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ABSTRACT

In this report, we identify and resolve a basic difficulty in
finding the system generated electromagnetic pulse (SGEMP) fields
that has caused ambiguities of the same order of magnitude as

the fields' leading terms. The difficulty is the hitherto unrec-
ognized absence of one condition for .determining the gquasi-static
electric contribution to the surface SGEMP fields and its full
recaonciliation with the magnetostatic contribution. The results
apply as well to any low-frequency electromagnetic scattering
problems involving highly conducting scatterers.

In resolving the difficulty, after exhibiting its existence and
delineating its significance, we conceive and make use of two
mathematical conjectures. One is the decomposition of a tangen- -
tial vector field on a two-dimensional closed simple surface
into a "surface-divergenceless", or magnetostatic, part and a
"surface-curlless”, or electrostatic, part; the other is the
requirement of "surface-curllessness" of a surface current were
it to generate a magnetostatic field parallel to the surface on
that surface. The first conjecture is critical to the validity
of -our methodology and solution. Its proof is reduced to the
sclvability of a generalized wave egquation on a curved surface,
unexpectedly the same formal equation obeyed by the relativistic
electromagnetic four-potentials in a curved spacetime. The

-second conjecture simplifies the calculation greatly but is not

critical. Except for some special cases, it is not proved, but
neither is any counter example found.
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With these conjectures, we show that the electric and magnetic
contributions to the quasi-static fields fall out separately from
the general formalism and reconcile fully with each other to
yield the whole fields. The results are that the electrostatic
part of the surface current is driven by the driving electro-
static field and is "surface-curlless"; the magnetostatic part is
driven by the driving magnetostatic field component perpendi-
cular to the highly conducting surface and is "surface-diver-
genceless"; furthermore, only scalar field mechanisms are needed
to exploit away-from-surface conditions in determining and recon-
ciling the two parts. Finally, the application and significance
9f the results are illustrated by several simple but pPractically
interesting problems. The illustrations show that the relative
amplitudes of the electrostatic and the magnetostatic parts of.
surface currents (and thus the ambiguities removed by obtaining

them correctly) vary from zero to infinity in the cases often
encountered.
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SECTION I

INTRODUCTION AND SUMMARY

1. INTRODUCTION

System—-generated electromagnetic pulse (SGEMP) is the
electromagnetic field created by energetic photons impinging
on a material body, such as by the X-rays and Y;rays from a
nuclear detonation illuminating a satellite or an electronic
system (ref. 1). That such SGEMP could severely interfere with
the functional performance of an electronic system has been
recognized for a long time. Thus, the generation mechanisms
and the effects of SGEMP have become the subject of extensive
investigations in recent years (ref. 2).

The investigations in the SGEMP phenomena are very involved
and are divided naturally into several areas according to the
particular aspect of the problem being dealt with and the tech-
nology being used (ref. 2). These include (a) the characteri-
zation of the impinging photon environments; (b) the determina-
tion of the charges and currents (mostly electrons) that are
created by the photons via photoemissions from and Compton
scatterings with the atoms of the system and serve as the direct
driving source of the SGEMP; (c) the treatment of the ambient
medium to obtain its electromagnetic properties such as the con-~
ductivity induced in the medium by the process of ionizing col-
lisions made by energetic electrons; (d) the determination of the
SGEMP itself by setting up and solving (may lead to equivalent

l. Karzas, W. J. and R. Latter, "Electromagnetic Radiation
from a Nuclear Explosion in Space," Physics Review, Vol.
126, June %962, pp- 1919-1926 znd also Theoretical Note 27,
October 1961.

2. I1EEE Transactions on Nuclear Science: Annual Conference
on Nuclear and Space Radiation Effects, Vol. NS-23, No. 6,
Session G, December 1976. ’




" circuit network model) the classical electromagnetic boundary
value problem with prescribed sources and medium properties; and
(e) the final assessment of component impairments and performance
degradation on the system due to a given SGEMP. Roughly speak-
ing, in order to arrive at the final asséssment, the results
obtained in each of the areas just outlined are needed as the
inputs to the next area. Of course, dividing the problem into
separate areas is only approximately correct because interactive
mechanisms among different areas do exist and must be considered
simultaneously to render more accurate results. In any case,
however, the mechanism and the methodology in each of these
separate areas must be firmly understood and established, whether
or not the areas are considered simultaneously or iteratively

in the evaluation of a final assessment.

In this report, we devote our entire effort to the determin-
ation of the SGEMP from prescribed driving sources. We treat
the problem as a classical electromagnetic boundarf value prob-
lem driven by the photon-induced charges and currents as spec- N
ified input quantities (refs. 3,4) and subjected to suitable -
boundary conditions. In particular, we shall consider only the
case for a system made of conductors and shall emphasize the
guasi~static fields.

The quasi~static fields are the dominant SGEMP fields if
the motions of the charges are "slow" and the spatial extent of
the problem under consideration is "“small"--precisely the con-
ditions often encountered in reality by SGEMP problems. However,
the seemingly simple problem of determining these quasi-static
fields contains a fundamental difficulty regarding the portions

3. Stratton, J. A., Electromagnetic Theory, McGraw~Hill Book
Company, 1941.

4. Jackson, J. D., Classical Electrodynamics, John Wiley and
Sons, 1962. '




of fields contributed electrically and magnetically and their
reconciliation. This difficulty heretofore has not been resolved
to the best knowledge of the authors, and indeed has caused sub-
stantial (of the order of one) ambiguities in the dominant SGEMP
magnetic field. In fact, we must point out that this difficulty,
severe of consequence as it is, is so un-obvious that it not

only has failed to draw enough attention to get itself resolved
earlier but even its existence has evaded the recognition of

most researchers in the related community.

This report presents the difficulty and its resolution,
as the result of a rigorous investigation. To clarify both
the existence of the problem and its resolutien, we have
adopted a tutorial style, in which ideas and their develop-
ment are presented in explicit detail, even at the expense
of conciseness. 1In the following, Subsection I.2 briefly
summarizes the findings of the report, Section II describes
the problem, Section IIT presents its solution, and Section
IV shows some examples.

2. SUMMARY

In this report, we identify and resolve a basic difficulty
in finding the SGEMP fields that has caused ambiguities of
the same order of magnitude as the fields' leading terms.
The difficulty is the hitherto unrecognized absence of one
condition for determining the qguasi-static electric contri-
bution to the surface SGEMP fields and its full reconcilia-
tion with the magnetostatic contribution. The results apply
as well to any low-frequency electromagnetic scattering prob-
lems involving highly conducting scatterers.

Specifying carefully the physics of a typical SGEMP
problem in terms of its geometry, driving sources, driving
fields, temporal and spatial ranges of practical interest,
and material boundary conditions for fields, we establish,
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first the quasi-static nature of the dominant fields. Then,
following a clear-cut separation of the known but often con-
fusing quasi-~-static electric field and its effects on charges,
we exhibit the difficulty and delineate its significance.
Viewed mathematically, the difficulty reflects the insuffi-
ciency of conditions on the surface alone to determine the
fields on the surface--we have to invoke conditions away

from the surface. ' Viewed physically, the surface current
contains contributions of the same general order of magnitude
but with different surface distributions from both the quasi-'
static electric and magnetic fields--and the difficulty is

to find and combine these currents correctly on the surface.
Further discussed are some "krute-force" or "hand-waving"
methods that have been used in the past and conceal the
difficulty. These methods, in addition to being much more
complicated and expensive to compute, not only obscure the
whole physical mechanism of the field generation but are

either of questionable validity or simply incorrect. N

We resolve the difficulty and present the solution expli-~
citly with the help of two mathematical conjectures we have
conceived: one being the decomposition of a tangential '
vector field on a two-dimensional, closed, simple surface into
a "surface-divergenceless", or magnetostatic, part and a
"surface—curlleés", or electrostatic, part; the other being
the requirement for the "surface-curllessness" of a surface
current were it to generate a magnetostatic field parallel
to the surface on that surface. The first conjecture is
critical to the validity of our methodology and solution.

We have reduced its proof to the solvability of a generalized
wave equation on a curved surface, unexpectedly the same
formal equation obeyed by the relativistic electromagnetic
four-potentials in a curved spacetime. The second conjecture
simplifies the calculation greatly but is not critical. -



Except for some special cases, we have not proved it; but
neither have we found counter examples. Although we have not
exhibited mathematically rigorous proofs, based on physical
intuitions and experiences we are quite convinced of the
truths of the two conjecturs.

With these conjeétures, we show that the electric and
magnetic contributions to the quasi-static fields fall out
separately from the general formalism and reconcile fully
with each other to yield the whole fields. The results are
that the electrostatic part of the surface current is driven
by the driéing electrostatic field and is "surface-curlless";
the magnetostatic part is driven by the driving magnetostatic
field component perpendicular to the highly conducting sur-
face and is "surface-divergenceless"; furthermore, only
scalar field mechanisms are needed to exploit away-from-
surface conditions in determining and reconciling the two
parts. In presenting these results, we have made clear dis-
tinctions among assumptions and implications, physics-imposed
requirements and mathematical-model-imposed ones, and approx-
imations and exact expressions.

