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SECTION 1
INTRODUCTION

e

S

The theory of the electromagnetic pulse (EMP) from high-altitude
nuclear bursts was first developed in a series of lectures (Refe{ence 1)
given by this author at the Air Force Weapons Laboratory (AFWL) in January
and February 1964. The essential part of the theory is that Compton recoil
electrons, produced by the prompt gamma rays from the burst, are deflected
by the geomagnetic field from the radial direction to a direction perpen-
dicular to both the radial vector and the geomagnetic field. The transverse
electric current so formed generates an outgoing EM wave which maintains
coincidence with the gamma pulse and (therefore) with the Compton current;
as a result of this coincidence, a large-amplitude pulse is built up, with
duration (several tens of nanoseconds) determined by Compton electron
dynamics. This short duration is in marked contrast to that of the EMP
radiated by the radial Compton current, which is determined by the size of

the source region (hundreds of kilometers) and leads to a smaller amplitude.

In Reference 1 the author derived the basic equation of the out-
going wave approximation,
oE
1 t .1 _ 1
73t 7% T "7 (0)
0
Here r is the radial coordinate (but with the gamma pulse treated as planar),
Et is the transverse electric field, Jt is the transverse Compton current
density, ¢ is the electrical conductivity induced in the air, and Z0 = 377

ohms is the impedance of space. The factors 1/2 occur because only outgoing
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(and not ingoing) waves are generated with substantial amplitude. The
equation says that, as r increases, Et builds up in the directiom of -Jt,
but-is attenuated by the conductivity. The retarded time t-r/c enters
Eqﬁation 0 only as a parameter; that is, the equation deals with Et and Jt
atia constant retarded time. Sample Compton currents and conductivities
were calculated in Reference 1, and the solution presented. A general
discussion of the character of solutions was given, along with a discussion
of the effect of diffraction, which explained why the solution of an
equation along a single ray gives correct answers for a three-dimensional

problem.

In largely independent work only slightly later than this author's,
William Karzas and Richard Latter developed virtually the same theory (Reference
2). These authors chose to work in spherical coordinates, in which the
derivative aEt/Br in Equation 0 is replaced by a(rEt)/rBr, and they developed
approximate analytical formulae for the Compton current, the conductivity,
and the resulting field. There has been no important disagreement over the
basic theory of the high-altitude EMP since 1964. -

For a couple of years after the birth of tﬁe theory, Karzas and this
author provided analytically-based estimates of the high-altitude EMP to
military systems planners. Then John Erkkila of AFWL, working with consulta-
tion from Karzas, constructed the computer code HEMP which essentially
mechanized the analytical models developed by Karzas and Latter. This code
made it possible to produce EMP environment information easily for many burst
heights, yields, and observer locations, and it was the principle source of

such information for several years.

The analytical models contained quite a few approximations. 1In
1971, Jerry Longley and this author undertook, with support of the Defense
Nuclear Agency (DNA), to develop a computer code with more accurate modeling
of the basic phenomena. First, by solving the equations of motion of sample

Compton .electrons simultaneously with the solution of Maxwell's equations,



we obtained (Reference 3) the effect of the EMP fields on the Compton current
(self consistency). Second, we developed a method, called the obliquity -
factor method, for treating the effect of multiple scattering ofiCompton
elé&trons by air atoms (Reference 4). Third, we developed a method for treat-
iné the finite time required for secondary electrons to complete their
ionization (Reference 5). The code which embodies these improvements, and
others, is called CHAP (Reference 6). The AFWL codes CHEMP and HEMP-B

employ the same methods, and most of the current high-altitude EMP environ-

ments are computed with one or another of these codes.

Recently (Reference 7), William Sollfrey has calculated the effect
of multiple scattering on the Compton current by a new method developed by
him, and has raised questions abouf the basis and the accuracy of the
obliquity factor method.

In the present report we explain the basis of the obliquity factor
. method, and test its accuracy against Monte Carlo calculations. We shall
see that it is quite accurate. It is, in fact, more accurate than we had

expected.

We also compare with Sollfrey's calculations and find, to our dis-
appointment, that his method does not apparently provide accurate answers
for this difficult problem of multiple scattering. We are therefore left

with having to rely on the Monte Carlo calculations for accuracy standards.




