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SECTION 1
INTRODUCTION AND SUMMARY

-

Present computer codes for calculating the electromagnetic pulse
(EMP) from nuclear bursts on or near the air-ground interface ignore the
effect of finite ground conductivity in extrapolating the EMP to distances
far outside the source region. Both the MRC codes LEMP-SUBL (References 1
and 2) and the AFWL code SCX (Reference 3) include finite ground conductivity
within the computational mesh, but fields outside the outer boundary
(typically chosen a few kilometers from the burst point) are calculated in
terms of an outgoing multipole expansion which is based on the assumption

of a perfectly conducting ground.

However, it is known that, for observers on the ground, the higher
frequencies in the radiated EMP are attenuated in distances of the order of

tens of kilometers, and the lower frequencies in somewhat longer distances.

In this report we derive a simple way of correcting the extrapolated
fields to include the attenuation due to imperfectly conducting ground.
Predictions from this simple but approximate method are compared with exact
results of Sommerfeld for a dipole radiating over a flat earth, and are
shown to be of good accuracy relative to unavoidable uncertainties in practical

situations.



SECTION 2
THE DIFFRACTION EQUATION IN THE AIR

We use the standard spherical coordinates r, 6, ¢, right handed
in the order given, with origin on the ground at the burst point and the
8 = 0 axis vertical. We have electric field components E. and Ee and mag-

o'

in the air outside the source region, where the Compton current and air

netic field component B We are interested in solving Maxwell's equations

conductivity are negligible. Maxwell's equations become, in cgs Gaussian

units,
%E:T% -f-s—;.l:ﬁ-;e—sine% , (1)
%%“%%’%' - @)
%%=-%-§;r£e+%a%Er. (3)

As usual in EMP problems, it is convenient to think of the fields as functions

of retarded time T, i.e.,

E.= ET(T,r,G) , etc. , (4)
where
T = ct - v = retarded time in length units . (5)
It is also convenient to replace Ee and B¢ by the outgoing and ingoing fields
F = r(Ee+B¢) , Ee = (F+G)/2r , -
G = r(Ee-B¢) , B¢ = (F-G)2r .

4



The Equations 1, 2, and 3 become

BEr 1 r
. = == sinB(F-G) , A )
: T 2r%sing
g F _ 3
3 - 36 Br (8)
3G 3G _ 9
2 37 3 - " 3% EI‘ . (9

The exact solutions of these equations are the multipole fields. The out-
going multipole fields of order % = odd integer, which have Er =0 at 6 = 7w/2
(the ground surface), have been used in LEMP-SUBL and SCX to extrapolate the

fields over perfectly conducting ground.

In the wave zone (r >> wavelength considered), F is the dominant

field. For example, for a dipole field we try
F ~ A(T)sin® independent of r , (10)

we find from Equation 7,

cosf
Er ~ =3 fAdT , (11)

T

and from Equation 9,

G ~ 51“26 fdthd‘r . (12)
2r

Equation 8 then leads to higher inverse powers of r in F. Thus Er and G

fall off as 1/r2, while F is independent of r to first order.

When finite ground conductivity is considered, we shall see that
F goes eventually as 1/r, while Er and G still go as 1/r2. This means that
Er and F give terms of the same order in Equation 8, so that Er cannot be
neglected {Er X B¢ feeds energy into the ground). However, G is still of

higher order than F, and can be neglected.

5



We choose T = 0 to be at the beginning of the EMP, true at all
radii. The fields then vanish for T < 0, and we may use the Lap}ace trans-
fo;m. Multiplying Equations 7 and 8 by exp(-sT) and integrating@on T from
0 ?o «, we obtain

., — 1 i 3

SEr = =5 3§ sind F , (13)
2r"sind

oF _ 38

3 - % r (14)

where F and Er are now the Laplace transforms of the time-dependent fields.
Note that the Laplace variable s has the dimensions of an inverse length,

and is the inverse of the (reduced) wavelength X = A/2m.

Equations 13 and 14 can be combined to eliminate either F or Er'
Before doing this we note that finite ground conductivity will affect the
fields only at angles quite close to © = 7/2, near the ground surface, as we
shall verify later. In this case, sin6 can be replaced by unity in Equation
13, and we obtain from (14)
2

oF 1 9°F

o 5125 3%

> (15)

after eliminating Er’ which is in turn to be determined from (13), or

(16)

Equation 15 has the form of a diffusion equation. Actually, the
process it describes is diffraction. As F is absorbed at the ground by
finite ground conductivity, more F is supplied from the region farther above

the ground by diffraction.