Finally, we illustrate the application and significance
of the results by several simple but practically interesting
problems. The illustrations show that the relative ampli-
tudes of the electrostatic and the magnetostatic parts of
surface currents (and thus the ambiguities removed by obtain-

ing them correctly) vary from zero to infinity in the cases
often encountered.




SECTION IT

it

THE BASIC SGEMP GENERATION PROBLEM

l. THE DRIVING FIELDS

Consider a simple SGEMP generation problem as depicted by
Figure 1. The charge density pdr(§. t) and the current density -
gdrig, t), themselves created by the illuminatihg energetic
photons (ref. 5) (not shown in Figure 1 because they are not
further treated in this report), are specified and serve as
the dfiving sources for the electromagnetic fields.* These
driving charges, moving in the volume Vout that surrounds
the object, could be emitted either by the closed surface S of
the otherwise electrically isolated object itself or by some
other nearby objects, but they are totally absent in the
volume Vin inside the object, i.e., .

dr dr =7 pdr(l)(§'

P (x, t) (x, t) t), xeS and VO

ut

IH
T

i

0, Xev, (1) ;

1w 0 2 3% (x, 0 =1 8Ty, gy )
z X, t) v

X, S
X, t), Xe and VOut

e, | §€Vin (2)

"

5. Evans, R. D., The Atomic Nucleus, McGraw-Hill Book Company,
1955, Chapters 22-25.

*Notice that if the motions of the driving charges are not
influenced significantly by the fields generated by these charges,
the pdr(x, t) and J9r(x, t) can be specified and then used to
obtain the fields via a formalism based on the Maxwell equations
and the boundary conditions. If the fields generated do influ-
ence significantly the motions of the driving charges, that same
formalism must still be used except that the equations of motion
of the charges, with the fields entering in the Lorentz force
terms to influence the motions of these charges themselves,
must be solved simultaneously. That is, that same formalism
and the charges' equations of motion make an enlarged total
system. ' :

10 |



- —— . oy ——————— ——
——

- N
” N
v N
o \\
// dr (xs t), ,L]_dr (Z_,m t)) \
/ -~ \
/ \
I/ \
/ !
f ' |
| )
1 =
] !
} Vout f
| !
i /
\ I
\ /
\ ,I
|
[ /
| /
\ !
\ N /
\\ ’ 0 /
\ , €0 /
\\ } /
N /7
~ /
\\ Ve
S~ - ’,/

-Figure 1. Configuration of the SGEMP Generation Problem

11



t

Here v(l)(s, t) is the velocity of the i h particle whose

charge density is
3 1) (4, 1y = q8%1x - £ (e (3)

where f(l)(t) is the position of that charge.

As a macroscopic description of the charged fluid, we shall
hereafter represent the source by its macroscopically averaged
charge density pdr(x, t) and current density Jdr(g, t).. Fur-

ther, we emphasize that the pdr(§, t) may and often does in-
clude a layer of surface charges "clamped in" on S as a result

of these charges leaving S, i.e.,

dr
oS, 1) = o8z, £) + 0% lx, ) 8 (x - x)s XE Vguq 20d S
— [}
x e S ' (4)
~5 .

where ﬁier, t) is purely in vout' However, there is no surface
current in the driving current density (we shall come back to
remark on relaxing this constraint in Subsections III-2 and III-
3C). For the simple SGEMP case that interests us, we model the
object occupying the volume Vin and surface S as a "good" con-
ductor (discussed and defined in Subsection II-2) with a con-
ductivity, Oint a dielectric constant €in’ and a permeability
Bin? and model the ambient medium in VOut as a uniform simple
one with constant € and My but no conductivity. The typical
approximate dimension of the object is the length %.

The basic problem concerning the generation of SGEMP is
to solve for the overall electromagnetic (EM) fields in the
above model, a simplified and yet adequate model for most SGEMP

" situations when the values of those characteristic quantities

12
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just described are appropriately specified (ref. 6).* Of

special interest are the fields in V0 near S and the fields

ut
on S. This deceptively simple problem does contain a basic
difficulty that could make the determination of the dominant
magnetic field ambiguous. We shall proceed to describe the

situation in what follows.

If the object had the same EM properties as the ambient
medium or if it were absent, i.e., . =u_, €, =€ , g, =
in o in o in
0, then the EM fields generated by the specified driving
source pdr(g, t) and Jdr(g, t), when expressed in the Coulomb

gauge, would simply be (Appendix A)

3 ,dr
ROy, t) = -9e%F (%, £) - 3¢ A" (%, ©) (5)
dr _ - dr ’ (6)
B *(x, t) = Y X % (5, t).
Here,
dr .
dr - 1 p o (x7, B) d3x' (7
¢ (1(, t) - 4'ITEO f R -
dr " Ix_x;l)
H \I (}5 t-iz= = 1
Adr(g_c_, t) = .4%[ £z 'R I a3x- (8)
de= (el gz |r| = |xx"|, and 335 (x, t) is the
an = o o ' - oy -~ ~

mtransverse" (solenoidal) part of the driving current given

by

6. Carron, N.J. and C. L. Longmire, On the Structure of the
Steady State Space-Charge-Limited Boundary Layer on One
Dimension, Theoretical Note 2381, November 1975.

*See the many references in Ref. 2 and the AFWL Theoretical
@otes edited by C. E. Baum. These references contain many
interesting results in different aspects of the SGEMP problem.

13



ar | 3% (x, v a’x
Je (x, t) = VxUx - = (9)
= 47TR

Throughout this report, unrestricted volume integrations are
carried over all spatial volumes.

In the expression (5) and (6), the Coulomb gauge has been
chosen purposefully. This choice explicitly separates the
driving electric field into two parts (Appendik A). One part,

-V¢dr(x, t), is the quasi-static instantaneous Coulomb field

and the other, - %E édr

(x, t), is the "transverse" field in-
cluding both retardation and radiation effects. One can easily
see that at positions near the driving source and near the
object, when these two are near each other as they are in most
typical SGEMP problems, the quasi-static part is the dominant
part of the driving electric field while the remaining part is
of the order of B = v/c or ER smaller. Here the v is the typi-
cal speed of the source charges and is quite smaller than c¢
(Appendices A and B) and the ER parameterizing the spatial near-
ness will be defined soon (see (13b)). However, as a result of
the yx operator, the inclusion or not of the transverse subscript
for the driving current density in the expression for the driv-
ing magnetic field is immaterial. The dominant part of this
driving magnetic field, under the conditions of being near the
object and source and satisfying the slowness in the source

time rate, is merely (Appendix B) its instantaneous magneto-
static part. That is (when not used under integration, R rep-
resents the typical distance from the location of source to

the position of field observation), under the condition

(changes of the driving)
source in At R

. 1
(Ehe driving sources) = GAE .« (10)

the dominant driving fields are (Appendix C)

14

/

N



B T (11)

uoddr(x”, ) a’yx-
vx - (12)
- 41R

E

dr,l d

(x, t) = VxA r'l(f. t)

i

B

The superscripts o and 1 indicate that the labeled quantities
are, respectively, of the order of zero and one in B and Ere
More specifically, we notice that the physical constraint (10)
implies

B = v/c << 1 . (13a)

and

' Ep = TR/Ty = R/LET,) << 1 (13b)

where T is the smaller of the typical rise time and the time
width of the illuminating X-ray pulse, and therefore the smaller
of those of the driving current pulse. Thus, the driving fields
near the object are predominantly quasi-static in nature if

both charges are relatively slow. In most real SGEMP problems
of interest with typical electron emission speeds of B ~ 0.2

to 0.5 (for ~10 to ~100 keV X-rays), and R ~ 2 . 1 meter,

this quasi-static situation holds appproximately. This is the
situation we shall investigate.

