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1. INTRODUCTION AND SUMMARY -

~ This report presents estimates of the effects of non-fiat terrain on
thb EMP produced by nuclear surface bursts. Detailed calcu]ationé of the
EﬁP from surface bursts have always been based on the assumption of a per-
féEtly flat earth. Hence one of the present sources of uncertainty in
EMP environments arises from non-ideal terrain in practical situations.

The type of terrain envisioned in this study is that found in the
bowl-shaped valleys between mountain ranges in Arizona and Nevada. These
valleys often have a very flat lake bed at the bottom, surrounded by
sloping, rolling terrain crossed by arroyos of various sizes. As typical
terrain profiles we shall consider the two sketched in figure 1, that is,
either a hill or a valley. The ratio of the height or depth d to the
half-width D of the feature will be taken to be generally of the order
of 1/5. The magnitude of D will be taken to range from 100 to 1000 meters.
Smaller features are not likely to be chosen as sites for military instal-
lations, and larger features tend to contain the entire EMP source region.
We do not consider the rugged terrain of the mountain ranges.

Hill
Burst
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Figure 1. Idealized Terrain Feature
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The effect of the terrain, most simply stated, is that some portions,
like segment AB in figure 1, receive the direct gammas from the burst but
at.an ang’ - above tangent; other portions, like segment BC, tend fo be
shadowed from the direct gammas. These two conditions appear to éncompass
t@ése to be found in a general terrain.

Our chief interest in this study is to 1ook for conditions under which
the EMP is increased by the non-flatness, since we cannot count on the
bursts going off in locations that always lead to reductions.

The effects on segment AB are similar to those for a burst above a
flat surface, i.e., for a conventional near-surface burst. It is known
that the local EMP is not much different from that in the flat-earth sur-
face burst case. The peak fields and later fields are nearly the same.
The chief difference is that the high-frequency radiated signal goes off
principally in the direction of specular reflection of the ray from the
burst point to the local terrain. $ince near-surface bursts are considered
elsewhere in the AFWL EMP environment program, we shall not discuss this
case further in this report.

Thus we have left to consider the effects in the shadowed regions.
We divide the problem into two parts. First, we discuss the effects of
terrain on the gamma sources and transport, which determine the Compton
current and air conductivity. Second, we discuss the effects on the
electromagnetic fields produced.

The analysis of transport in Section 2 shows that gamma shadows are
deep at early times, when scattered gammas arrive too late. At late
times (longer than a few microseconds), scattered gammas can fi11 in
behind relatively gentle terrain features.

Section 3.1 shows that the EMP in the deep shadows at early times, in
the attenuated wave phase, is not significantly less than in the flat
earth case. Section 3.2 points out a tendency for the vertical electric
field in the diffusion phase in shadowed air to be larger than in the



flat earth case. Section 3.3 shows that the vertical electric field in the
quasistatic phase can be a few times larger in shadowed regions than in
thg flat earth case. The arguments of Sections 3.2 and 3.3 are ngither
precise nor thoroughly developed. We recommend further work on these
phéses. for example, with the LEMP code.

2. GAMMA SOURCES AND TRARSPORT

In order to estimate the effect of the shadowing, it is necessary
to understand some general properties of the gamma sources and propagation.
The gammas that generate most of the EMP arise from the sources listed in
Table 1.

The extent of shadowing provided by a terrain feature depends on the
effective geometrical size of the gamma source. Note that only the prompt
gammas come from a point source. The ground capture gammas all enter
the ar at ground level. The other sources are hemispherical in the air,
and can "see over" smaller terrain features. Even for a point source,
scattering of the gammas by air tends to fi11 in the shadowed regions.

The scattering probiem is analyzed approximately in the following two
subsections.

