when v, is held fixed,

® 2m

dn dw dn
— =} = — d¢ , 27
&, o dw | & ¢ (27)

w 0

z
where
21 2

W= S mvo o, (28)

is the normal component of energy. We now assume the emission is a cos®

distribution,

g(8,¢) = %cosﬁ ===

which is close to the experimental facts and to the distribution predicted

by the code QUICKE2. In this case, Equation 27 yields for the distribution

of w ,
z
o0
dn d['dw dn ( electrons )
= | = & [ ZCCRTONS ) (29)
dwz W dw cm2 sec keV
Yy

The following several examples of energy distributions dn/dw with a cosB

angle distribution and the resulting dn/dwz are instructive.

1. Monoenergetic

dn _
T rOG(w - wl) s (30)

11



dn _ o
-—-—dwz = EI B(wl - WZ) > : (31)

where 6(x) is the unit step function 8(x) =1 if x>0, 8(x) = 0 if x < 0.

A monoenergetic cos® distribution produces a constant w, distribution.

2. Constant

T
dn _ 70
dw—wle(wl W) (32)
T W
dn _ 0,1 0 o<w o <w , (33)
dw W 1 A 1
A 1 A
3. Linear Increase
2r W
dn _ 0
- 3 2 O<wsw (34)
w
1
2r
dn _ 0
T = 3 (wl - wz) , 0 < W, < Wy o (35)
z W)

A linearly increasing cos6 distribution produces a linearly decreasing W,

distribution.

4. Linear Decrease

dn _ Efg.(w - W) 0<w<w (36)
4 2 1 ’ 1°
w
1
2r w
dn 0 1
an _ > = - < <
aw > [ﬁl n + wZ wl] R 0 w wl R (37)
z w z
1
5. Exponential
T -w/w
d_n:_o_e 1, (38)
wooWy

12
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oo
dn 1”0 f e-x
Ln _ Y dx = —
dw w X
z 1
wz/w1

To

M1

where El(x) is the exponential integral. This case is of interest because

U}

B, (W, /W) (39)

actual electron energy spectra when blackbody photon sources are incident

are very nearly exponential®. Note dn/dwZ diverges logarithmically as w, > c.

6. Linear Times Exponential

T -w/w
dn _ "0 1
I wz we 5- (40)
1
T -w /w
dn - 0 e z' 1 ] (41)
dw W
z 1

Here the z "component' of energy is exponentially distributed. The energy
spectrum 40 is essentially an exponential with the low-energy electrons
deleted. Hence, comparing results for cases 5 and 6 above will indicate the
effect of the low-energy electrons. For example we shall find that the
slope of the charge density, dp/dz, at z = 0 diverges for case 5 but is
finite for case 6. Equation 40 is also the emission energy spectrum for

particles of a Maxwellian gas escaping through a small hole.
These six energy spectra are sketched in Figure 2. The cosf

distribution always enhances the low energy end of dn/dwz. In particular

dn/dwZ diverges logarithmically as w, > 0 if dn/dw is non-zero as w > 0.

13



Case 1

dn/dw
dn/dwZ

Case 3

_gnldwz dn/dw

Case 4

\dn/ dwz

N\ dn/dw

Figure 2.

Normal energy distributions from several
coso distributions.
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SECTION 4
SOLUTION FOR BOLTZMANN DISTRIBUTION FUNCTION

The problem may be set up by solving for the scalar potential ¢

from Poisson's equation
Vo = —= = - 4mp(z) , (42)

and for the particle motion from the time independent Boltzmann equation

for the distribution function f

?:*-ﬁf-%ﬁ’-‘v’vf:\;z%-%ﬁ(z)%: 0, (43)
where

E(z)=—%§, (44)
and

o(z) = - efdz‘TFf . (45)

By dividing 43 by —esz(z), and using E(z)dz = -d%, and dwz = mvzdvz, we

obtain

of of
<ea_c1>+a_w;'0’ (46)

the general solution to which is any function of w,o- ed,

f = f(wz - ed) . (47)

15



The correct function to use in 47 is obtained by matching the boundary

condition on f at the emission surface, obtained as follows.