2. CONDITIONS FOR THE SCATTERED FIELDS

The driving fields described above, gdr(g, t) and g?r(g, t),
are the EM fields created directly by the specified driving
sources pdr(g, t) and gdr(g, t) in a homogeneous infinite medium
characterized by the same'medium properties as those in Vout'
These driving fields would have existed everywhere had it

not been for the presence of the object. In the presence

15



of the object, the driving fields excite additional pieces
of EM fields ESC(x, t) and B°®(x, t) such that the combined

total fields

gtotal v by = B (x, ) + %% (x, t) (14a)

Bl &) = 8% (x, &) + Bk, ©)  (14p)

~

satisfy the Maxwell equations, with the driving sources and
possible induced ones, everywhere in the true inhomogeneous
medium and have physics-dictated mathematical behaviors appro-
priate to geometrical boundaries and medium inhomogeneities.
Although one can always decompose the total fields according
to (14), this decomposition is a useful one only when each

of the driving fields and the scattered fields obeys separate
equations and couples to the other only through boundary condi-
tions, such as in regions beyond the spatial extent of the
medium inhomogeneities of the scatter or in regions where the
total fields vanish. The simple SGEMP problem does exhibit
only such regions, as we shall see.

a. In the Outside Volume Vout

In the region outside the scattering conductor, Vout’
the scattered fields obey the same Maxwell equations as do the
driving fields, except without any driving source. Since the
driving fields are predominantly quasi-static near and on

the conductor and they excite the scattered fields via only
their effects there, the scattered fields must also be pre-
dominantly quasi-static there. Thus, total SGEMP fields under
condition (10) are approximately

EtOtal(x, £) - Etotal,o(x' £) = Edr'o(g, t)

~ - -

SC,O(

+ E X, t) (15a)

16



Btotal(x’ £) = Btotal,l(x, t) = Bdr’l(x, t)
1
+ B5C T (x, ) (15b)
where the scattered fields obey
.oSCc,0 _ -
sc,1
TxESSO (e, 1) = - mout (e &)
~“Zout ‘¥ L1 = ot
082, ge, £2) = o (16b)
and
veB i, ) =0 (17a)
~ ~out <’ - a
sc,0
t)
sc,l _ ~out ()'S'
ngout (5, t) = LR ST {(17b)

Here, the subscript "out" indicates field solutions for the
region Vout in which these solutions must not have any singu-
larity. The subscript "in", when used later, should be simi-
larly understood. Also, {(16b) is always true for quasi-static
fields, and will be understood and omitted hereafter. In this
way, the "quasi-electrostatic" field is determined by (16) and
by the boundary conditions to be obtained in the following;
then it is used to determine the quasi-magnetic field.

b. In the Region Vin and on the Surface §
(1) The Electric Field

In the region Vin inside the conductor, the "good" conduc-
tivity O;n dictates a quick dissipation of electric field with

an e-folding time T, = Ein/oin (refs. 3,4). This implies‘that

17



the electric field inside the conductor cannot be accumula-
tively piling up beyond the time interval T, whatever source
generates that field. Typically, for a "good" conductor of

Gin ~ 107 mho/meter and €in ~ 10—l farad/meter, we have
€.
Ty = - lo-lasec, {18)
in : :

an extremeiy short time. Thus, if there exists no driving
source that acts fast enough in such a short time scale com-
parable to Ty to keep replenishing the electric field, the
electric field is always negligibly small in the conductor.
Accordingly, the SGEMP electric field in vin is negligibly

small compared to that in Vout 204 can be set to zero if

ut

T >> T _. (19)

In re;lity, the condition (19) is amply satisfied and the con-
ductor is termed a "good"™ conductor. Consequently, by further
invoking the continuity of tangential electric field across
any material boundary surface--a result always implied by the
Maxwell equations--we are well justified to requife at all
times that*

n(xs) X EtOtal (xs+ t) =0 xses (20a)

~ e -~ ~ Dy

.and thus

total,o

Q(gs),x E (Esi, t) =0 xseS . (21a)

*Notice that o + = gives the "perfect conductor" condi-
tion (20), as the limiting implication of (18) and (19).

18
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Here, n(xs) is the unit normal vector of the surface S and

points into Vo Also, here and hereafter, the notations

ut”
%ot and Xg_ 1nd1cate limiting positions onto S taken respec-
tively from V out and Vin' So indicated are the values of the

functions dependent upon these positions. The limiting indi-
cators, + or -, will be dropped when both limits given the
same value for the function under consideration and when such
a practice gives rise to ambiguity. The boundary condition
(20) connects the electric fields in regions Vin and Vv

out’
as can be seen clearly by rewriting (20b) as

13(355) X EOut (Xgpr ) = -13(355) X §dr'°(§s+. t) (21)
n(x ) x E (x t) = -n{x_) x Edr'o(x ., t) (22)

n ~s=' ~'<s -~ Zs-

sc o
(

Notice, of course, that in Vi the E X, t) satisfies

y.gSCr0

v-E;C(x, t) =0, (23)

a condition similar to (lé6a).

Finally, we make the remark that for the electric field in
the above and for the magnetic field to be discussed, we insist
that the same boundary conditions on.S are also satisfied on
S, This is motivated by the requirement of simple unique-
ness for the mathematical solution and is justified since
both the scattered and the driving fields vanish on 5,. With
such a condition on S_, (16), (20), and (23) uniquely deter-

mine Esc o(x, t) everywhere. In particular, these equations

imply Esc 0(5, t) = —~dr o(x, t) in Vin’ since both are homo-

geneous Neumann problems with the same boundary condition

19




(ref. 4). This result is consistent with setting the

gt ¢y = 0 in v, . as it should be.

~

(2) The Magnetic Field

The magnetic field in Vin and its boundary condition on S
encompass further complications than do the electric ones.
First, the magnetic field in a good conductor does not dissi-
pate away with the electric decay time Tye In fact, a magnetic
field constant in time can exist indefinitely in a conductor
described by Hin’ [

in
provided it has diffused there already. Second, the time it

da o. atte g._ 1is
, an cln no matter how large in ’

takes for the magnetic field to diffuse from the outside into
a good conductor of typical dimension & is (ref. 7):
T (8) ~u, o, 22 (24)
af in in~ .
This magnetic diffusion time does play an important role in
determining the magnetic boundary condition on S, as we shall

show in the following.

The time tp at which most of the interesting SGEMP phenomena
occur lies in the interval Ip:

I = (0, 25
tPEP ( rp) (25)

where t = 0 is the starting time for the pulse of the driving
source pdr(x, t) and Jdr(x, t), and"

7. Xarzas, W. J., and T. C. Mo, Linear and Non-Linear EMP
Diffusion Through a Ferromagentic Conducting Slab, RDA-
TR-9900-001, R & D Associates, July 1975; also published
as AFWL EMP Interaction Note No. 291; and to be published
in the EMP Special Issue of the IEEE Transactions on
Antennas and Propagation (scheduled January 1978).

20
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~
n

Z [maximum time length of interest
for the SGEMP problem

~ max(T,,7,) (26)

typical time duration that.
the charges travel near the
T, = object and contribute signi-
B ficantly to the SGEMP fields
of interest

R

.B (27)

<

Now, depending on Tp, the tp may or may not exceed Tdf(l),

and the magnetic boundary conditions that should be imposed

on S, contrary to the electric ones, are different for those
two cases (see Figure 2 depicting the various time parameters).

For the case in which the charges do move slowly and the
current pulse shape does change gently so that the quasi-
static condition (10) or (13) is satisfied, yet fast and
swift enough respectively to make the interesting time dura-
tion of the problem To short compared to the magnetic diffu-

sion time, i.e.,

Tdf(ﬂ) >> Tp (28)

the magnetic field has hardly had time to diffuse into the
conductor at any tp. In such a case, the total magnetic field
in Vin is negligible compared to that in VOut and can be set
to zero. Accordingly, we are well justified to require

total

9(55) . ? (Esi, t} = 0, xses . ‘(29]

21



Typical SGEMP problem: Ty << TR < Ty < Tq << Tar(e)

.S:J

A
t
4

- ————————

| R |

0 Ty s T Tdf(l)

>time

-
I
m
—
=
1

electric relaxation time for the conductor.

Q

in
typical EM retardation time over the distance of
~ interest for the SGEMP problem (R-~¢).

i
oo

. fypica] time scale for the x-ray pulse (~ the
smaller of the rise time and pulse duration).

x
in

typical time duration that the charges.travel 5"§
near the object and contribute significantly J
to the SGEMP fields near the object. :

[H]

-
1]

<0

_ tynical times at which the SGEMP fields are of -
tp N ~ dinterest (w_ therefore is the main frequency
P contents). P -

- Tdf(ép) where Gp is the skin depth of wave at

N
=

frequency mp.

Tq¢(2) . magnetic diffusion time into object of typical

_ 2 . -
= uinoinﬂ dimension L.

Figure 2. Various Time Parameters for the SGEMP
Problem
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This is obtained by further invoking the condition of continu-
ous magnetic field component normal to any discontinuous sur-
face, a condition implied by the Maxwell equations themselves.
For most SGEMP problems of interest, the no-diffusion condi-
tion (28) is well met. Thus, the boundary condition (29),
which has already invoked the property that the magnetic field
vanishes in Vin' should be imposed on S. On the one hand, it
helps (17) to determine the Eggél(g, £) in vout' On the other
hand, it helps to define mathematically the g?grl(g, t) in
vin' via

sc,l
Y.gin, (5' t) =0, Eevin (30a)
ot 05350, ©
, _ , p p
ngin (5, t) = M€, 5T ' Eevin (30b)
sc,l . - _gdr,1 o
gin (..5—, t) E(fs) = -B (fs, t) E(i{s) (30c)

Equation (30) uniquely determines the Qig’l(g, t) in Vi, to

be -Edr'l(ﬁ, t) there, consistent as it should be with the
physical requirement of zero magnetic field in Vin that leads
to (29) in the first place. Finally, we must emphasize here
that for this quasi-static good-conductor no-diffusion case,
the internal medium parameters of the object, Min’ €in’ and
Oin do not enter explicitly in the mathematical formulation
in determining the scattered fields, but rather they enter
only imélicitly via (18), (19), (24), and (28) to justify the
formulation.