2.1 Scattering of a Beam of Gammas

We consider a pencil beam of gammas entering a uniform scattering
medium. We wish to calculate how the angular distribution of gamma ve-
locities spreads out around the forward direction and how, as a result,
the radius of the beam grows. We shall look for a steady state solution,
and use the approximation that gamma scattering is confined to fairly
small angles. The Fokker-Planck form of the Boltzmann equation is ap-
propriate for this problem. Let the beam be oriented initially along
the z-axis, let x, y be transverse coordinates, and let vy and vy be the
(small) angles of deviation of gamma velocity from the z-direction. Then
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the Boltzmann equation for the distribution function f(z,x,y,vx,vy) is

approximately .
. 2 2
: of af | of 3¢ ., .9 £
L 3z 7 Vx 3x T y dy D(av 2 ay 2) (1)
X Yy

Here D is a diffusion coefficient related to the single scattering angular
distribution, to be evaluated below.

We have found a useful similarity solution of equation (1). Let
T = (x,y), V= (vx,vy), and let R(z) and T(z) be functions of z alone.

Then ,
= (2 (1-%7))
e RZT o [ ’2 T ! (@)

is a solution of equation (1) provided R and T satisfy
oo I :
R = R ) (3)

. R”
T 4 - 2 ¢ (4)

where the primes indicate differentiation with respect to z. The quantity
T is analogous to the transverse temperature of a particie beam and R is

a mean radius. Equation (3) is analogous to Newton's law for the expan-
sion, and-equation (4) governs the temperature, with collisional heating
rate 4D and adiabatic cooling from expansion represented by the second
term on the right.

The solution given by equation (2) is normalized to unity for inte-
gration over x, ¥, V, and vy.
The relation of D to single scatiering can be found by imagining f
tarts out collimated in angle but uniform in x and y, i.e., an infinite
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but collimated beam. Then multiply equation (1) by VZ and integrate over
Vy ?nd vy. We obtain %

) 2
32 I Y fdvxdvy

n
o
«
N
P
Q>
<
4 ~N
N
+
[+3
< |
N
S
-+
j= 8
<
4
a
<
e

4D-[ f dvxdvy = 4D (5)

Since ¥ starts out collimated, the initial change of the integral on the
left must be due to single scattering. Thus

D= 2 o2 p(s) 2msingdo (6)
where A is the scattering mean free path and p(e) is the normalized angular
distribution of scattering. For Compton scattering, a crude estimate of

D is

.1
0= 27X (7)
where

v = gamma energy/0.511 MeV (8)

For the case in which R and T start from zero at z = 0, there is 2
very simple solution of equations (3) and (4). This solution is

(9)

>N

=Dy z L
T=Dz = 7y

x
1

Re [B P RJ_% (_zA_)”2 (10)
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Equation (10) can also be written as

NI:U'

_R. 2z .
e =7 I (1)
The angle @ is a measure of how far into a shadow of a ridge (defined by

geometrical optics) the scattered gammas reach if they are perfectly col-

1imated when they pass the ridge crest.

If the point source of gammas is located a mean free path or more be-
hind the ridge, the gammas will already have an angular spread when they
pass the crest, and so will reach farther into the geometrical shadow
than equation (11) indicates. As a beam of initially collimated gammas
moves into a scattering medium, the angular spread grows at first (as
js indicated by the solution of equations (2), (9) and (10)), but reaches
a 1imit due to energy loss of the gammas in scattering. The energy loss
is'important for EMP since both the Compton current and the ionization
made by a gamma ray are proportional to its energy. We did not include
the effect of energy loss in equation (1), which treats the number of
gammas rather than their energy content. (The estimate , equation (7),
of D was, however, obtained by using the angular distribution of scattered
energy rather than photons.) It is possible to treat both scattering and
energy loss by means of the Boltzmann equation, but we shall make a very
simple estimate of the effect of energy 10ss.