The differential rate of emitting electrons is f(z = O)VZ and is

given by Equation 23,

3 2
_ _dn_m dn elecs
£z = 0v, = == ¥y qwaq 2 3" (48)
d™v cm~ sec (cm/sec)
Again assuming a cos® distribution, we have
=0y = B dnl
f(z = 0) = v dw T cosB
_.m_dn
T2 dw
mv
2
o ldn
T 21 w dw (49)

The distribution of v, is obtained by integrating out the - and v_ dependence

to the one-dimensional distribution function
£ = [av dv_ f(z,V 50
(v = favav eeh 60
so that

fl(z = O,VZ) = J{Avxdvy £(0,v)

o0
o [dwdn
=n | (51)
W
Z
Since Equation 46 also holds for fl, 47 implies, with the help of 29,
_ dw dn
fl(z,vz) = 2m w dw
W, -ed

dn (wZ - ed)

2m In
z

(52)

16



We have multiplied by a factor of 2 in Equation 52 to account for the return-

ing electrons in the steady state, and have taken ®(z = 0) = 0.

The charge density 45 is then

p(z)

n
1
0]
o
RY:

[a N
<

L]
Hy

—

dn

[ve]
dwz
- eV¥2n
o ‘Wz + ebd dwz

~-€

(53)

p(%)

An alternate expression can be obtained with g%-by using the first line of

Equation 52 and interchanging the order of integrations on v, and w,

p(z)=—2eV2mf%:i Vw+e5§—$. (54)
-ed

These arguments and some in the following section are similar to those of

Higgins®.

17



SECTION 5
SOLUTION OF POISSON EQUATION

With p given by 53 or 54 as a function of @, Poisson's equation is

2
&2 amp(®)
9z
- 1.ji.§§.2 (55
) 3@(32) )
so that
E = - 39/9z
®(z) 1/2
= {_ Bﬂ.lp 0(81)de" + E(a)? , (56)
®(a)

is the electric field as a function of ®(z). Here E(a) is an integration

constant, the field at any point z = a. If the emission energy spectrum has
a maximum energy wz(max), the boundary layer will have a maximum extent Zax
and the maximum potential will be Qmax = -wz(max)/e = ¢(zmax), and E(zmax) = 0.

Then the electric field will be

°(z) 1/2
E(z) = {- SH.IP p(@')d@'; ) (57)

®
max

If the emission energy spectrum has electrons of arbitrarily high energy, then

z = o, E(®) = 0, and Equation 57 will still hold with o) = - «=, Integrat-
max max

ing once again,

18



1
¢ $ _1/2
z = —f ae' ! - 8w f p(®'")do" . (58)
0 é
max

The inverse of 58 gives ®(z) and completely solves the one-dimensional

steady-state problem. This solution was given by Hale for several spectra?.

Equations 57 and 53 give for the electric field at the surface

0 wz(max)
2 von dwz dn
E(O = 8me¥2m J[‘dQ' 59
(0 Il Ve (59)
®max -ed!

Interchanging the orders of integration permits the &' integral to be done.

Let Wy be a characteristic energy in the emission spectrum. Then we find

wz(max)
2 Vo Yz 1 dn
E(0)" = 16T mel I'O dwz wor. aw - (60)
e 1°0 z

The integral is a dimensionless function of the emission spectrum, and
hence Equation 60 confirms our dimensional arguments in Equations 9, 8, and

7, for E(0), ¢ = E(0)/4m, and Ns = o/e.