1f the ground were perfectly conducting, we would have Er = 0 at
g = m/2. Then according to Equation 16, we would have 9F/306 = 0 there.

The solution of Equation 15 would then be
6



F = F(s) = independent of r and 6 . (17

This is the same as Equation 10 for 8 near m/2.

For application to LEMP-SUBL, we shall want to solve Equation 15
frép r=rT, outwards, where Ty is the outer boundary of the LEMP-SUBL
computational mesh. We shall want to start at r = T with F = FO’ the field
provided by LEMP-SUBL. If we can solve our present problem for FO an impulse
function, then the solution for an actual LEMP-SUBL problem will be a con-
volution of the impulse solution with the FO given by LEMP-SUBL. Accordingly,

we take F, to be the impulse function

0 N
FO(T,G) = §(7) = independent of 6. (18)

For the Laplace transform field we then have

Fo(s,0) = 1 . (19)

Now the F, provided by LEMP-SUBL is not independent of 8, and varies
somewhat over the region of 8 near m/2 that will be affected by the finite
ground conductivity. However, the multipole extrapolat?on procedure used in
LEMP-SUBL already correctly handles the diffraction resulting from that
angular variation, over a perfectly conducting ground. Our desire here is
to correct the extrapolated fields only for ground-induced attenuation.

Thus we want to look for solutions which would have no diffraction if it
were not for finite ground conductivity, i.e., we want to look for solutions
starting with the form (18) and (19).



: SECTION 3
FIELDS IN THE GROUND

LY

The fields in the ground propagate nearly in the vertically down-
ward direction, because the index of refraction there is large compared with

unity. Thus in the ground we consider only Er and B,, which satisfy

)
€ BEr o
c ot T AMOEL =57 By o (20)
9B
1_¢_ i
c ot 9z ' (21)

Here the coordinate z increases downward, as does 6 above the ground. Going

to retarded time and again taking the Laplace transform, we obtain

_ 9
(es+4mO)E = o= B¢ , (22)
B, = > E (23
¢ ¥z r )
It is easy to see that the desired solution of these equations is
_ -kz a -kz
Er = Eee , B¢ = Bee , (24)

where

k = +Vs(€s+4no) . (25)

Equation 23, evaluated at the ground surface, then provides a relation

between Er and B

¢’



S
r "X B¢ at surface ,

s ' H
: = - o F at surface . : (26)
Th? second equation here comes from Equation 6 when G is negligible. Combin-
ing this result with Equation 16, we obtain a boundary condition on F at the

ground surface,
oF _ rs2

%-——]{—F at 9 =

NE

(27)

The propagation direction in the ground is not exactly vertical.
If the field Ez is included and the driving field at z = 0 is assumed to be
a function only of T = ct-r, but if terms of order l/sr = */r are neglected
compared with unity in Maxwell's equations,'then it can be shown that Equation
25 for k is replaced by

k = +y/s[(e-1)s + 4mo] . (28)

Since in typical soils € 2 10, the difference between Equations 28 and 25
is negligible. The analysis that led to Equation 28 also gives a relation

between E_ and E_,
z T

S .
Ez ~ - \[(E-l)s P Er (in ground) . (29)

Ez is usually small compared with Er'



SECTION 4
THE SCALED EQUATIONS

The diffraction Equation 15 for F, the starting form (19) for the
impulse solution, and the boundary condition (27) are sufficient to determine
the solution. Before discussing the solution, we shall scale the variables
to reduce the number of parameters in the equations to the minimum possible.

Since r ranges from r, to ®, we replace T by

0
X = r/r0 , 1l s x so | (30)
Equation 15 then becomes
2
2 oF 1 3
< £ °r. , (31)
ax Zros 362

We can eliminate all parameters from this equation if we replace 6 by

y= G- 0)/80 , 8 =1/Y5T, Y (52)
Ty
We then have
2 3F 1 3°F
XN =55 F(l,y) = 1. (33)
X 2 ay2

The starting form (19) of F is unchanged, and the boundary condition (27)

becomes

oF _ _
3y - BxF at y =90, (34)

where B is the dimensionless parameter

10



1l
S
"
}o

'y

B (35)

< [0
€s + 4m0 "

Here D is a length that usually will depend only slowly on s, and we shall

later regard it as constant.

Equation 33 can be converted into the standard diffusion equation

by replacing the variable x by

T=1 -

Pl L

, 0sT=s1. (36)

Then dT = dx/xz, and we obtain

3%F

— , F(0,y) =
3y

wlw
-3

ST
|
[

(37)

Since the range of the variable T is finite and equal to unity, this form
shows that the range of y over which the ground can affect F is limited to

y &1, or

A

>-0<60 . (38)

For large s or short , 88 is small according to Equation 32.