The energy Yy~ of a gamma ray scattered at polar angle 6 from its orig-
inal direction is

¥ = Y o Y
1 + y(1 - cosé) 1+ Y92/2

tt

y - v26%/2 (12)

where y is the original energy. Thus the energy change is



or ' :
gl:_ﬁ : (13)
. 2 2

:
Now let the gamma suffer a sequence of scatterings through polar angles
e and azimuthal angles L and let us sum equation (13) over this seguence.
Averag1ng over the az1mutha1 angles $;s We have for the total polar angle

(in the small angle approximation)
8y

average 6.2r =3 61? ' (14)
1
Thus the sum of equation (13) leads to

) 8 2
A gl > - .1-+ _.].'_ ~ - _T_ (15)
E : YZ Y Y 2

where Yo and y are the energies before and after the sequence of scatter-
ings. Solving for y, we obtain

X - 1 (16)
Yo 1+ Y, e$/2

Thus y/yo will be reduced by a factor e = 2.7 at

™ M V (17)

We compare this result with equation (11) for 6, obtained without con-
sidering energy loss. We see that © is less than 64 for

$-< 5 mean free paths. (18)
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For larger z, @ will be limited by energy loss to the value given by
equation (17). If the gamma source js far enough behind the ridge that
the angular distribution (17) has already developed, then equatiof (17)
shnu1d be used instead of equation (11) to determine the angle of the
pggumbra in the shadow.

We must remember that the analysis above is based on the assumption
of a steady state. Time delays associated with scattered gamma paths
make shadow edges more pronounced for the fast-rising prompt gamma pulse,
as is discussed in the next subsection. The results of the present sub-
section are useful for EMP considerations at retarded times later than
a few microseconds.

2.2 Shadows at Early Times

Referring to figure 2, we consider a plane delta function pulse of
gammas propagating from left to right, parallel to the z axis. We wish
to calculate the gamma flux as a function of time at the point O.

D
Unscattered v
Gammas ——— O —— g ———
Q r 6
- p 8] |C
¥ © Geometrical
Ridge 0 Shadow
A \\e 0
)

Figure 2. Geometry for Early Time Calculation

10
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The number of unscattered gammas per unit area in the pulse diminishes
as exp{- z/A). where ) is again the scattering mean free path in air. The
unscattered gammas have a perfectly sharp and total shadow below the plane
PB beginning at the peak P of the ridge. At sufficiently early times,
oqﬂy singly scattered gammas will be significant in the shadowed region.

The very first gammas to arrive at any point in the shadowed region
are those scattered in the immediate vicinity of P. When the first gammas
arrive at 0, the scattered gamma front forms the circle OC about P as
center, and the unscattered gamma front is CD. At later times, gammas
scattered at other points, such as the volume element V indicated, arrive
at 0. The time at which these gammas arrive is (c is the speed of light)

t, =t

r
1 B + E-(l - cosf)

where TB is the time at which the unscattered gammas arrive at B. The
earliest gammas arrive at 0 at

o
t, = tB iy (1 - coseo)

where o is the distance OP. Thus if we choose the time origin at the

earliest arrival at O {which is the same as arrival at C), t1 becomes

r
=r - J ) -
t1 =< (1 - cos9) < (1 coseo) (19)
The time dependence of the gammas arriving at O from V js a delta function
G(t-t ). To obtain the total time dependence of the gamma flux at O,

we have to integrate over the volume above the joined planes QPB.

Let ¢ be the azimuthal angle about the axis OA, measured from the
plane of the paper in figure 1. The volume element V thus forms a ring
around the axis. The contribution to the scattered flux at 0 is inde-
pendent of ¢, as long as the volume element is above the joined planes

11



QPB. The value ¢1 of ¢ at the edge of the contributing volume is given
by .

[ 4

r $ind )

E for r < rg: rsinecosq>1 = rosineo, or cos¢, = _FETHEQ |
- o (20)

sing 1

for r > o rsinecos¢1 = rsineo. or cos¢1 = <Tne )

The angle ¢1 goes to zero on the joined planes QPB. Integration on ¢,
in calculating the total flux, yields a factor 2¢1.

Let N be the number of unscattered gammas per unit area that reach CD.
The number at V, to which the scattered source is proportional, is ex-
ponentially larger, but there is another exponential decay factor for
the distance VO. The product of these two factors is just exp(-ctllz);
if a gamma has lived a time tl longer, it has travelled a distance ct,
Tonger.