The dipole moment per unit area P(z) contributed by all electrons

out to a distance z is

A

P(z) = dl~zp(z)dz . (61)
0

Using 8E/dz = 4mp and integrating by parts, this can be expressed as
P(2) = o5 [8(2) + 2E(2)] - (62)

If the emission spectrum has a maximum energy wz(max), the total dipole

moment will be

19



Qmax wz(max)
P=P(zmax) = 4w - " " ame  ° (63)

independent of fluence as in Equation 11. If there is no maximum energy,
P(z) may diverge as z »~ <. This occurs for cases 5 and 6, and P(z) is

only weakly dependent on fluence when z >> %D'

20
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SECTION 6
ENERGY CONSIDERATIONS

The equations of motion for the electrons can be written in the

> >

form of a conservation law by introducing the momentum densities T and G,
and momentum flow tensors Pij and Tij of the particles and fields®. Then

these equations read

] 3 _
3t ('IT +G1)+'§€(P1]+T1J)_O’ (64)
where
J{mv fd v
mv. v fd v
_ i -> >

Gi = Zme (E x B)l

S 1l g2, Y., -
Tij = [2 (E* + B )aij (EiEj + BiBj)]

In steady state one dimension, the time derivative and x and y derivatives

in 64 vanish, leaving

1

0
57 (Piz * Ty3) = 0 (65)

so that PiS + Tz is independent of z. In the present problem, Ei = Eﬁis,
B = 0, so the i = 3 component of 65 reads

2
2 .,3 E® _
J[ﬁvz-fd vV-or*© constant . (66)

21



At large z, both terms on the left hand side of 66 separately vanish, so
the constant is zero. The energy density stored in the electrostatic field

is
u, = =, (67)

and the density of z component of kinetic energy, kz’ is

(L2648
kz—fzmvzfdv, (68)
so that 66 implies
ug = 2 kZ . (69)

The electrostatic energy density is everywhere twice the z kinetic energy
density. With a cosf® emission distribution, f is independent of angles so
the x and y contributions to the kinetic energy, kx’ and ky’ are each equal

to kz. The total kinetic energy density is

k

It

kx + ky + kz

f% mv2 fd3v

3k, , : (70)

and Equation 69 implies

2
up = k- (71)

Integrating on z, the total stored electrostatic energy

zmax

UE =qu(z) dz ,
0

and the total stored kinetic energy

22
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are related by

23
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SECTION 7
SEVERAL EXAMPLES

In this section we collect some formulas and graphs for four

interesting examples.
Example 1 - Monoenergetic Normal Emission

Electrons are emitted normally at Ty elecs/cmzlsec all with energy

mvi. This case was first discussed by Karzas and Latter!.

=
il
N

The number density at z = 0 is

n{0) = 2r0/v (73)

l >
and the Debye length, Equation 3, is

W,V
0 = f# ) _ (74)
D 2

8Te rO

The maximum distance the electrons travel is

L. . (75)

Z = D

max

(218}

The electric field at the surface is

4Y Tmr,.v

E(0) 01

LS (76)
max

I
(.N[-l:-
4]

N

24



-

The surface charge density is

g=1Y mrovllﬂ ,
and the total number of electrons is

m I‘OV 1

o
N =9-= 31(0) z (—
s e \J 1Te2 max

The number density is

n(z) = n(0) A - z/z, y72/3

ax

and diverges as z > Z ax' The electric field and potential are

1/3

E(z) = E(0) (1 - 2z/2, )",
w
_ 1 _ 4/3
®(z) = = [Q1 Z/Zmax)
and the dipole moment is
W
-1 .3
P = ane - 4 eNSzmax esu/cm .

The stored kinetic energy is

and the stored electrostatic energy is

UE =2K,

since there is no x or y motion.

The time for an electron to reach z,

- 1]

(773

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)



An electron's trajectory is

¥ o<t<t o, (86)
3

- - <
Zmax[l 1 t/tmax) i 0 <t< tmax , (87)

v(t)
z(t)

Vl(l - t/tmax

and

2/3

v(z) = v, (1 - z/zmax) (88)

An electron leaving the surface sees an electric field decreasing linearly

with time.