SECTION 2
PROBLEM DEFINITION

~ .o

The prompt gamma rays from a nuclear burst are emitted in a few
tens of nanoseconds. For a burst far above the atmosphere, the gamma rays
at time t after the burst lie within a spherical shell of radius ct (c is the
speed of 1ight) and with thickness of the order of 10 meters. The downward
going pait of this shell begins to interact with the atmosphere at an
altitude of about 50 km. By 30 km, where the gamma scattering length is about
equal to the atmospheric scale height h = 6.7 km, of the order of one-half
of the gammas have been scattered by the Compton scattering process. By

. 20 km, only about 1 percent of the gammas have not been scattered. The

dominant source region for the high-altitude EMP lies between 20 and 40 km
altitude. - -

The mean scattering angle & of the gammas is of the order of
30 degrees. Hence in the interval before a second scattering of a gamma
occurs it will fall behind the unscattered gammas by a distance ~ A{l-cosf) =~
"0.13 A =~ 1 km. The scattered gammas therefore occupy a much thicker shell
than the unscattered gammas, and the flux of scattered gammas is very small
compared with that of the unscattered gammas in the thin shell occupied by
the latter. For the first hundred nahbseconds of the EMP, the previously

scattered gammas can be ignored.

The motlon of Compton rec011 electrons is limited by thelr Larmor
'radlus 1n the- geomagnetlc f1e1d and by energy loss in the air, ‘to distances

_ of"he order of 100 meters from their birth place. Over this distance one

tl a11tt1e error, con51der the gamma shell to be planar, the gammas



parallel, and their intensity constant in space at a given retarded time
T,

r

L4
4

T=t --% . W)

a

He¥e we have used the Cartesian coordinate z instead of r as the (large)
distance from the burst point. (Of course, once we have gone to Cartesian
coordinates, we can choose the origin of z arbitrarily.) Thus over the
region of space of interest in calculating the Compton current, we can regard

the gamma fiux FY as being a function of T alone,

F, = B (T) (2)

Since the air density and geomagnetic field are also very nearly constant

over 100 meters, the Compton current density, the air conductivity, and the
EMP fields are also, to good approximation, functions of the retarded time
alone over the range of the Compton electrons. This approximation greatly

simplifies the problem of calculating the Compton current and the EMP.

The EMP fields affect the motion of the Compton electrons. Thus
for an accurate calculation it is necessary to solve Maxwell's equations for
the fields simultaneously with the equationsrof motion of the Compton electromns.
Since the combined problem of particles and fields is nonlinear, there is little
hope of solving it accurately by analytical means for general cases; we are

reduced to using numerical methods.

In considering numerical methods, we have to choose between dealing
with particles ‘or with a distribution function, i.e., between solving Newtonis
laws or the Boltzmann equation. In the Boltzmann equation treatment, the
distribution funCtioﬁ will be a function of four variables: T and the three

components of electron momentum. The fine gridding of momentum space re-

._qulred for accurate solutlons makes this method generally more time consuming
fthan particle methods. (We do not want to rule out the possibility of

hhrlnyentlng a clever method for reducing the number of grid points required. )



7 Turning to particle treatments, we think first of Monte Carlo
methods, because of the phenomenon of scattering of the Compton ?léctrons
by =ir atoms, which must be included for an accurate solution. .ﬁowever,
thé random fluctuations in Monte Carlo calculations will falsify the high-
frequency content of the calculated EMP unless very large'numbers of electrons
are processed. The computing time consumed makes the Monte Carlo method

suitable only for infrequent checks on faster methods.

It can be estimated, and we shall later show, that scattering
causes only about a 30 percent reduction of the peak Compton current at
30 km altitude, which is the center of the EMP source region and the place
where the largest EMP is generated. Thus there is hope that an approximate
méthod of including scattering could give answers accurate to, say, 10 percent,
which would be adequate. To this end we invented the obliquity factor
method. It includes the effect of electron scattering without use of random

numbers.

10



SECTION 3
COMPTON SCATTERING

The Compton recoil electrons (Reference 8) are produced in
collisions of the gamma rays with electrons in the air atoms. In such a
collision, the gamma is scattered to angle 6 from its original direction
(see Figure 1), and the electron goes off at angle Y. The initial and
final gamma directions and the electron direction lie in a plane. The azimuthal
angle of this plane, or, to be specific, of the scattered gammas, about the
original gamma direction is denoted by ¢. We neglect the effect of binding of

the electrons in the atoms, which is believed to be small.

We shall use the convenient relativistic notation in which

P

Y = photon energy/mc2 = photon momentum/mc (1)
£ = electron total energy/mc2 (2
- .
P = electron momentum/mc (3)
- X
Y'/”
el
\ ,’/ e
SR A S .
]
Y

Figure 1. Geometry of Compton scattering.

ik



Here m is the electron rest mass, and ¢ the speed of light. From energy

and momentum conservation one can determine the dependence of y' and € on

Yy and ©: :
2
e=1+y-y'-1+—1-{—~xﬁ?, (5)
where
X=1-cos8 , 0=<x=s2. ()

One also finds the z-component of electron momentum
p_ =Y - Y'cosd = y(l+y) —E— . 7

The additional relativistic relatioms,

e=VNp~ +1, (8)

v P

z_.2
[o4

"E"' etec., , ‘ (9)
are also useful. In Equation 9, v, is the z-component of electron velocity;

similar equations hold for the other components.