In terms of T, the boundary condition (34) becomes

oF _ B _
3y - T-T Faty=0. (39)

It is easy now to see what the qualitative nature of the solution will be.
The graphical interpretation of the boundary condition (39) is that F will
vanish if extrapolated linearly from y = 0 to y = - 8y, where

_F (-
Y =3y -8

(40}

The extrapolation distance 8y goes to zero as T approaches unity. The

behavior of F is therefore as sketched in Figure 1, which has been drawn

N
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for the case 8 = 1. The boundary condition forces F to have a finite slope
at y = 0, but the slope goes to zero at large y. The curvature 6f F is
thus negative, and therefore, according to Equation 37, F decreaées with T
atzall Y.

We can use this picture to make plausible guesses as to the behavior
with T of the value Fl of Fat y = 0. First, for T << 1, it is plausible
that F1 will fall in such a way that (l—Fl) ~ YT. Since for F near unity
and 1-T also near unity, Equation 39 indicates 9F/3y ~ B, it is reasonable

to expect that \

F, ~1 - constant X BYT

1 } for T << 1 . (41

~ 1 - constant X BvYyx - ]

We shall verify this expectation later and evaluate the constant.

Next, consider the limit as T+ 1 (x + »). If the slope oF/dy
approaches a constant value F' at y = 0 in this limit, then Equation 39
shows that

1-T., _ L1
Fir— F =%

F' as x =+ =, (42)

This indicates that F, decreases linearly with T. According to Equation 37,

1
F, can decrease linearly with T if the curvature BZF/By2 is approximately

cgnstant in T near y = 0. It is in fact plausible that both F' and the
curvature approach constant values as T + 1. Now, how does F' depend on

B? For smaller B, Equation 40 shows that the extrapolation distance goes to
zero faster as T + 1, and there is therefore less time (T) for F to decrease
at points y > 0. Thus we expect F' to increase (at T = 1) as B decreases,

and a plausible guess is that F' ~ 1/8. Equation 42 then becomes

13



1 -T

32

F1 -+ constant X

as x + @ | : (43)

1
+ ¢onstant X T

R™x

t
We*shall also verify this result and evaluate the constant.

14



. SECTION 5
INTEGRAL EQUATION FOR F]

We can eliminate the y variable and obtain an integral equation
for Fl, the value of F at y = 0. Note that a particular solution of Equation
37 is
1 y2

F & —————— eX - —— for T > T' . 44

N > [+ 7] (a4)
The integral over T' of this solution, multiplied by an arbitrary function
of T', is also a solution of Equation 37. Thus it can be verified that

T 2

A [- e

.J'T——"e"p Ty, 47 (45)
is a solution for all T and y, except at the single point y = 0 where special
limiting procedures will be used. Here H(T') is an arbitrary function which

we shall choose in order to satisfy the boundary condition (39).

The value of F at y = 0 is

T
T
‘VT‘- T
The integral here is finite even though the integrand is singular at T' = T.
Also, differentiating Equation 46 with respect to y, we have for finite y
' T
2
3F _ vy Y [ __L_] |

0 15



—__—

In this equation we change the variable of integration from T' to

2 2 r
st , T =T-X> , ar = Lau. 1 (48
V 2(T-T") 2u u
Eqﬁation 47 then becomes
= =]
2 2
F  ovT [HT - eV du . (49)
3y 2 2
u
y/Y2T
We can now pass to the limit y - 0 and find
oo
9F -u2
v =2V2 H(T) | ¢ du = Y27 H(T) . (50)
y y=0
0
Thus using the boundary condition (39) we find
HT) = —2= —E— F. (T (51)
Yzr 1-T 187"

Using this result in Equation 46 we obtain the integral equation for Fl’

. T
F.(T')
-1 ._8B 1 dT!
RN ﬂ?fl-'f'\/"-m?'
0

(52)

The variable y has been eliminated. In the variable x = 1/(1-T) this

equation becomes

B

. - R
' dx'
Fpa) = 1- V—;_,-;fFlcx) \j—'_—x— (53)
1 ' -0)

16



SECTION 6
APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION

For T << 1 we can find the approximate solution by iteration.
Putting Fl(T') = 1 in the right hand side of Equation 52, we find for the

first iteration

T
8 a1
F.(T) ~1 -
10 m.[\[T-T*
0

z1-\[%—sﬁz1-\/—%_sﬁ-_1. (54)

This result verifies our expectation, Equation 41.