Finally, we need to include the probability of scattering at angle
8. Let o(8) be the differential scattering cross section per unit solid
angle at 6 and let o1 be the total cross section. Then define

G(8) = o(8)/og (21)

G would equal 1/4n if the scattering were isotropic.
In terms of the quantities defined above, the total gamma flux at
0 is
-ct,/A
N e 1 2
F(t) =3 G(s) = s(t-tl) 20, r dr d(cos8) (22)
r

Wwe do the integration on cosé first, using up the delta function. This
integration yields a factor c/r, from equation (19), and puts t1 =t in

12
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the rest of the integrand. The result is

F(t) = 2N % e‘Ct/"J' G(e):p1 9;'1 ' (23)

¢

Iﬁ the integrand, 6 is determined from equation (19}, with t1 replaced by
t, and ¢ is determined from equation (20). The evaiuation of the integrand
is facilitated if the angle 90 is small and if we restrict our attention
to small times t, in which case & is also small and r is near r . Then
equation (19) becomes

I A
with
ro 2
to 22¢ % (25)

Solving for &, we find

. 2ct
= -z—c- = 0 l
o ~/ r (') J/ e to)

T
= 0 x
eo r (14 to)

(26)

In the small angle approximation, equation (20) becomes

i
N
—
—
]
Io
Q

for r < ro’ ¢1

-
o
-3
-1
v
-3
©
P
114
N
—
—
]

13
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Using equation (26), these become

: — )
: for r <r.: ¢ = 2(1-];—;//1+?t->
¢ 0

(27)
forr>r_: ¢' = [2f1 - [ X 1+ X
o” 1 r t
0 0 )
Note that when t << to’ ¢1 goes to zero in each case when r is not far
from o This implies, by equation (26), that & is never far from 80
(scattering comes from near the point P for small t), so that G(e) can
be replaced by G(eo) and taken outside the integral in equation (23).
Then changing the variable of integration to
/r
= |2
X = - for r < o
(28)

x=jL forr>r
o 0

we find that the contributions to the integral from r < r, and from r > o
are equal, and

Tt
F(t) = 8N £ 6(0,) e'“ﬂf ﬁ1 - x/VTRETE) (29)
1

Now, since the radical varies more rapidly than 1/x, we may replace 1/x
by unity, and the integral is elementary. The result is

1+t/t - 1)3/2
_16V/2 , € -ct/X ( o
0

14



In the approximation t << to’ which we have used above anyway, this be-

"

comes
: £y3/2

F(t) == NS 6(8,) (5 (31)
]

wjoo

Here we have dropped the factor e'Ct/x; by the time (microseconds} this
factor is appreciably different from unity, muitiple scattering is impor-
tant.

The result, equation (30), is an upper bound to the single scattering,
and is not a bad estimate, even for t as large as 3t,. .

Integration of F(t}, as given by equation (31), from o to t gives

t 5/2

ct

f F(t)dt = l‘si N =2 6(e,) (& (32)
(o]

0

—

For small 8y G(eo) is of order of magnitude unity. Using equation (25)

for to’ we find the ratio

t 2
"%

fF(t)dt=% 2 () (33)
0

Z|

Thus at early times the integrated flux is small compared with N (the
integrated flux of unscattered gammas ).

It is also interesting to fold the delta function response, equation
(31), with an unscattered gamma flux rising as Foeat. Then the scattered

flux is

F(t) =~ F et {2/‘—‘— —-—1—} (34)
% T X (ato)s/z

15



The quantity in brackets here is usually a small number; c/oX is of the

order of 10"2 and ato > 1 is required for our approximations to be valid.
Thus the early time flux in the shadow is very small compared witl that

in: the main beam.

3.5 EFFECT OF SHADOWS ON EMP

3.1 Effect of Shadows in the Attenuated Wave Phase

We have seen that at early times the gamma shadow created by a ridge

in the terrain is quite sharp.

This fact suggests that we consider the

EMP developed near the plane boundary between exposed and unexposed non-
conducting air. This contrasts with the usual problem of determining the

EMP that develops at the boundary between exposed air and a conducting

ground.