The probability of scattering to angle © is given by the formula
of Klein and Nishina. The differential cross section of an electron for

scattering the gamma into solid angle d2 at 8 is

2
T 2
oteyan = 2 9 [1 e+ .l_uﬁ] . (10)
(1+yx)
Here r, = e?/mc2 is the cléssical electron radius, where -e is the electron

0 .
.charge (cgs units). The element of solid angle is, after integrating over ¢,

12



dQ = 2msin6de = 2mdy . (11)

The total scattering cross section per electron is obtained by imtegrating

Equation 10 over ¥, and is

. .2 :
- GT = TrroTl(Y) ) (12)
where
2(2+8Y+9Y2+Y3) 2 + 2y - YZA
Yo (1+2y) Y

For the gamma flux given by Equation 2, the total source density

of Compton electrons is

8o(T) = NZOTFY(T) . (14)

Here N is the density of air atoms and Z = 7.2 is the mean atomic number of

air.

13



‘ SECTION 4
THE BOLTZMANN EQUATION

e

We originally derived the obliquity factor method by considering
particles rather than the distribution function. Since that derivation
apparently left something to be desired in clarity, we shall derive it here
from the Boltzmann equation; Let f(?,f,t) be the density of Compton
electrons in the six dimensional phase space of coordinate T and momentum ;.

The six-dimensional velocity of the particles in phase space near the point
> > > 3 :

+ + - 3 - - - *
T,p is r,p, where the dots indicate time derivatives of the particle

qunatities:

V = three dimensional particle velocity, (15)

-

= force on particle at ;,3 . (16)

Ty H

Part of the force comes from the electric and magnetic fields. We shall

also imagine that a resistive force acts on the Compton electrons, to account
for their gradual loss of energy to other electrons in air atoms. The
scattering of the Compton electrons by air atoms will be treated as a

separate, scattering term in the Boltzmann equation.

_ The six-dimensional current of particles in phase space is (%,;)f,

and the six-dimensional gradient operator is (Vr,Vp) where the subscripts
indicate whether the three-dimensional gradient operates on coordinate or
momentum space variables. The six-dimensional divergence of the six-dimensional

. particle current is

14



V7 - [Ehe] = v - Go v, - @9
=V - VE+T, (3f) . - an

' > . . .
Hare the order of Vr and v can be interchanged because V is a function of
the momentum variables (see Equations 8 and 9), which are independent
- > .
variables from r. The order of Vp and p cannot be interchanged because of

the resistive force which depends on f in such a way that Vp . ; £ 0.

The conservation of particles is expressed by the Boltzmann

equation,

g_f+ VeVE+T - (pF) =S+ fx(ﬁ,f;')f(}?')dz’p' . (18)
t T P |

Here S is the source density of Compton electrons in Compton collisions,
and the integral with K is the scattering operator, which takes particles

-> -
out of momentum p' and places them at momentum p.

It is important to realize that the Boltzmann equation is completely
equivalent to Newton's laws of motion. If we start with an f which is a sum
of delta functions, each singularity representing a point particle, and solve
the equation forward in time, then the delta functions will be preserved
and they will move exactly as particles would under Newton's laws. To make
this work, the source S and the scattering operator have to be regarded as
stochastic operators, which occassionally inject additional point particles
or scatter point particles from one momentum to another. On the other
hand, one can regard f as a continuous function expressing the probability

s s . > > . .
of finding a particle near r,p, or as the density of particles.

We have seen that it is a‘good approximation to treat the source

S as depending on ;_and t only through the retarded time,

15



5=8(t-%,5) = S(T,p) . (19)

With this source, the Boltzmann equation and Maxwell's equations] allow

solutions which are functions of T alone. On substituting

t

L £=£t-2,5), | (20)

S +fod3p’ . 21)

Here the factor (l-vz/c) can be placed on either side of the retarded time

into the Boltzmann equation we find

9 Vs 3
5 Q-DE+T - 3D

derivative. We can make this equation look more like a standard Boltzmann
equation in momentum space by introducing a modified distribution function

v

2y = Z S
F(T,p) = (1 - j;if , f£= v . (22)
a--
Then Equation 21 becomes
S,y . (‘O’F) = S(T,7) + [Kx*Fa%p (23)
3T P P 2P P -
where
o >
1 d
P —%5—a (24)
a--3
> 1 .
K* = K(p,p') v . _ (25)
Z
1 - 2
c

\

Now from Eguation 1 we find that if we move along with a particle,

v X
dr = (1 ~-Hdt , . 7 (26)
so that
$ &
=, \ - (27)

16



The interpretation of K* is equally simple. The scattering kernel K contains
a collision rate and an angular distribution. Equation 25 shows, that the
collision rate in retarded time is increased by the retarded-time factor
1/i1—v;/c). Particles that move forward with v, close to ¢ are acted upon
by.. forces and scattering more quickly in retarded time, because the real

time interval is longer for these particles than the retarded-time interval.