Now, we turn our attention to the other case in which the
time duration of interest Tp is not always smaller than the
magnetic diffusion time Tag (*) (see Figure 2 for time
parameters). This happens even under the quasi-static restric-
tions of (10} or (11), in any one of the following situations.
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First, still under condition (28), if one is simply looking

for the fields at times much later than the rdf(R), then the
magnetic field has substantially diffused into the conductor

and the magnetic boundary condition (29) is not valid. Although
by this time the SGEMP magnetic field has become so small and
thus commands no practical interest, the only correct way to
obtain it is by solving the diffusion equation‘in Vin' connected
by the relation of continuous tangential electric and magnetic
fields on S to the fields in Vout (ref. 7). At such times,

the electric field near the object is virtually electrostatic
and is given by the electrostatic surface charge distribution
on the conductor, and the continuous magnetic field dictates
that there is no surface current flowing on the surface of

the conductor. Second, if (18) is violated because the charges

move too slowly, i.e.,
R
Tdf(.?,) < cE {31la)
or because the pulse rises too gently and lasts too long, i.e.,

Tdf(ﬂ) < T, (31b)
then in the time of interest the diffusion has -happened and

{29) becomes invalid. Again, the whole magnetic field for

this case is very small and should be found via the diffu-

sion equation and the tangential continuity of fields as was'

in the first situation. In any case, these well-diffused
situations do not arise in realistic SGEMP problems of interest.
In view of these diffusion protesses, we can conclude that

the boundary condition (29} and the SGEMP magnetic fields

near the conductor and at times tp obtained by invoking that
condition together with equations (17) and (30) are accurate

to the order of tp/Tdf(E).
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SECTION III

THE DIFFICULTY AND ITS SOLUTION FOR THE BASIC
SGEMP GENERATION PROBLEM

1. THE ELECTRIC FIELD AND THE SURFACE CHARGE DENSITY

The determination of the quasi-static electric SGEMP
field is straightforward and well known. However, the sur-
face part of the driving charge, Ugr(ﬁs' t), may sometime
cause ambiguity as to its double inclusion in the scattered
field and deserves some clarification. This point can be
treated most clearly by observing two facts. First, the

gr(gs, t) on S generates an Edr O S(x, t), and the p (x, t)
in V° ¢ generates an electrostatic field Edr O V(g, t) (see
(14)). Thus, the quasi-static electric field of the whole
SGEMP problem can be split correspondingly and fully into
these two parts. In particular, the scattered field can be
split as

~sc,o(§' £) = ESC,O,S(§' £) + Esc,o,v(f' £) . (32)
Second, in order for the surface-driven part of the total
quasi-static electric field to satisfy

Edr,o,S s¢,0,S8

(§, t) + E (§, t) = 0, fEVin (33a)

-~

where both the Edr'o's(x, t) and the Esc Qs S(x, t) are gener-

ated purely by surface charge dens;tles on the same S, these
two surface charge densities must be negative and lie on top
of each other. Consequently, we have

Edr,o,s s¢,0,S8

(§, t) + E (5, t) £ 0, X everywhere (33b)

25




and can hereafter cdmpletely avoid the participation of the

surface-charge-driven electric field in the problem except
sc,o,V

in determining an integration const

Making use of these observations, we immediately get:

ant for the E

Etotal,o(x' £) = Esc’o'v(x, £)
+ g0V %, 1)
where
sc,0,V _ n.8c,0,V
= _gasSC.V
Y¢out (5, t), §Evout
Esc,o,V(x' £) = E?°'°'V(x, £)
- p ~in -
= _ sc,V
= -Tofn G ), eV,
and
[ 42,8¢,V -
v ¢out x, £) =0, fevout
ni{x_ ) x V@sc’v(x t) = n(x_ ) x
~ ' ~8 - out ‘%' =x ~'%s
~ ~S+ .
E
Edr,o,\)'(x . t)
~ - ~s
_ sc,V .
eo ¢. [Y¢out (f' t)] X= E(fs) dA
L ~ ~S+

S
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0 '~s
S

X, t).

(34a)

(34b)

{34c)

(35a)

(35Db)

(35¢c)



i Yo (20 8) =0 XeVin (36a)

n(x ) x V¢§C'V(x, t) = n(x)

~ ~5 -~ 1n -~ x=x -~ -~

~ 5=
1 Cx B Vix 6) (36p)
-~ 1
sc,V =
! $ [Y°in (%, t)] + nixg) da =0 (36c)
s = ¥

Notice that (35c) and (36c) are consistent with (34a) because
the Edr,o,v at
thus contributes no net charge in the closed surface integra-

(x, t) is generated by sources in V0 only and
tion on S.

Now, by the very definition of gtOtal,o

(5, t} its tangen-
tial components are always continuous across S. However, its
normal component is not, and cannot be, continuous aéross S.*
Invoking the well-known facts that specifying the fields every-
where determines the source and that a surface charge density
on § implies a jump in the normal electric field across s,

there must exist a total surface charge density on the conduct-
ing surface S associated with the total electric field and

it must be given by

total _ total,o ~total, o
o (x,» t) = e E "Tlx . t) - E "Ry t)] © n(x.)
(37a)
d v
= ¢, [§5°'°'V(§S+, t) + BTk, t)] © n(x)
(37b)

*Imposing the condition of continuous normal electric field
component, in addition to the tangential ones, makes the prob-
lem of solving for ¢S¢,V(x, t) overdetermined, which in general
has no solution. h .
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Physically, this otOtal(gs, t) on S can be thought of as a

byproduct of the electric field in the process of adjusting
itself to meet the boundary condition (20).

We emphasize that the ctOtal(xs, t) given by (37)

is the overall total surface charge density physically exist-
ing on S. It is the sum of cgr(gs, t), the "clamped in" sur-
face driving charges, and 05°(§5, t), the "scattering”" sur-
face charge density as given by

Utotal

_ Jdr
(§s. t) = oo (gs. t)

sC
+ g7 7 (

Ryr t). (38)
Here, the csc(§s, t) is associated with the scattered electric

field only and is defined by

sc - sc,0 _ =Sc,0
o7 (xgr B) = & [gout (Xgyr 8) = By’ Hgr )
n{x_) . {39a)

~'ls

and carries no net amount of charge on S:
§o5%(x_, t) aa = 0. (39b)
S

Results {38) and (39) suggest an alternative physical
interpretation: the scattered electric field is generated by
the o°%(

the surface (of total net amount zero) in such a way as to

Xgo t} which has precisely rearranged the charges on

create an electric field to counter the driving one according -
to (21) and (22).
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Finally, we notice that the "scattering" surface charge

density osc(xs, t) can be further decomposed into
*Cx_, 8) = oS, t) + 5 Vix , ¥ (40)
~s ~s ~s
sc,S

Here the surface-~driven part o (gs, t) and the volume-
driven part asc'v(gs, t) are defined in a manner similar to
(39a) but with the Esc,o(x » t) replaced, respectively, by
B9 5(x, t) and §5°'°'V(§, t) (see (32) through (36)). From
Ehe foregoing discussions, under such a further decomposition
SC'S(ES, t) = —Ggr(gs, t)} and osc’v(gs, t)
(fs' t). Although this does provide a further

analytical insight, we should not allow ourselves to be

we clearly have o
- ototal

diverted from the two essential physical points: The overall
total
g

(xs, t) and the sur-

face charge density that generates and is generated by the scat-

observable surface charge density is

tered electric field is GSc(xs, t). Of course, when the driv-
ing source contains no charge emission from the isolated con-
dr sc,S

ductor itself, o (xs, t) 20 =0 (§S, t) and there is no

distinction among ctOtal(xs, t), ¢°%(x_, t), and csc’v(xs, t).