We use Cartesian geometry, with the gammas propagating in the z direc-

tion (horizontal), the x-axis vertical,

and the y-axis (“azimuthal" about

burst point) also horizontal. The fields present are Ez’ Ex and By. We
make our usua) transformation to retarded time T and outgoing and ingoing

fields F and G (ref. 1),

T=¢t -2
F= Ex + By
G = Ex - By

At early times the ingoing field

are approximately

13

ofF =2
3 + 2nofF %
oF

—% + 4noE, = - 41,

9z

1. Longmire, C. L., "Theory of the EMP from Nuclear Su
See also Longmire, C. L., IEEE Trans. on
, p. 3 (January 1978).

LANC-R-8, January 1970.

Antennas and Propagation, Vol. AP-26, No. 1

rface Bursts,"

(35)
(36)
(37)

is negligible, and Maxwell's equations

(38)

(39)



Here Jz js the Compton current and o is the air conductivity, which both
vanish in the shadowed region x < 0. In the exposed region x > o0, J, and
|3

c -are given by B
L 3 = -y efT-2/A (40)
: z o
o= o0, eBT-2/2 (41)

We have chosen an exponentially rising gamma source proportional to %",
and

B = a/c (42)
The gamma scattering mean free path is again denoted by .

The solution of equations (38) and (39) is conveniently considered

in two phases. In the first phase, the terms involving o are negligible
in both equations. The fields in this phase increase as eat, and we call
it the a-wave phase. The next phase is more important, because the fields
are larger in it. In this phase, the term 2noF in equation (38) is larger
in the exposed air than aF/3z, which is of order F/X. This phase starts
when

omo = 1/h = 3x107° cm™° (43)

However, the term 4nc£z in eguation (39) is still negligible compared with
aEz/aT. which is of order BEz = aEz/c. Thus in this phase

20 << %-x 3><10'3 em™ > (44)

The only role of o in this phase is to attenuate the outgoing wave F,
and we call it the attenuated wave phase.

17
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The equations for the attenuated wave phase are therefore

Y .

oF 2z ‘
: 3z 9x : (45)
. in shadow
- oF
STz 13F
9T 2 X (46)
ot
=1 2
F = %m0 ax ' (47)
in exposed air
13
2z . 1 3F

At the bottom of the shadowed region is the ground, which is a fairly
good conductor. For simplicity, we take it to be a perfect conductor,
so that Ez = 0 at the ground. Now equations (45) and (46) permit the
solution

Ez =0 in shadow . (49)

independent of x and z

We shall see that this solution can be connected approximately to 2 well-
behaved solution in the exposed air.

On substituting equation (47) for F in equation (48), we obtain

2
of E
z . 1 9%

We have to solve this equation with J, and o given by equations (40)
and (41). Since eguation (50) contains no z-derivatives, z is only a
parameter, and the variation of J and o with z can be included in J, and

18



Op 25 far as equation (50) is concerned; we do this temporarily. Equation
(50) permits a similarity solution of the form

4nd .
E,(x1) = 52 e f(u) - (51)

wﬁere u is the similarity variable

u= X ,fnsoo eBT/2 (52)

Substituting this form into equation (50), we obtain an eguation for
f(u),

¢t

df f
du2

w- LY

N

1
f+§l.l

which, on multiplying both sides by 2u, can be written as

2
d 2 1 d°f
—uF=2u+tzUu—5
du 2 du2
- 1d  df 1df
=wtsmlan 2 du (83)

Integrate this equation from u = 0 (x = 0) to u, and use the fact that
£(0) = 0 in order to match Ez = 0 {n the shadowed region. The result

is
or
9 - (urd) £z (54)
The solution of the homogeneous equation here is
ul (55)

f1 = ue

19



g,

b

On letting f flfz, we obtain for f2

L df, 2
-2u/fy = -2e u

—

U

-—
3

The solution of this equation is

o7 L2
f2-2] eV dv

u

so that the complete solution for f is

00
2 2
f = 2ue” f eV dv
u
We see that f = 0o at u =0, as required. It is easy to show that

f+1lasu=»w
so that the value of EZ deep in the exposed region is

E 411J0 eBT

z 8
Since this limit is independent of x, F + o here according to equation

(47). These results mean that the Compton current is simply charging
up the capacitance of space.