Note, however that the source S§ does not acquire the retarded-time factor.

We can go immediately from Equation 23 to a completely equivalent
set of point particles. We create particles according to the probability
distribution in S(T,;). The momenta of these particles change at the rate

dp . 1
iT 5 % usual forces , (28)

1 - =
C
and they scatter at a rate increased by a factor 1/(1-vz/c) over the usual
rate, but with the usual angular distribution. In adding up the current
densities for these particles, we multiply the contribution of each particle
by a factor 1/(1-VZ/C) because that factor occurs in the relation (22)
between the true f and the modified F. This is the method used in CHAP,

except that we also treat the scattering approximately, as we discuss later.

The physical explanation of the retarded-time factor appearing in
the current contribution of each particle was given in Reference 3. It is
that, for two Compton electrons born at places with z-coordinates differing
by AZO and having identical (but displaced) trajectories, the actual
distance apart' of these two particles at any given time is AZ = AZO(I-VZ/C)
as indicated in Figure 2. The density of electrons is therefore greater
than the dénsity of births by the retarded-time factor.

17
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LY

Electron

Trajectorlss Jrajectory of .,
\\ Gamma Pulse ¢

AZ

AZ = AZO(1-VZ/C)

A

Figure 2. Explanation of retarded-time factor appearing in the current
contribution of each particle. Relation between AZ and AZg
holds in the 1imit as AZO -+ 0.

We hope this discussion of the retarded time equations will clear

up any doubts for both those who prefer the Boltzmann approach and others

who prefer the particle approach.

18



SECTION 5
. INITIAL VALUE OF COMPTON CURRENT

For a delta-function pulse of gamma rays, we can calculate exactly
the initial value of the radial Compton current. Also for the transverse
Compton current, which starts from zero at T = 0, we can calculate exactly
the initial rise rate. These two quantities are not affected by either

_ energy loss or scattering.

The contribution of a given electron to the radial Compton current
is proportional to

vz/c P,

8J, =7 SN JeTE-p, Y{+YIX - (29)

Let us imagine a magnetic field B in the y-direction (see Figure
1), which will lead to a current in the x-direction. The contribution of

a given electron to J  is proportional to

v /e Py
GJx ey il
2/ © P,

(30)

The average of this expression over the Klein-Nishina distribution vanishes
by symmetry. The derivative with respect to retarded time is
. o .
2 I?x Py Py

S 2. S _ . (31)
X £ - pz . (E-Pz)z

: ;f'Tﬁe'rgsglt,of‘the resistive (energy loss) force and of scattering would be

19



to keep the distribution symmetrical'in the angle ¢ about the axis formed
by the original gamma ray direction. Therefore they do not contribute to
the average of éﬁx’ Only the magnetic force will contribute. Cﬁe assume
he%e that there is no electric field, although we could also calculate its

effect.) For the magnetic force,

N

o _eB vZ/c _eB P,
Px* M TI-vJ/c me- P, ’
) (32)
s .. WS e P
z m1l- vz/c me-p,
We then calculate
P P2
s5 =% z_ . x| . (33)
x" W epy? (e’ |
P, z
Now when averaging over the angle ¢,
. 2. _ 2, _ 1 2. 2
av(p,) = av(p)) = 7 av(Py*P,)
- %—av(e:z-l-pi) . (34)
Thus when averaged over ¢, we obtain
2
6c:] _ e_B.l 1 - (e"Pz)
X m 2 3
(e-p,)
-2 5 [awo® - as] - - (35)

: . ’ <) '
To find the initial value of_Jz andAJx, we have to average
Equations 29 and 35 over the Klein-Nishina distribution in X, Equations 10
and 11. This averaging is-straight,forward, if a little tedious. The

are,rin MKS_unitsf

o

- resﬁlfs




JZ(O) = - NOeCTZ(Y)/Tl(Y) > (36)
J (0) =Ngee ()T, /T, (M) boen
: X 0 m/ x 1 )
He?e N0 is the total number of Compton electrons produced per unit volume,
Tlhis given by Equation 13, and
2y 6 + 2y . 3+ 4y - YZ
Tz = (1+Y)[2 + 5 = 5 * > ln(1+2yﬂ , (38)
(1+2v) Y Y
N € S S S W B3, fn(1+2Y) (39)
-3 1+2 2 3 :
x Y(+2v) 2y
For comparison with later numerical calculations we record here values for
gamma rays of energy 1.6 MeV and a magnetic field of 0.6 Gauss = 6 X 10_S
2
Weber/m":
- JZ(O)/(NOec) = 7.70 , (40)
_e _ eB _ 8
Jx(O)/(Noec) = 26.54 o 2.80 x 10 /sec . (41)

To obtain the results (36) and (37) in cgs Gaussian units, replace
ec by e, and eB/m by eB/mc. '

For a given flux of gammas, NO is itself proportional to Ti, SO

o . .
that Jz and Jx are proportional to Tz and Tx' Graphs of these quantities

versus gamma energy are given in Figure 3.