~8
2. A DIFFICULTY IN FINDING THE SURFACE MAGNETIC FIELD

After the electrostatic field has been determined, it can be
used to determine the quasi-static SGEMP magnetic field every-
where uniquely via (15b), (17), (29) and (30). Being so deter-
mined, the magnetostatic field can be evaluated in particular
at Xy on the conductor surface S. But such a précess calling
for a full solution of the magnetic field everywhere in the
three~-dimensional space provides more information than we
need and demands more effort than we have to expend, if our
primary interest is in the magnetic field, or the current flows,
on S only. One "well-known" alternative that bypasses the

ordeal of solving for the full magnetic field in three-dimensions

29




and that was frequently used to obtain the surface magnetic
field directly is to use the magnetic surface integral equation
method. However, this method reveals little physical insight
into the generation mechanism of the surface magnetic field

such as how it is excited by and varies with the driving charges.
Further, it basically invokes only one necessary property of the
required magnetic field, and its full sufficiency has not been
explicitly established.”* VThus, the gquestion is: is there a
simple method, and if so what is it, to directly solve for the

gquasi-static magnetic field on S which provides both physical
insights into the field generation process and gives values of
the field on S that could be used as starting values for further

obtaining the fields in Vv via a simple free-space propagation?

out
To start answering the gquestions, we proceed as follows:

First, if we had solved the problem, on S there must exist an

total(

overall total surface current density K X t) given by

(x_, t) = r ni{x ) x [BtOtal'l

total
K
~ ~S Hy ~ =S ~out

(x

total
~s+’ t) - B (?fs--' t)]

~in

(41)
whose physical validity is implied by the Maxwell equations,
similar and analogous to the case for surface charge density
given by (37a). Second, from and for the scattered magnetic
field we can‘define, similar to (41), a scattering surface cur-
rent density

sc( 1 sc,1 sc,l(

X! t) = wo n(xg) x [gout (§s+' £ - Bin (Xgor t}]'
(42)

K

Third, from (41) and (42) we immediately have

*The electric integral equation has divergence problems
associated with it, and the magnetic one was not explicitly
proved to possess a unique and correct solution (see K.S.H. Lee
and L. Marin, "Limitations of Wire Grid Modeling of a Closed
Surface," AFWL EMP Interaction Note 231, May 1975). >
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tot s
O, 0 = 10, 0
+ K (x_, ) (43)

where Kdr(xs, t) is the surface part, if any, in the driving

source current density. For the present problem, we have
let Kdr(x + ) £ 0, and there is no distinction between
gtotal ~S

S (x5, t) and §Sc(§s, t). Fourth, an examination of

(l?b), (30b), and (39b) reveals that

305%(x , t)

gy K g €)= ——2S (44a)
aototal(fs' t)
= 3t
2055 (x_, £)
ST (44b)
_ 9 total dr
3 O (xg, t) + g(}fs)-g (xgr t)
dr
+ Y(S)-§ (58, t) (44c).

Here the surface divergence on S, Y(S) = , is defined
for the surface components of a vector field V(x) on S by

n

~

Vg ° [B‘fs’ x y(gs)] = -n(x) [gx Y(qu= . (45)

~S

Equation (44) states the conservation of surface charges. It
is well-known and can also be obtained intuitively by extreme-
ly simple considerations. Fifth, in view of (29) and (41), -
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total

a knowledge of K (x , t) on S is obviously a knowledge
of BtOtal’l(xs,~t) exc;;t for a trivial rotation of 90° on S.
Thu;, (44) i; one condition on S that can be used to deter-
mine the two-component suxface vector field :tOtal(xs, t) or
?tOtal'l(fs' £). ~

The difficulty lies in finding the one more condition
total

needed to solve for the surface current K (xs, t) or the
magnetic field BtOtal'l(xs, t), on S. To put it differently,

we see that on S there are five independent conditions: one
in (17a), three in (17b) from which (44) is a derived but not
independent condition, and one in (29). But there are six
unknown quantities involved: the three magnetic field com-
ponents and their three normal (to S) derivatives. Clearly,
we are short of one indepehdent condition on S to determine
these six field quantities on S and cannot hope to obtain it
by manipulating vector or differential identities among

these five conditions.

Further, a closer examination of those five equations on
S shows that starting with any one of the infinite sets of the
six under-determined field components and their normal deri-

vatives will result in fields in VO that always satisfy the

ut
five field equations there and are determined uniquely. This,

of course, is just another way of exhibiting the difficulty.

The lack of one condition for the surface current is a
basic difficulty in the understanding of the SGEMP phenomena.
It has heretofore defied solution, and even evaded wide
recognition. 1In the next section we shall search for and
obtain a solution for it. '

3. A SOLUTION OF THE BASIC DIFFICULTY

To determine uniguely the magnetostatic field in vout’
and thus on S+, in addition to the five equations mentioned

at the end of the previous section, we must invoke the field
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behavior on S_,. This is the one more condition that we have
not used. 1In searching for the one condition needed to deter-
mine the magnetic field on S directly, we must use it in some
way.

Guided by physical intuitions, special case studies, and
detailed examinations of the defining equations, our search-
ing effort results in two mathematical conjectures. The con-
Jectures are physically plausible, and even obvious to some,
but in this report we have not been able to demonstrate
rigorous and complete mathematical proofs for them. Partly
based upon these conjectures, we have resolved the basic
difficulty in obtaining the  magnetic field on S directly.

a. The Two Conjectures

Conjecture one is as follows: 1In a simply connected,
closed, smooth, two-dimensional surface S, a smoocth tangen-
tial vector field K(xs) can be decomposed uniquely as

Kixg) = K (x) + Kif%s) (46)
such that
Tt Elxg) = o ‘ (47)
(s)
Ty - [5(55) x K(x) | = 0. (48)

Here the V( y is defined by (45) and the n(x ) is the unit
vector normal to S. The required properties of K (x ) and
K (x ) can be stated alternatively but equlvalently as

1
o

_ﬁ §I(§S) X 9(§s) - dag (47")

C

[
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g - arso
C

where C is any closed contour on S.

The part 51(55) is "surface-divergenceless" (see (47));
or, equivalently, it has no net emergence from within any
closed loop on S (see (47')). This is a clear analog to a
solenoidal vector field in a three-dimensional space, such
as the magnetic field or the velocity field of an incompres-
sible fluid of which neither has net flux emerging from any
closed-box surface. The part Enéfs) is "surface-curlless"
(see (48)):; or, equivalently, it has zeroc circulation
around any closed loop on S. It is an obvious analog to a
gradient vector field in three dimensions such as the electro-
static field or the irrotational flow velocity field that
commands zero amount after being integrated along any closed
line contour. From these analogs, the 51(55) and ng§s) will
be referred to as the "magnetostatic” type and "electrostatic"
type, respectively. Figuré 3 depicts their behaviors
graphically. Perceived from its three-dimensional analog, for
-which a decomposition of this kind is well-known (ref. 8),
the conjecture seems plausible; it may even be trivial to
prove. However, the effort we spent showed that the latter
was not the case. The following proof we obtained is not
rigorously complete, but reduces the validity of the con-
jecture to the solvability of a partial differential
equation. ’ 7

8. Morse, P. M. and H. Fishback, Methods of Theoretical
Physics, Part II, McGraw-Hill, 1953, p. 1763.
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Magnetostatic Type Electrostatic Type

Surface Field K;(x.) Surface Field K, (x.)

AN

I(s) - Kylxy) =0 Ts) - In(xg) x Kyplx )] =0
~ffg(§s) x Kp(x.) - dg =0 J{ Kpp(xgd - de 20
‘ C on S
C on S

Figure 3. The "Magnetostatic" and the
"Electrostatic Type Surface Fields
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Consider the tensor equation (Appendix D):

H) A (49)

Fs
where the semicolon (;) indicates covariant or contravariant
derivatives and the Rux is the Ricci curvature tensor (ref. 9).*

This equation in two dimensions reduces to -

" = g%~ ¢ ¥ (50)
io g
where C is the Gaussian curvature scalar for the two-dimension
surface. If (49) or (50) possesses a unique solution for f“,
with whatever integrability and regularity conditions on geom-
etry and field as required to ensure that solution, then we
can decompose K" in terms of f¥. The results are (Appendix D)

TR TR ' .
K K; + KIt (31)

where the ’ hY

H OiU _ LOFH
KI (£ £ );a (52)

9. Sokolnikoff, I. S., Tensor Analysis, John Wiley and Sons,
1951, Capter 3.

*Also, notice that (50) resembles a Klein-Gordon equation
for vector fields generalized in curved space. Of course, if
the manifold itself is flat, when and only when R = 0, then
(50) can be reduced to the Cartesian version of tﬂgdﬁoisson
equation. Equation (49) is exactly the same as the equation
obeyed by the EM four-potential in a curved spacetime required
by general relativity; see any textbook on general relativity,
e.g., C. W. Misner, D. S. Thorne, J. A. Wheeler, Gravitation,
Freeman & Co., 1978, p. 569.
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satisfies the generalized version of condition (47):

u_ .
KI:u =0 (53)
and the
|- S T '
KII = f - ‘ {54)

satisfies the géneralized version of condition (48):

MV
——K =0
II;v y (55)
( Igl ):u

Here, the euv/JTET is the antisymmetric unit pseudo-tensor
and the g is the determinant of the metric coefficient Iy
In this way, the validity of conjecture one is reduced to the
unique solvability of (50), with whatever constraints accord-
ingly imposed. We leave the proof just here.

Conjecture two is: Let §(§) be the magnetostatic field
generated by a smooth surface current density 5(55) on a
simply connected, closed, smooth surface S. Then ?(55)
n(x.) = 0 if and only if that §(§S) satisfies (48).