At the bottom edge x = o of the exposed region, F can be calculate
from equations (47), (51) and (57). The result is

fc
F(o) = 2n ES 1% eBT/2

where_Es js the saturated field,

Jo

%

Esz-

alce

20

(56)

(58)

(59)

d

(60)

(61)



Note that Es is independent of time and space {as long as the gamma source
rises exponentially). Since G << F in this phase, we have from eguations
(36) and (37), |

- E,(0) = B,(0) = 3 F(o) (62)
According to equation (49), this solution is maintained down through
the shadowed region to the ground. Note however that, since % is carrying

the z dependence, F depends slowly on z as e'Z/ZA. This violates the
solution (49), but only a little if the depth of the shadowed region is
small compared with 2X = 500 meters.

We see that the fields in the shadowed region form a transverse wave.

The electric field E in this wave terminates on Compton electrons near
the bottom of the exposed region, and B, terminates on the current made
by these electrons. At the ground, the fields terminate on charges and
currents in the ground. Actually, the front of this pulse is circular,
Tike the arc OC in figure 2. There is some reflection from the ground.
The field at the ground in this phase is essentially the same as for a

surface burst and a flat earth, in the approximation used (see ref. 1).

3.2 Effect of Shadows in the Diffusion Phase

At the end of the attenuated wave phase,

= B/4m (63)

and according to equations (60) and (61),

E, ® Eg (64)

When o exceeds the value (63), we enter the phase of a-saturation, in
which the term 4noE in equation (39) is larger than aE /37T in the ex-
posed air. In this phase, G is no longer negligible, but instead, E

becomes small compared with By. The equations in the exposed air are

21
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approximately the diffusion equations of the well-known skin effect.

This phase is usually called the diffusion phase. In it the electric
field tends to become radial, i.e., E = E . For the flat earth p§0b1em,
Ei js shorted out by the ground, and the return conduction current shifts
tq the ground from the air near the ground, making a large By. In our
present case, there is an insulator between the exposed air and the ground.
In this case, the magnetic field does not increase. Instead, the coupling
to the ground is capacitive, and the voltage across the shadowed air tends
to approach

B
V> I Eg dz | (65)
P

where Es jc the saturated field and P and B are the points defined in
figure 2. If the depth of shadowed air is small compared with the dis-
tance PB, the vertical electric field at 0 has the possibility of being
substantially greater than in the flat earth case. However, scattered
gammas are building up, and the conductivity in the shadowed region does
not remain small for very long. We have not yet made a°careful analysis
for this phase. We propose to do that and also to make numerical calcu-
lations using the LEMP code, if support can be provided.

3.3 Effect of Shadows in the Quasistatic Phase

when the skin depth in the exposed air has become comparable to the
distance from the burst, diffusion stops, and we enter the quasistatic
phase. In this phase, charge deposited by the Compton current is balanced
by the conduction current. In the flat earth case, the electric field
and conduction current are very nearly in the 6-direction of spherical
coordinates, i.e., they arrive at the ground from the vertical direction.
If there were an insulating layer of shadowed air between the exposed
air and ground, the conduction current in the exposed air would have to
be radial, and there would be a very large voltage across the shadowed
air, again given by equation (65).
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However, there is plenty of time for scattered gammas in this phase,
which starts typically at times of tens of microseconds. Equatiops (11)
and (17) show that the scattered gammas fill in rather quickly bebind
terrain features of the sort envisioned in Section 1. Also, in the later
pérts of this phase, the air-capture gamma source is hemispherical and
can see over most terrain features, probably. We expect that the air con-
ductivity near the ground is a few times lower than in the fully exposed
air. Thus the vertical electric field at the ground is expected to be a
few times larger than that in the flat earth case, in order to carry the
current to the ground. This effect also deserves further investigation.
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