21
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SECTION 6
ENERGY LOSS

For energy loss by the Compton electrons we use Bethe's formula

(Reference 9). The mean change of energy dW per track length ds is

2 \
1 dWw _ 2 e
- —5 g5 = 2™NITy = rij . (42)
mc P

[a ]

Here N is the density of atoms of atomic number Z, ro is again the classical
electron radius, and
(mcz)z(e-l)pz 2 1
[1] = fn - (E - —-2-)2-112

212 e

2
1 1 1
+ -;-i- + “8" (1 "E‘) . (43)

In this equation, I is the mean excitation potential, given in Reference 9

for various elements. For air and aluminum:

air: Z=7.2 , 1= 80.5¢eV,

' (44)

AL: Z =13 , I=150eV .

To save computational time, we approximate [1] by

\ mcz

[1] ~ 22,n(T) + 3.42%n(p) - 1.71 , (45) -
~ 15.80 + 3.42%n(p) for air , (46)
~ 14.57 + 3.42%n(p) for AL . (47)

23



This approximation is accurate to 1l percent for electron kinetic energies
between 25 keV and 5 MeV. .

In the CHAP method we imagine that a steady force equal to dW/ds
acts on the Compton electron, in the direction opposite to its velocity.
Thus the energy of the electron decreases gradually at the correct average
rate. This treatment ignores the fact that the energy loss occurs in steps
of fluctuating magnitude. The probability distribution of energy losses W
is given approximately by

2w
P(w)dw Ead —_“_—0 ——gw—i ) (48)

wz + W
0
where Wy is of the order of 10 eV. The average energy loss per inelastic

collision is

2w '
- 0 W
WA 2“(2w ) :
0
~ 60 eV for W= 1 MeV . : (49)

Thus the average step is very small compared with the energies W of the
Compton electrons. However, since the integral of wP(w) gives a logarithm,
roughly equal amounts of energy are lost in each decade in w;»e.g., about
1/5 of the energy of a 1 MeV electron is lost in collisions that lose energy
between 50 and 500 keV. Thus large energy losses are not totally negligible.
We shall see, however, that at the center of the high altitude EMP source ’
region (altitude % 30 km), energy loss has only a small effect on the peak
Compton current. It is unlikely that fluctuations in energy loss could

cause changes in the peak current of more than a. few percent.

In CHAP, ion pairs are created at the rate of oné ion pair per 85
eV lost by the Compton electron. Secondary ionization then proceeds at the

rate g1ven in Reference 5, until there is one ion pair per 34 eV lost by

mpton electron.'

24



: | SECTION 7
. COULOMB SCATTERING

The differential cross section of a nucleus of charge Ze for
scattering an electron into angular interval db at angle 6 from its original

direction is (Reference 9)

-, .
_ 4522 €° 2msin6db
do = 42 I‘o —4-—-—4“—'— . (50)
P q

Here q is proportional to the momentum change,

q = Zsin(g) (0 =q < 2)

~0 for 8 << 1. (51)

-~

Note that the differential solid angle can be expressed in terms of q,

dq2 = 2qdq = 4sin(gacos(%9d9 = 2sinbdé . (52)
Thus
2,2
_ 2.2 € dq .
do = 472 ;Ef q4 . (53)

The total cross section, obtained by integrating over q, is infinite, since A
even distant_collisions lead to some scattering for a pure Coulomb potential.
However, screening of the nucleus by the atomic electrons reduces the scat-
tering forllargelimpact pa?émeters. A good way to take into account the

effect of the screening is to make the replacement
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2

TET o

where a is effectively the minimum angle of scattering. Moliére (Reference
ldj found a good fit to the scattering from the Thomas-Fermi atom By adding
three terms of this form with different a's and different coefficients re-
placing unity in the numerator. We have picked a single value of a which
gives the same result as Moliere's formulae for the following problem {which

will be used in the next section).