We can obtain this behavior for x near unity and have the asymptotic

form (42) or (43) for large x if we try

1
(1+AVR-DT)%

Fl(x) = (55)

where A is a constant to be evaluated. In order to agree exactly with

Equation 54, we would need to have

A= £ ~ 0.4 8 (for x near unity) , (56)

i

but this may not be the best value for all x. Let us find the value of A

which satisfies Equation 53 at x = =. Since Fl(w) = 0 we must have

17



B dx
vZm f VX (1+AVX = D)2 .
1

: 7 x- 1T _d(VX =T
J—e 1}
- " lf X aeAvVx - D?
2 u du
\/—-B ,) . (57
m d/” u+1 (1+Au)2 )
¢]

Now we are interested chiefly in cases where B is small compared to unity.

1l =

In these cases, A will have to be small in order to satisfy Equation 57.
When A is small, most of the contribution to the integral comes from u
such that Yu/(u+1) ~ 1. Thus approximately,

<«

1z,[%—8f——d“—2=,/%%. (58)
(1+Au)

0
Therefore we need

A m,/% B ~0.88 (for large x) . (59)

We may guess, to be verified later, that the best value of A is half way

between the values (56) and (59), namely

A = 0.6 B (best guess) . (60)

18



SECTION 7
ACCURATE SOLUTION OF THE INTEGRAL EQUATION

i el

Equation 52 can be solved by expansion of Fl as a power series in

YT. Let

v=YT, (61)
and let

2 2 3
Fl(v) = (1-v7)[1 + a,v + 2Vt o+ agvt o+ cee] (62)

Substituting in Equation 52 we find that the constant terms cancel, that

(as in Equation 54)

2
a1=- '_,'T_B) . (63)
and that from the coefficient of vn+1
dhe1 " %-1 T 7 anan > (64)
where
v
1 (v 2v'av!

(65)

b =
sl TSN o
0
1
an*'l du
= ,W— PR S (66)
™ .‘f
0

1l - u2

1, so this factor

In writing Equation 64 we have canceled out a factor v
must appear in the denominator of Equation 65. The transformation to

u = v'/v made in going to Equation 66 then shows that bn is a constant, SO

19



that it was correct to factor out vn+l. The integral in (66) can be made

r

trigonometric by letting u = sin6. We then obtain
y m/2

./P(sine)n+ld8 . (67)
0

*
1
.

b =
n

These integrals are known. They are

, (68)

o
N~

- |2 -
b0 “NT b1 -

and in general

1. 3. ..M

5.
3 - 4 - 6...ns] or nodd.

b = "2_2 -4 6...n for n even I
n Tl - 3 <« 5...n+l ’
¢ (69)
‘1 s
2

A property useful for calculations is that

s —t
®ne1 T Tr2b (79)

The bn decrease with increasing n; for large n,

b = L = .

n J 3.1
n+-2-+g+,..

Thus the bn can be calculated and, from Equation 64, the a . The

latter alternate in sign, but increase without limit, although they increase

more and move slowly with increasing n, becoming proportional to
a_ ~ (-1)"exp[8Vn +%] ) (71)

The series in Equation 62 converges for all v < 1 but, unfortunately, only
very slowly for v near unity (large x). While we know that the limit of
the series exists as v - 1, we have not yet been able to evaluate the limit

and so obtain the asymptotic form of Fl'
20



Because of the slow convergence of the series, we have.solved the
differential Equation 33 numerically for 8 = 1, 0.3 and 0.1. The solid curves

ianigure 2 were thus obtained by H. J. Longley.

= The dashed curves in Figure 2 are computed from Equation 55 with A

given by Equation 60, i.e.,

1
(1 + 0.6 BYxX - 1)2

As expected, this function is too small for small x and too large for large

F,(x) = (72)

X, but the fit is not unacceptable.” However, a much better fit to the computed

curves is given by

1
[1+0.468(x~1)

Fix) = 0.55,2 ° (73)

The circles in Figure 2 are plotted from this formula. While it does not have
the correct asymptotic form for very large x, it is quite accurate when the
attenuation factor (Fl) is between 0.05 and 1, which is the range of practical

interest. We shall therefore use it.

From the definitions (30) and (35) of x and B, we write our result
(73) as

1 -
2 > (I'-I-)

Fl(r,s) =
[1+511]

where
/ o r 0.59
T 0N e, Gyt D (75)
1 70
Here we have replaced e€s by s/'c1 and regard the latter as independent of s.

This equation is easily solved for 3 by iteration.