The number density n(z)/n(0) and electric field E(z)/E(0) normalized
to their value at z = 0 are shown as curve 1 in Figures 3 and 4. The normalized

potential, -e@/wl, is shown as curve 1 in Figure 5.

Example 2 - cos8 angular distribution, monoenergetic energy distribution
(case 1 of Section 3). This is the same as a normal emission,

constant spectrum, and was discussed by Hale?. Here

dn

Frel rOG(w - wl) ,

and, with vy = Y 2w1/m, we find

4r0
n(0) = —— (89)
1
w.ov
e a0
N lé6mer
0
2oy ™ zvﬁ?zD , (91)
E(0) = 4\]21Tmr0v1/3
W
_ 1
=4 — s (92)
max

26
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Figure 3.

Normalized electron number density vs. distance
from surface.
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Figure 4. Normalized electric field vs. distance
from surface.
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from surface.
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g = \/Zmr v./3m , (93)

01
N, =T = %—n(O)zmax , (94)
n(z) = n(0) (1 - z/zmax}2 , (95)
E(z) = E(O) (1 - z/z )7, (96)
w
®(z) = 7}-[(1 - Z/zmax)4 -1], (97)
W
P = 4—“% = -i— eNz . > (98)
Kz - %.wle ’ (99)
- =2
UE = 2 Kz =z K, (100)
v(z) = Vl(l - z/zmax)2 . (101)

The maximum distance zmax(wz) an electron with z component of energy w o,

0< W, < Wi will go is

2 ) =z 1= (- w0y | (102)

Trajectories and turn around times involve elliptic functions, but in the

case of a particle emitted with energy W= w1/2, we find

Z
_ 1 N max
tmax(wZ =3 wl) =~ 0.49 v, . (103)

The number density, electric field, and potential are plotted as

curve 2 in Figures 3, 4, and 5.
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Example 3 - cos6 angular distribution, linear times exponential energy

We find

Define

distribution (case 6 of Section 3). In this example the inte-

grals in Equations 57 and 58 can be done analytically.

an _To M
dw w2
1

<
1

1° \/—2“'1/’“ .

To
n(0) = 2V®W — , (104)
Vi
W,V
"1
g = 1 (105)
D 8ﬂ3/292r

L

1 2 2D ?

which is the Debye length at the surface of the electrons which are leaving

the surface.

Then
E(0) = 8ﬂ3/2mr0v1

2w

1
= "e_q > (106)
o= \/mrovl/z Y1 o, ' (107)

_0_

N, =g =004, (108)
n(z) = n(0) (1 +2/2)7%, (109)
E(z) = E(O) (1 +z/2)7", (110)

31



2w1

®(z) = - —g—-ﬂn (1 + z/ll) , (111)
K = +unN (112)
z 2 1's?

U.=2K =2k (113)
E z 37

The dipole moment per unit area due to electrons out to z is

Y1

P(z) = 5;;—[2n(1 +z/%) - E'fiiz] ' (114)

For z >> 21 this depends only logarithmically on the fluence through 21.

An electron emitted with velocity v and energy w = l-mv2 has

2
velocity
Y1 1/2
v(z) = v[l -2 Lanq z/zl)] , (115)
and reaches maximum distance
( w/2w1 -
zmax(v) = Rl e - 1) , (116)
in a time
— 2.1 w/2w1 v
tmax(v) = ‘farvI-e erf(v/ 2‘v1) , (117)
where erf(x) is the error function. For v = vy
JZ'1
toax(V]) ~ 1.405 ;I . (118)

Figures 3, 4, and 5 show n(z), E(z), and ©(z) in curve 3.
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Example 4 - cosO angular distribution, exponential energy distribution
(case 5 of Section 3). This distribution corresponds closely
with the experimental distributions for blackbody photon sources.