We wish to find the integral over the differential cross section of
the quantity

Cohes2(8y 1
1 - cosB = 2sin (EJ =359 (55)
This integral is
2
2 2,2
(1-cosB)do = 4‘rT22r2 e 1f_9qdq
0 42 2. 2.2
p (a™+q7)
0 -
22¢€%1 4 1
= 4nZ 1‘0 —'2— Q,n(l + —-2-' - —'-'—"2'- . (56)
P : a 1 + %r

In the cases of interest to us, a2/4 will be very small compared with unity,

so that we can approximate

1 4 1 2. 1, 1.213 |
E-[ﬂ,n[l + ;2-) - az] ~ En(;) -5 = in = (57)

1+—4-

Using Moliere's"formulae, one can again do the integral of (1-cos6), with

considerably more work.’ The result is

, | 2
‘ (1-cos8)dg = 4nz’r® & gn(2%2 Ry | - (58)
. F0s8)d 0 7 T
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(The number 102 inside the logarithm here replaces 137 = Tic/e2 in less
accurate calculations of Coulomb scattering.) Comparing the Moliere result
with Equations 56 and 57, we see that they will agree if we choése

f .- Z1/3

¢ 84 p

(59)

We shall use the Moliere result (58) directly in the obliquity
factor method drived in the next section. We have also used the differential
cross section (53), with the replacement (54) and with a given by (59), to
construct a Monte Carlo code for the purpose of testing the accuracy of the

obliquity factor method. That code will be described in another report.

One often sees formulae like Equations 53 and 58 with 22 replaced
by Z(Z+l), for the alleged purpose of including the effect of scattering by
the atomic electrons. This procedure may be approximately correct for the
larger angle scattering (although it neglects the reduced-mass correction),
but it can hardly be correct for the small angle scattering, where the
atomic electrons are already taken into account in thelstreening. Possibly
some form like Z(Z + —j might be approprlate. Since the correct procedure

is apparently unknown, we leave the factor Z in place.
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; SECTION 8
THE OBLIQUITY FACTOR

~ .

In Secfion 4 we derived the modified Boltzmann Equation 23 in
retarded time and momentum space. This equation conserves particles in
momentum space (whereas Equation 21 does not) and is directly equivalent to
a set of particles whose accelerations and collision rates are modified by
the retarded time factor. This equivalence is exact if the scattering
operator is regarded as stochastic. We now derive an épproximate, non-

stochastic way of handling the scattering of the Compton electrons.

We consider first the case in which there are no forces (and no

energy loss) and only scattering is acting. Then Equation 23 becomes

>
1
t

S E@) = f kG T 4 (60)

If we start with a particle with momentum §0’ then F is initially a delta

function
Fo®) = 8(5-py) -

As time goes onm, F(B) will spread out in angle around ;b, but with no change
inrthe magnitudb P =Py The initial angular Spread will be small because
the scattering is predominantly- small-angle. Therefore the factor (l-vélc)
will vary only 1ittle over the distribution F(B') at early times, and may

be replaced by its average_yaiue over that distribution. We thus write
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t

where the average ?; is a function of T but is independent of 3 and E'.

' In this approximation the central angle of the distribution does
not change from the angle of ;0. Let us calculate the rate of change of the

quantity u defined by

u= feosaF@)a’p , (62)

A
. > -+ . . .
where o is the angle between p and Py- Multiplying Equation 61 by coso and
integrating over 3, we find

ae_ 1 cosaK(g,;') F(ﬁ')dsp’dsp . (63)
dT 1 - Vz'/C

. > . . -+ .
In the integral over p, which we do first, we can choose p' as the axis

of spherical coordinates. Then
coso = cosfcosf - sinBsinBcoso , . (64)

where the angles are defined by Figure 4. Since K is a function only of the
scattering angle 6 and not of ¢, the second term on the right in Equation

64 gives no contribution, and we have

du _ 1 1y don ! :
IF -1 V;/c J{;OSBF(p }d p J/;oseK(6)2w51n6d6 . (65)

-+,

Figur_e 4. Angles for integration of Equation 63.

29



®

In these variables, the second integral is independent of F' and the first

integral is u. Thus

s fcos‘Bl((G)ZTrsinede : T (66)

z
Now the scattering operator K removes particles from 6 = 0 (i.e., it contains
a term -6(8)), and puts them at other angles 6 > 0. Since it conserves

particles, we have

JSk(e)2msineds = 0 . ~ (67)
We can therefore write Equation 66 as

1 | - -

e D V}/c “/~(1 cosB)K(0)2msin0dd . (68)

Since l-cos® vanishes at 8 = 0, the delta-function part of K(8) gives no
contribution to this integrél, and K can be replaced by the differential
scattering cross section of Section 7, multiplied by Nv to give a scattering
rate. We thus obtain, from Equation 58, and noting that

=c 2 ’
v=coTo (69)
the result,
14d _ 1 2.2 € , (102 p
ATt TTr e 4mNzPrl . 2n(zl/3) : (70

A group of particles starting out with velocity
0=cE. | (71)

will have an average velocity, as a result of scattering,
Vo=V, o (72)

This reduction in velocity affects the current densities and the relation

- BetWQéﬁ real time t and retarded time T for this group of particles. It
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does not affect the ionization rate directly, which depends only on the
magnitude of the momentum.