21
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. SECTION 8
RESULTS IN TIME DOMAIN

i Rl

Recall that Fl(r,s) is the Laplace transform of the F field at the
ground surface for an impulse function at r = Ty But Equation 74 is the

Laplace transform of the function

F,(r,T) = lz /Tl s, (76)

T
Therefore Fl(r,T) is the impulse response in the time domain. Note that

©

~]PF1(r,T)dT =1. 77

0

Thus the d.c. content is unaltered by ground attenuation; the EMP is simply

smeared in time, over a time interval approximately equal to Ty

Now let Eo(r,r) be the vertical electric field on the ground as
calculated by the LEMP extrapolation routine for the radius r, i.e., on the
assumption of perfect ground conductivity. Then the field E(r,T) corrected

for finite ground conductivity is the comnvolution
T

' vy ~(T=Th)/T
E(r,T) = fEO(r,'r') dTT-E;Lle 1, (78)
1 T

-0

Doing the convolution at each T point is time consuming numerically.
A much faster procedure is obtained by converting Equation 78 into two

differential equations. By differentiating, we find

23



dE . E _ 1 9
- (80)

These two equations are easily integrated forward in T, one integration step

per output T step, to give the corrected field.

24



SECTION 9
COMPARISON WITH SOMMERFELD SOLUTION

e

In 1909 Sommerfeld (Reference 4) solved the problem of a dipole
radiating over a finitely conducting ground. His results are exact but
difficult to evaluate numerically. Norton (Reference 5) has given an
approximate evaluation which is quite accurate for typical soils. For soils
which are good conductors, Norton's evaluation of F at the ground surface in

the wave zone and in the Laplace domain is

p
FN =1 - VT?T el erfc(fp_l) , (81)

where Py is the '"numerical distance,"

1 szr _

P) = 2% + ano -

1

T
X € + 4nox (82)

1
2

(Recall * = 1/s is the reduced wave length.) A good conductor is one for which
4mox is somewhat greater than €; in typical cases, 4m0%x/c » 5, which is

adequate. Also in typical cases,
€ + 4mox &~ 200 , (83)

so that the wave zone corresponds to P, 2 0.01. The solid curve in Figure 3

Tepresents FN as a function of Py-
To compare our results with PN, we have a choice of Equations 72 or

73. The latter is more accurate, but the former has simpler scaling properties;

we therefore use (72). Note that
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T - T
- ,} 0 .
0.6 BYx - 1 =0.6s =TG- (84)

To :apply to a dipole radiator, we should choose

5;_ T, X =1/s . (85)

Then in the wave zone we have r >> r and

0,

2
/ s‘r :
0.6 BYx - 1 0.6 m—o.ﬁvzpl R (86)

and Equation 72 becomes

F. 1 (87)

L as0.6vap)?

The dashed curve in Figure 3 represents this formula.

We see in Figure 3 that the dashed and solid curves bear about the
same relation to each other as those in Figure 2 for B = 0.1. In other
words, the rough theoretical result (72) bears about the same relation to FN
as it does to our more accurate results. This implies that the correspondence
of our approximate wave-zone theory with Sommerfeld's solution is good.
Let us estimate the value of B in this application. From Equations

85 and 35 we obtain

8= —231 __~0.07. (88)

\Je + 4mMoX

Thus it is satisfactory that the relation of the curves in Figure 3 be about
the same as for the B = 0.1 case in Figure 2. It appears that the difference

between FN and our accurately calculated Fl is no more than about 10 percent.
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. SECTION 10
HORIZONTAL ELECTRIC FIELD

From Equation 26 we can deduce the relation between Er and the

vertical field Eg in the air just above the ground surface. This is

’ S
r = “Ves + 4no Co
- Ee/\/e + 4ToX . (89)

It is not a bad approximation to regard the radical here as constant. Equation

E

29 shows that the vertical field Ez in the ground is down from Er by another
factor of the same radical (e >> 1).

Actually, both € and ¢ depend on s. A good representation of this
dependence can be obtained from the universal soil model (Reference 6) by
making the replacement iw - s, which gives directly a real expression for
€s + 4m0 as a function of s. Then, in determining T from Equation 75,
€s + 4mo should be evaluated self-consistently at s = 1/11; the self-consistent

T, can be found by iteration.

1
Similarly, in calculating Er from Ee by Equation 89, the factor
s/ (es+4m0) should be evaluated at s = 1/T; thus the ratio of Er to EB depends

on the retarded time T to some extent.

0f course, more accurate fields could be obtained by using Fourier
transforms and their inverses, at considerably more cost in computing time.
For actual terrains we doubt that this would be worthwhile. In many cases of
interest, the ground is not flat, and soil properties vary from place to place.
For a burst in a bowl shaped valley, the ground attenuation can be negated, a

point that should perhaps be studied.
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