The physical plausibility of this conjecture can be
argued lobsely by considering an isoclated, highly conductive
object, with of without net charge on it, excited by some
incident EM field. The incident field excites on the surface
some current flow which in turn creates its own EM field. If
the magnetic field created is purely tangential to the sur-
face, then we have
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Here the argument is loose in that we used the‘assumption,
although plausible, that the current flows in the direction
of and is proportional to the incident, and thus also the
created, electric field on S. This, of course, does not con-
stitute a proof.

We have not found rigorous mathematical proofs within this
investigation for either of the two conjectures, especially.
the second, and have pﬁrposefully left the smoothness require-
ments in the conjectures undefined. A clear delineation of
the smoothness conditions, and of other possible conditions,
can be obtained only when the conjectures are being estab-
lished with mathematical rigor. However, we have explicitly
established that both conjectures are true for planar and
spherical surfaces. Before making use of these two conjeé—
tures, we would like to emphasize that based on this inves-
tigation and our past experiences and intuitioﬁs we are
quite convinced of the truths of the conjectures. Further,
they, especially conjecture one which is critical to the
validity of the solution, have immediate and profound impli-
cations in reality for SGEMP problems, and for all EM
scattering problems involving "perfect conductor" boundary

conditions, especially at low frequencies.
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b. The Decompeosition of the Electrostatic Contribution
to the Surface Current Density

By use of conjecture one, the scattering surface current
density Ksc(xs, t) defined on S by (42), if and after it were
found, can be decomposed as

sC 5C
K™ = KIT(x_, €) + KT(x, £). (56)

Here, the "magnetostatic" part KI(xs, t) satisfies

Vis) * K7 (%gr £) =0 (57)

and the "electrostatic" part gii(gs, t) satisfies
Y(s) [n(x ) x KII( ’ t)]= 0. (58)

Next, the scattered fields can be decomposed correspond-
ingly into a part I, generated by the surface charge-current

(Gic(fs’ t) = 0, KI (xs, t))and a part II generated by the
II(x , ) = osc(§5' t), KII(§ r E)). We shall investigate

" these two parts separately.

Consider first the type II scattered surface charge-current
and the part II scattered fields generated by it via equations:

pSC« 1 _ o
V-B[(x, t) =0 (59)
sc,l - 3 sc,V
VX By T (x, t)=-upe, 5T VO (xgr ©)
sc
o §II(§5' t) 6(5—55) (60)

sc 1 sc, 1
KII(ES' t) = uog(xs) X BII (§s+' t) '
sc,1
QII (fs-' t) ' (61)




a result similar to, and actually motivating the definition
in, (42). Taking n(xs) + to (60) on S, and making use of
(45), (58), and (6l), yields

2.
at

-y K (x_, t)

sC
T(s) * Kr1l%se 0 txgr ) (62)

Thus, the "electrostatic" type II surface current density,
KII(xs' t), is completely determined by the two equation (58)
and (62). It is solely driven by the electrostatic scattered
surface charge and is indeed electrostatic. This type II
surface charge-current density (oi?(gs, t), gig(gs, t)) gener-

sc,o(g' £) = _Y¢sc(§' &)

{x, t) by a free-space Green's function. These

ates the quasi~static fields: the E

sc,l
and the gII

fields so generated satisfy the total quasi-static electric
problem fully, including meeting its boundary condition and
making its nullness in Vin' However, the gii'l
may have a perpendicular component. This makes the total

(Es' t) on S

magnetostatic problem not yet fully satisfied. The next
subsection considers just that.

c. The Conditions for and the Magnetostatic Contribution
to the Surface Current Density

Since the Uic(xs, t) = 0, the remaining surface current

density of type I generates only a magnetostatic field,

gic'l(g, t), but no electrostatic field. The equations are

the same as (59) and (60) except with the subscript II there

replaced by I and the QSC'V(§, t) term deleted. As a result,
the g;;’l(x, t) can be represented by

4o
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B, out X ) VOoae s B Vo (%, £) = 0
sc,1l - <eV
BI (x,t): < X out
Bsc 1(x t) = _szc(x t) Vzwsc(x £) = 0 (63)
~I,in "> ~7in'%’ f L ¥in'l!
XeV,
~ in

-Here, the fields are required, of course, to be finite in
their respective regions and have continuous normal compo-
nents across S.

Now, as solutions of the Laplace equations the w (x, t)
and w (5, t) are not uniquely determined yet. 1In fact,
any pair of such solutions with their normal gradients on S
equal to each other can represent a legitimate magnetostatic
field. Therefore, we can exploit this one degree of freedom
and require the vanishing of the total magnetic field:

sc sc
-n(xg) - [onut(f' t)] _B(fs) : [Y¢in(§' t)]
x=xgt _ X=Rg™

dr,1
‘B({‘s) ‘ [§ (2.{5’ t)

+ B7" 1(gs,.t)l (64)
Thus, the magnetic fields - w (x, t) and ~Vw (x, t) are
uniquely determined as the solutlon of the scalar Neumann
problem. In particular, since none of sources that generate
the magnetic fields exist in V n' the uniqueness of the Neumann
problem implies that the total magnetostatlc field in V
vanishes identically.
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After obtalnlng the Bout

(x, t), the §ic(§, t) is simply
given by

K5 (x, t) = ;—1 nlx,) x [ngﬁt(}f, t)

o]

- Wik, t) ] (65)
XX .

which, as a result of (45), satisfies of course (57) as it
should. The "magnetostatic" surface current K (x, t) is
driven by the perpendicular component of the sum'of the driving
and the part II scattered magnetbstatic fields. It does so
via a purely magnetostatic formalism. It is thus indeed
magnetostatic.

Before proceedlng furthexr, we must make several important
remarks. First, in determlnlng the Q t(x, t) in V at’ Ve
did make use of its boundary condition on S_, just as pointed
out in the beginning of Subsection IV-3. The condition used
on S, is a zero normal deriéative. Second, the value of
(x t) is determined not only by the magnetic field in

~I

vout'

to go off the surface S to find the surface current, although

but also that in Vin’ The remarks show that we do have

merely through a simple mechanism of scalar field. Third,
after the decomposition of the surface current, the successive
decomposition of fields actually split the problem into two
pieces: one being driven solely electrostatically via inhomo-
geneous differential equations (see (60)) and the other being
driven solely magnetostatically via homogeneous differential
equations with inhomogeneous boundary conditions (see (64)).

Fourth, we must point out that any decomposition of
the surface current, after proper recombination, gives

the same 550(55, £) and thus the same KtOtal{xs, t)
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on S§. This can be easily seen by invoking the uniqueness of
the Neumann problem. The motivation of decomposing the

§Sc(§s, t) as does (56), in addition to the latter's render-
ing a clear procedure that removes ambiguity in deriving the
currents and then the fields and providing insight into the

pPhysical current-generating mechanism, is calculational

simplicity.

The simplicity becomes particularly appealing if conjec-
ture two is true. In this case, the n(x }e- Bs; l(x s )= 0
and no evaluation of the three dlmen51onal §I§’l(x t) is

needed to find its surface amount; and the KI (x, t) is driven
solely by the perpendicular component of the driving magnetic
field on S via (64). 1In this sense, conjecture two is a
convenience but not an absolute necessity. If it is generally
true, we have found an extremely convenient short cut for
evaluating surface current. If it is not, we just complete
the story by including the additional driver §II (x , B) -
9(55) for §§c l(x, t) in (64), without changing any of the
interpretations or procedures. For the cases of plane and
spherical geometry, conjecture two is explicitly proved
(Appendix D). -

Finally, we emphasize that conjecture one is essential
for the whole procedure of ‘decomposition to be valid. Further,
it is important to remind ourselves that the non-circulation
condition on § épplies only to the electrostatic part of the

scattering surface current density. It does not apply to

the total surface current density, nor to the whole scatter-
ing one, nor to the driving one if it exists. Of course,

under the special circumstances that both the magnetostatic
part of the surface scattering current Ksc(~s, t) and the
dr1v1ng source surface current Kd (~s, t) are zero, the

II(xs' t) on S becomes the sole and the total surface current.
In such cases, the no-circulation condition on $ applies to all
of these currents. 1In general, the two types of scattering
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currents for SGEMP problems are of the same order of magnitude, -

but with different spatial distributions on S, and of equal
importance,

N/

Examples in the next section will further illus-
trate this point.
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SECTION IV

SPECIAL CASE EXAMPLES

In this section, we shall give several very simple examples
to illustrate the application of our theoretical results and
the severeness of their implications.

l.. THE PURE MAGNETOSTATIC CASE

If the driving source is such that there is only a
Bdr’l(x, t) but no Edr’o(x, t), then the electrostatic con-
tribution to the scattered field is zero and the magnetostatic

contribution, the part II contribution, to the magnetostatic

field constitutes the whole scattered field. 1In particular,
from (43) and (56), the current on S is given by
gtOtal

(x50 £) = K5 (x

Kp (X, t) (66)

scC
I

As an example of such a special case, consider a super-

where K (Es’ t) is given by (61).

conducting metallic sphere immersed in a static uniform
magnetic field whose component normal to the sphere serves as
the driving field. The result is well known. It has a sur-
face current ' ‘ '

total _ . SC - .3 . .
K (fs’ t} = §I (fs’ t) = +5 HO sinb g¢ (67)

and a magnetostatic field (see Figure 4)

e S
3
= -e H cosh (; - E—-)

~T 0 3
r

. a3

+ e, H sinB . (1 + = Y}, r>a . »(68)
~60 2¢>
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h—gdr’ l(a{' £) =

Figure 4.
Magnetostatic Cases
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If the superconducting sphere is replaced by an infinitely
long superconducting circular cylinder pointing out of the
plane of the paper, the well-known result is

total _ SC _ .
K (xs, t) = K; (xs, t) = EZZHOSLnG (69)

~ ~ . ~

and

total(§’ £) = o0, o< a

2
-€ H cos¢ (1 -2 )
~p o p2

]

2
+e H sing (l + E—-) P > a. {70)
~¢ 0 p2

Notice that for such cases, the electrostatic KII(xs, t)
0 and the magnetostatic KI (xS
face current which does not satisfy the zero-sdrface—circula-

tion condition (58).