: Let us now turn on the electromagnetic and resistive forces. Now
t@g magnetic force rotates all of the momenta in the slightly-spread distribu-
tion (resulting from scattering) about the magnetic field axis; this changes
the central angle of the distribution, but does not affect the angular
spread u. The resistive force reduces the magnitudes of all the momenta,
but also does not affect u directly. The electric force changes the
components of all the momenta in the direction of the electric field; this

changes both the central momentum and the angular spread, as explained in
References 3 and 4. '

We thus arrive at the obliquity factor method. It assigns a

+ - . - -
central momentum p to each particle, which is the momentum 1t would have

. + -
in the absence of scattering. Associated with p in the usual way are the
: Lol > . . .
total energy € and the central velocity V. The equation of motion in

retarded time is

dp _ 1
T - x usual forces . (73)

z
1-2w
The equation for p is Equation 70 (when E = 0) with

v o= V.| . (74)

u -
—— = —RE . (75)
Z i Pr ' :
e

Since u starts from unity at T = 0, it can be seen that scattering does not
 af£ectWthe,initia1 value of Jz, and that}it does not affect the initial value

: Qqux/dT;(er g.magnetic field in the y-direction).

BT
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To the extent that scattering is dominated by small angle scatter-
ing, it is clear that the obliquity factor method should be asymptotically
correct at early times, i.e., it should give the first order efféct of
scﬁttering correctly. High accuracy at late times is not expected E_Eriori,

but we shall see what we get in the next section.

In earlier discussions of the obliquity factor method we used,

instead of u,

n=1/u , &n = - %y . (76)
The equation for n is therefore -

'i‘d—?W"RHS’ (77)

where RHS is the negative of the right-hand side of Equation 70. In our
early work we dropped the factor n on the right in Equation 77, on the
grounds that the model is valid only when n is not far from unity. This
method, without the factor n, is called the 'old method," whereas Equations
70 and 77 are called the '"new method." We shall compare-their relative

accuracies in the next section.
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: SECTION 9
COMPARISON OF RESULTS

v o

To test the accuracy of the CHAP method of computing Compton
current, we shall compare its results with those from Monte Carlo calcula-
tions. 1In another report we shall describe two types of Monte Carlo calcula-
tions of different complexity. The simpler calculation treats all scattering
as small-angle, using a Gaussian angular distribution of scattered particles;
the width of the Gaussian is determined from the total scattering. The more
sophisticated calculation divides the scattering into a small-angle part
and another part not limited to small angles. The small angle part is as-
signed a Gaussian distribution, whereas the large angle part is given the
screened Coulomb distribution. The sophisticated calculation is considerably
more time consuming. We have used both methods to calchlate the transmission
of monoenergetic electrons through aluminum foils of various thicknesses,
and have compared the results with the experimental data of Marshall and
Ward (Reference 11). The results are shown’in Figure 5. The two Monte
Carlo methods give ranges, for a given transmitted fractionm, which differ
by not more than about 5 percent. The experimental results are very close
to the Monte Carlo results for small foil thickness, but show‘ranges up to
10 percent larger for large thickness (low transmissions). We do not know
what the absolute accuracy of the experimental data is, as Reference 1l gives
no assessment of probable error. Spread in energy of the incident electrons
would make the tails of the experimental curves extend to longer ranges. 1In
addition, crystaline effects in the aluminum foils are not accounted for in

the theory of multiple scattering, which assumes that the scattering atoms

 arefraﬁdom1y Placed. This effecp would not be present in air. Altogether,
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the agreement is quite good, and we shall assume that the sophisticated
Monte Carlo represents the correct effects of multiple scattering and energy
loss. Since the simple Monte Carlo gives results differing by 651y a few
pércent and is considerably faster, we have used it to compare with the CHAP
mgthod. '

All of the calculations were done with gamma rays of energy 1.6
MeV and for a transverse magnetic field of 0.6 Gauss. No EMP fields (self

consistency) were included. Two altitudes were used:

altitude 1.84 % 107° gm/cms; N

n

30 km, air density

altitude = 20 km, air density = 8.89 x 1077 gm/cms.

Figure 6 shows transverse currents at 30 km altitude. The curve
labeled VAC was computed by the CHAP equations but with the resistive force
and scattering set equal to zero, i.e., it represents the case of zero air
density. For the curve EL, the resistive force was turned 6n, but scattering
was omitted. The curve labeled CHAP includes both effects. We see that
scattering causes a larger effect than energy loss. Thé curve labeled MC
is the Monte Carlo result. It is a few percent larger than the CHAP result
at times of several nanoseconds. We shall see later (Figure 9) that the
jonization rate is also a little larger from the Monte Cario calculations;
these two errors tend to cancel in determining the peak electric field, which
is proportional to Jxlc (o is the conductivity). We see that all the curves
approach the theoretical slope at early times, although scattering causes
departure quite early in retarded time. The time step used.in_the calcula-~
tions was 0.3 ﬁanoseconds. For the most energetic electrons, thé real_time
step is about 27 times longer. We see that the difference between the old
and new obliquity factor treatments-is small over the time frame presented,
with the old_méthéd being.a_little closer to the Monte Carlo results.

e
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Figure 7 shows the transverse current at 20 km altitude. Here the
Monte Carlo and CHAP results are very close together at times of interest.
The old method is substantially too large after 2 x 1078 secondé as expected
since it underesﬁimates the scattering when p is small (or n is large). How-

efer, this error would not affect the peak EMP.