The complete solution cannot be obtained in closed form.

dn _ ‘o -w/wl
dw "W, °©
1
vy = 2w1/m
We find
To
n(0) = 4¥m — , (119)
. 1
w.,v
11
« R. = —_—, (120)
D \/16ﬂ3/2e2r
0
E(0) = Vier®/ %nr ov1/3 > (121)

G = \]mrovl/sﬁ , ' (122)
N = )%, - | (123)
s \/;Vrb ‘vr_

As a function of the dimensionless potential

- -e%(2)
v = s (124)

the number density and electric field are

n(O)[e_w - YT YU erfc W) ] . (125)

o
[}

E=EO[ - 20)e? + 2vTvY/2 erfcovi]l/? | (126)

The inverse of Y(z) is
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Y
\E % fdw[(l - 2¢)e"” + 2ﬁ‘w3/2 erfc(w/'ib')]"ll2 (127)
0

N
il

Here, erfc(x) is the complementary error function 1 - erf(x). Figures 3,
4, and S show n(z)/n(0), E(z)/E(0), and (z) obtained from a numerical ‘
evaluation of Equations 125 through 127. The abscissae in Figures 3, 4,
and 5 are scaled to the Debye lengths Equations 74, 90, 105, or 120,

appropriate to each example.

The asymptotic behaviors are

202
n(z2)2n(0) — » (128)
Z
33
E(z) 22T E(0) — , (129)
pe¥ vl (130)
4’ :

so that ¢ diverges logarithmically. For z << lD we find

n(z) + n(0) [1 - 1.602 (J-f—] , _ (131)
D

3 2
E(z) = E(0) [1 - ———] s (132)
\ 2 7
2 z
Y(z) »> \/—— , (133)
32

so that dn(z)/dz diverges at the surface.

The dipole moment, Equation 62, diverges logarithmically with &
and is only weakly dependent on fluence, as was the case in Example 3.

P(z) vs. z is shown in Figure 6.
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Figure 6. Dipole moment vs. distance from surface.

An electron ejected with z component of velocity V.o and wz(O) =-%

nlvio has z component of kinetic energy at z given by

W (2) = w_(0) + ed(z) , , (134)

which is shown in Figure 7 for several values of‘wZ(O), showing how various
particles slow down with distance from the surface. The maximum distance such
a particle will go, zmax(wz(O)L and the time tmax(wz(OJ) to reach this
distance are shown in Figure 8. Particles ejected with W, < w, 80 less than

two Debye lengths.

The total stored kinetic energy is

K=3K
z

1.012 w,N_ , (135)

where Kz is the total kinetic energy stored in the z component of motion,

and the energy in the electric field, U_, is 2K/3 in accordance with Section 6.
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Values of the Debye lengths, Equation 120, are given in Reference

Referring to Figure 3, we see that in this example the number
density drops off very rapidly at first, falling to half its surface value
in less than 1/4 Debye length. Both of the finite energy spectra, Examples
1 and 2, give a very poor representation of the electron density. In
Example 3 the absence of the low-energy electrons causes the density to

drop off more slowly than in Example 4.

The low-energy electrons double the surface value of n, Equations
104 and 119. The electric fields have a very similar behavior as seen in

curves 3 and 4 in Figure 4.

In Example 4, Figure 6 shows that the dipole moment varies slowly
with distance, remaining of order w1/4ﬂe for many Debye lengths. But at one

Debye length it is only 0.11 w1/4ne.
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SECTION 8
SUMMARY |

We have presented the solution of the steady-state one-dimensional
boundary layer problem, summarizing previous work and presenting the solution

for the interesting exponential energy spectrum in some detail.

In general we find both the electron number density at the surface
and the surface charge density (and also, therefore, the electric field at the
surface) are independent of the electron charge. The characteristic potential
of the layer and the dipole moment per unit area depend only weakly on the
fluence in the case of an exponential energy spectrum. General principles
imply that the energy stored in the electric field is just twice that stored

in the kinetic energy of the normal component of motion.

Estimates for the times at which the steady-state solution should

apply show it to be valid if the X-ray flux changes only slightly in about

3 2

1 nanosec for fluences above 10 ~ cal/cm”.
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