» t) make up the total sur-

2. THE PURE ELECTROSTATIC CASE

If the driving magnetic field on § is parallel to the
surface S, then Sc(x + £} = 0 and the only scattered quasi-
static field is contrlbuted by the electrostatlc surface

sc ’
current 511(55, t}. The EII(fs’ t) is determlned by (64)

and (65) and becomes the total surface current:

total sc
5 ‘ (55, t) = 511(55' t). (71)
. . total . . .
This makes K (xs, t) also satisfy the no-surface circulation
condition for KII( t).
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An example of sﬁch a case is the radial and azimuthally
symmetric emission of charges from a conducting sphere. In
this case the symmetry dictates that gdr'l(gs, t) has only
an azimuthally symmetric azimuthal component, and so does
HSC l(x, t) = Hfg l(g, t). This leaves the condition (65)
identically satisfied. Consequently, (64) alone is sufficient
to determine that sole 6-direction of the §§§(§S, t), which

in this case is also the total current.
3. MIXED CASES

The examples above show that the relative magnitude of the
magnetostatic surface current §§c(§s, t) and the electro-
static Eig(fs, t) can vary from 0 to «, depending on the
driving field and the conductor geometry. In general, they
both contribute significantly-and comparably to the total
surface current.

Although we will not present detailed applicational com-
putations, we shall elaborate more for the spherical case.
In that cése, one can always represent the scattered fields
by two decoupled scalar Debye potentials, one of the electric
type and one of the magnetic type. The corresponding scatter-
ing surface currents, for and from each of these fields,
indeed obey, respectively, the electrostatic and magnetostatic
surface current requirements (58) and (57) reduced to that
spherical occasion. In the spherical case, detailed results
for the particular problem of a charge circulating the sphere
have been obtained using this Debye potential approach (ref.

10). The resulting surface current consists of an electric

10. Lee, K.S.H., and L. Marin, "Interaction of External SGEMP
with Space Systems," AFWL EMP Theoretical Note 179, August
1973; also Higgins, D. F., K.S.H. Lee, and L. Marin,
"System-Generated EMP," to be published in the EMP Special
Issue of the IEEE Transactions on Antennas and Propaga-
tion, scheduled for January 1978.
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part and a magnetic part. They are precisely the spherical
case version of the electrostatic and magnetostatic parts
delineated in this report, and they are of the same order of
magnitude in the particle velocity. This is but one example
for the case of mixed and comparable contributions.

Finally, we emphasize again that in finding the magneto-
static and electrostatic pieces of the scattering current, one
must be very careful in applying the correct conditions to
each. Namely, (53) and (55) apply to the ggc(gs, t) and
(54) and (58) to the §§g(§s, t). A mishandling will in
general result in errors in the magnetic field of the same
order of magnitude as its leading term.
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APPENDIX A

The electromagnetic fields generated by the source
p(x,t) and J(x,t) in an unbounded uniform medium of dielec-

‘tric constant €_. and permeability u, are

(o]
E(x, £) = -Vo(x, t) -5 A(x, t) (a-1)
E(}f: t) = Y X é(?_fl t) {(A-2)

where the scalar potential ¢(x, t) and vector potential
5(5, t) satisfy

720 (x, t) = ——— - 2= Ven(x, t) (A-3)

+ V[V-A(x, £) + u e, —ﬁ—] (A-4)

~ b~ o~ A

Since the value of the V*A(x, t) does not influence the
EM fields, its value can be chosen to be anything. If we

choose the Coulomb gauge condition

v.al)(x, 01z0 L (a-5)

the resulting expression for the scalar potential gener-

ated by p(x, t) is
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(x*, &)
pra o
1 E— d3x‘

Q(C)(g, t) = dme_ | | : (A~6)

-~

where the unrestricted integration is carried over all the
spatial volume. With this Q(c%x, t), we can solve (a-4)
for the vector potential A(c%§, t) in the Coulomb gauge.

To get the solution for é(c)(g, t) from (A-4), we first
examine the right-hand side of (A-4). Assuming the g(g, t)
is a regularly behaved vector field in all spatial volume,
an assumption readily justifiable on physical grounds, we
immediately can make use of the Helmholtz theorem which
uniquely decomposes the regularly behaved J(x, t) in all
spatial volume into a longitudinal (irrotational) part
gl(g, t) and a transverse (solenoidal) part gt(f’ t):

J(x, £) = Jp(x, €) + J_(x, t) (a-7)

~ o~

where

Jl(x' t) £ - VY » —_ . 4d°x~ (A-8)
- J(x", t) 3.
T U6 8 2T xY x S S

Obviously, Y}cql(g, t) = 0 and Y°gt(§' t)

0.

Now, from the solution (A-6) for the ¢S} (x, t), we have

-5k



u_c Y 3 Q(Q)(g, t)

|

=

™
1]
|:v
H

J'p(}f: t) 43,-

[x - x|

e

[+

p(x”", t) 3
- uoz 3t 41r| —:5’| d7x

?

V'J(x" t) 3
— — d"x~
-HOer 47 [ x-x" | (A-10)

where for the last equality we have used the relation of charge
conservation which is implied by the Maxwell equations. From
(A-10), we can further proceed to obtain

UOE

il

1
i =
<1

r J(x", t)
9 {c) ~

I A s
R DA v F=a o (Yﬁ‘rwoq(’flt)]

0

g(’f‘l t)

- 3. 1
= UV §4Tr|x—x’['d§+ d~x (Y 41T|X"X:|)'
2 a4 ATX

= uogl(§, t) (a-11)

Using the gauge condition (A-5), the decomposition relation
(A-7), and the above relation (A-1l), we can rewrite (A-4), the
equation for é(c)(§, t), as

J—
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, _

2. (c) 9 (c) _

vTa (x, t) "U € mE2 A (x, t)= R T (%, t) (A~12)

Thus, the casuality restricted vector potential A(c)(g, t)

generated by the p(x, t) and J(x, t) is
X-x-

bo [ Ie(x7 e l“_E"L)

(c) - .0
J‘} (?Er t) T Ix_x.-l

adx (A-13)

where ¢ = (uOEO)_l/z.

With the Q‘c)(§. t) and Q(c)(g, t) given, respectively,
by (A-6) and (A-13), we have the expressions for the fields

Bix, t)= =72 (x, t)- L al®) 4, ¢ (A-14)

Bix, t)= ' (x, ¢) (a-15)

Now, an inspection of (A-6) reveals that the ¢(c)(§, t)
is obtained from the charge density p(g, t) instantaneously
without retardation precisely the way an electrostatic potential
is obtained from a time-independent charge distribution. Thus,
as expressed in (A-14), the part of the electric field associ-~
ated with this Q(c)(g, t), -Y¢(c)(§, t), is precisely the in-
Stantaneous Coulomb field generated by the charge distribution
p(x, t) at the same time as if it were not changing with time
at all. This piece of the electric field, —Y@‘c)(g, t), is
called the quasi-static electric field, for obvious reasons.
Further, because the instantaneous Coulomb field far awav
from the charges is directed purely along the radial direction
from the charge's present position to the observation point,
this -7¢ (%) (x, ¢) is also called the longitudinal electric field.

Moreover, since the expression (A-14) indeed decomposes theé



E(x, t) into a curlless part, -V¢(C)(g, t), and a divergence-

less part, %% A(c)(g, t), they are respectively the irrotational

and the solenoidal parts of the E(x, t) as decomposed in the
Helmholtz theorem described by (A-7) to (A-9). We would also
like to point out that far away from the sources the component
of electric field that does contribute to radiation is trans-
verse to the direction to the sources and comes solely from

the part %% g(ci(x, t). Finally, we remark that.the divergence-
less part, [-aé cT(f' t)]1/5t, although often called the "trans-
verse" part, is not purely transverse. It in fact contains a
longitudinal component which exactly cancels the instantaneous
Coulomb field outside the causality region, and only approaches

purely transverse at locations of long retarded time.