The transverse currents at both altitudes are shown in a linear plot

in Figure 8.

Figure 9 gives the ionization rates at the two altitudes, based on
instantaneous production of one ion pair per 34 eV lost by the Compton
‘electron. The CHAP code takes account of the time lag for secondary ioniza-
tion, but we have omitted this lag here to better compare the calculations.
(Including the lag would bring the Monte Carlo and CHAP results a little
closer together, since both curves start from the same initial value.) At
30 km altitude, the Monte Carlo result is larger than the CHAP result by a
little more than the error in the transverse current. The computed peak

EMP from CHAP will therefore be a few percent too large.

Figure 10 shows the radial current at both altitudes. The difference
between the Monte Carlo and CHAP results is maximum for this component.
Fortunately, the radial current has practically no efféct on the EMP except
at points very close to the burst, where EMP is usually not of primary con-

cern. The radial currents all start from the theoretical initial value.

As a\final check on the accuracy of our calculations, we compare
in Figure 11 our CHAP results with some older Monte Carlo calculations of
Knutson and Morgan (Refereﬁce 12). These calculations were made for 20-km
altitude, but with sligﬁtly different EY and B from those we have been
using. CHAP was run with these revised values. Figure 11 shows quite good
agreeﬁent between CHAP and the Knutson-Morgan Monte Carlo. Comparing Figure

lliiwiyﬁfFigure 8 (for 20-km altitude), we see that the relation of the Monte

.',-1 - ' N 37
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Carlo curves to the CHAP curves are nearly identical in the two figures.
This indicates that our Monte Carlo results and those of Knutson and Morgan
are very nearly identical, and supports the reliability of all of the cal-

cylations.

-
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SECTION 10 -
COMPARISON WITH SOLLFREY'S RESULTS

R U

In Figure 12 we compare Sollfrey's computed transverse currents
with our Monte Carlo results at altitudes of 20 and 30 km. We see that
there are substantial differences. Comparing with Figures 6 and 7, we see
that the CHAP results are much closer to the Monte Carlo results than are
Solifrey's results. This is disappointing since we had hoped that Sollfrey's
calculations would provide an accurate, independenf check on the Compton

currents.

. Not having gone i:hrough Sollfrey's calculations in detail (they
are quite lengthy), we can neither confirm them nor point to any errors.
We do raise the question, however, as to whether the series, in terms of
which his result is expressed, is convergent or only semiconvergent. In
this connection, we peint out that his first term JO is closer to our Monte
Carlo results than is his sum J0 + J1 + JZ’ and note that in his Figures 9a,
b, ¢, the series does not appear to be converging, for J2 is generally
larger than Jl. 1t appears that if one more term were added, the result
would be larger than the vacuum current and the theoretical initial slope
at early times. In our view, these points raise serious doubt as to the
accuracy of Sollfrey's results. We would like to see these questions re-

solved.
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S SECTION 11
; CONCLUSION

-

We have developed the theory of the Compton current in the presence
of the geomagnetic field. We have derived analytically the initial value of
the radial Compton current and the initial rate of rise of the transverse
Compton current (which starts from zero initially). Neither of these
values is affected by energy loss or scattering of the Compton electrons,
and they serve as checks on numerical calculations. We have explained the
approximate but fast method used in the CHAP code for calculating the
Compton current, including the effects of energy loss and scattering. We
have devised an accurate Monte Carlo calculation for the Compton current and
have shown that it gives good agreement with experimental data on the trans-
mission of electrons through aluminum foils. We have compared results from
CHAP with those from our Monte Carlo, and have shown that CHAP results are
within a few percent from the Monte Carlo results. Since CHAP errors in
Compton current and ionization rate are in the same direction and about the
same magnitude, the peak (saturated) electric field calculated by CHAP should
be within 2 or 3 percent of the correct values. We have shown that our Monte
Carlo results are nearly identical with similar results obtained by Knutson
and Morgan in one case available to us.

We have compared Sollfrey's numerically computed Compton currents
with our Monte Carlo results, and fcund discrepancies as large as 50 percent
at impertant times. We have suggesfed that Sollfrey's series may not be
_ convergent. ' i )

_;Zfff.fsggﬁiﬁﬁsfi$through 9 of this report are suitable for inclusion in 2
tbook on high-altitude EMP.
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