For the B(x, t), the gauge condition has no effect to its
expressions at all since the expression for B(x, t) is totally
insensitive to the choice of V-A(x, t). In fact, we have

r x-x"
J }‘E’,(t—I%J)

~%

|x-x"]

¢ | x-x"|
r . | x-%"|
. ‘Il(?f r t- )
= -V"x
- | x-x"|
. x-x"| lxex7|
+ Y xqi X + ngl X d3x'
| x-x"|
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x® = o _ (A-17)

where in the last integrand the V: operates on the X that

- .

appears as an individual argument of the I, (%7, "'; ) and

the V. operates on the x” that appears in the [x-x"| part of

. X-x-
.the argument of the q2(§" L—T;—L) . Thus, the expression for

g(g, t) is blind to the transverse subscript t in (A-13):

Blx, ) = vxa'® (x, &)

-~

( | x-x"|
ijuoq X7, t- — 3 .

~ 4w |x-x"|

(x, o )
U Jix, t= ——0
VxJ/-°~ ~ c d3

X (A-18
N 41| x-x"| )

\Jl
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APPENDIX B

From Appendix A, in the Coulomb gauge we havé

. .R
o(x”, &) adx” _ 8 [ MoJeXs EE) 3 |

Elx, t} = -V 4me R ot 4TR d”x
- -y [ et pax” _ Pom (D" o
41e R 41rz .o ot
° n=0
n
8 n-l rl 3 -
Jatm BT 0 &k
= -y 0(x”, t) d3x’ _i 11.9. (-1) g+l
.F
41reoR o 4T &h atnTl
fRn-l.;It(}f’, t) da°x” (B~1)
v.J (x ’ t——)
= o~t\~ C 3 .
]3(5' t)—Yx[ ATR d™x <
)
=V x f]-l g()'f ! t_c) d3x‘
-~ 4TR

il
<3
»
\ﬁ
|1'_'
le]
s
0
=
o)
=




N =
3lo

x [ A4 8 & x”
R

-~

n .n

th

Q

H
. (-1)
m n

1 [

=3
o

Y bd

Q|

@D
n=

_[RnﬁlJ(x‘, t) d3x‘ (B-2)
For the electric field, the ratio of successive terms in
the summation is of the order

an+1 change rate of the driv-)
R" atn+l gt(g’, t) < R - (ing source amplitude
a ~ c (the qriving source)
n-l o amplitude
R at® Je(x7, ®)
R -
i Tty R (B-3)

Thus, &p << 1 implies that the leading term, of n=0, is the
dominant term of the summation. Further, the ratio of this
leading term to the Coulomb term is of the order of

-1 T+ (x”, t) . v
poR ~ max (_;IE?_—-—_' I (x7, t) R) .

p({x~, t)
2
eoR
T,V
Rv max(l, —;—- 2
> v max(BER, 8 ) (B-4)
C Tx

Thus, the dominant driving electric field is the instantaneous
Coulomb field when evaluated at locations near to a slowly
changing driving source, i.e., when &R << 1 and B << 1, This
established (10}, (13) and (11).
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The justification for the dominant driving magnetic field
being the instantaneous magnetostatic one is similar to the
one that leads to (B-2). It demanded only the condition of
nearness in location and slowness in current time rate,

ER << 1, but imposed no restriction on the particle speed.
This is clearly as it should be, because magnetic field is
generated by current but not by charge.
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APPENDIX C

SOME PROPERTIES OF EST’©(x, t) and R

The quasi-static driving fields Edr'o(x, t) and
Bdr'l(g, t) do not satisfy the Maxwell equations exactly.
They satisfy these equations approximately as follows:
: ]
dr,o
= 33 (x, ©) (c-1)
v g g, 6 =0 (c-2)
387 Lk, £) _ o2
=0 (8 (c-3)
at
V x gdr'o(g, t) =0 (C-3")
v - Edr'o(x, t) = pdr(x, t) (C-4)

The approximate properties are important in keeping track of
fields to the right order of magnitude in computations.
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APPENDIX D

REDUCTION PROOF OF CONJECTURE #1 AND SOME SPECIAL
CASE VALIDITIES OF BOTH CONJECTURES #1 AND #2

Using tensor notations in the two-dimensional differenti- '

y-

able manifold defined by the intrinsic geometry of the closed ’
two-dimensional surface S with metric tensor gub for the
infinitesimal length element

2 _ Ha. .V -
ds® = quvdx dx (D-1)

the decomposition of conjecture #1, (46), is rewritten as
H - M H _
K K + KII' (D-2)

Now, if the generalized vector Poisson equation

s+ £Hi% 4 = k¥ (D-3) AN

in this two-dimensional Riemannian space possesses a unique solu-
tion; where some needed regularity condition on K" and the
solution f! had been imposed, then we can rewrite, or decom-
pose, K" in terms of fV. Here, standard notations of tensor
~analysis are used and the ";" indicates covariant or contra-
variant derivatives, respectively, in the sub- and super-

script positions. s* is a vector to be determined as needed.
Further, we emphasize that the existence of solution to (D-3)

may need some integrability conditions that impose restrictions

on the property of the space itself.

In any case, if the solution £¥ exists and can be found
for (D-3), we would have
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k! = (f‘“‘" - f‘““) + £ 0 4+ gH (D-4)
. -

Now in two dimension any second rank antisymmetric tensor must
be expressible as the product of a scalar and the antisymmetric
unit pseudotensor "%/ J/[g|. Thus,

gHIG _ g®H B ¢ (D-5)

where the scalar
£= Vg [fl’z - f2’1] (D~6)

and the g = det fguv). Then (D-4} becomes
Mo .
kY = ( £ f) + £ 4 M (D-7)

Vgl /.,

Next, we shall show that the terms in (D-7) are sufficient
(but are not necessary) for the decomposition purpose required
by Conjecture #1.

First, the "surface-divergenceless" condition (47), re-
written in tensor notation in the two-dimensional Riemann
space, is

Ki;u = 0. (D-8)

But the first term in (D-7) obviously satisfies the same:

eua 1

(ﬁf)w N B

0 (D-9)

e 3%

where the "," denotes plain partial differentiation.
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Second, the "surface-curlless" condition (48) , when
similarly rewritten in tensor notation, is

pv
E (B, =0 (D~10)
lg]

However, the second term in (D-7), when inserted into the
left-hand side of (D-10) in place of (K H)“, gives

v TRV
= fa-v-a = = (fa-v-a + fBRsv)
r 1 ’ ?
Vig| ju Vgl ' o
= 1 guufa + -E-B fBR
Ho Y — Bv
Vgl U [g] ju

JT_T Bv (D-11)
g

Thus, if we define

s¥ = -fBRB“ (D-12)
and use both the second and the third, Su, terms of (D-7)
as the (Kieu, then the requirement (D-10) and the conjecture
#1 are satisfied. Of course, the unique solvability of (D-3},
with its SH defined by (D-12), may require some integrability
conditions. These conditions, whatever they are, impose con-
straints to the general validity of conjecture #1. This
establishes (49) to (55) in fhe text of the report.
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Now, we tﬁrn our attention to some spécial cases for which
we shall explicitly show that the conjectures are valid.

First, for a plane surface the validity of conjecture
#1 is obvious--everything is similar to the three-dimensional
Euclidean space. For conjecture #2, it demands that

-

0= |ne) - Bl = | § B - epl x) x RKx7) a%x”
- - X+X R2
~ =8 - X+x
) ~ <s
- | § 2O xeplx, x1) - K(x) a'x
' 2
R X+X
[ -
_ j' 512 dp ﬁ' K(x") - ag”
R XX
Thus, we do obtain the required property
K(x") - d2° = 0 (D-14)

C on 8

for the surface current that generates the parallel-to-the-
surface magnetostatic field.

Second, for a spherical surface, we shall show that the
conjecture #1 is true for any vector field K(x, t) that
represents a surface electric current. This is so because
the electromagnetic field generated by the 5(55, t)} can be
expressed entirely by the two well-known decoupled scalar
Debye potentials, ¥ and x, and in particular

2 2
= 1 37 (yv) 1 3
Be = £ 3r38  Trsind 5e3p (¥X) (D-15)




32 (ry)
otage’

_ 1 32y
¢ 1r sinb 3raé

B -2 (D-16)
Clearly, the y-part satisfies (47) and is caused by the
"magnetostatic type" surface current §I(§§' t); and the
x-part satisfies (48) and is caused by the "electrostatic
type" surface current Eﬂ*fs' t). As to the validity of con-
jecture #2, one can easily see it in two different ways. One
is that the x-part, just established of type II, produces no
radial magnetic field at all. The other is that we can pro-
ceed and prove the validity similar to the planar case, since
we can always choose a surface line integration on contour

of constant & and R just as in (D-13) and (D-14).
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