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SECTION 1 .
- ~ INTRODUCTION

-~

This report addresses the problem of the blow-off of the groﬁnd
in the immediate vicinity of a near-surface nuclear burst in the megaton
range. This problem is important because blow-off at times early enough
and to an extent great enough can seriously influence the gamma -xay source
originating from neutron capture in ground material. Specifically, decrease
in density of ground material can slow the rate of neutron capture with the
result that the gamma ray source is less intense and more spread out in time
than would be expected if, as is presently assumed in EMP source models,
the ground remained in place. This mechanism has been suggested to account
for the anomalous gamma ray dose rate (approximately 19 times weaker and
10 times longer than normal) measured in the Mike test at time of a few
milliseconds. Our discussion is not restricted, however, to any specific
test. The question is analyzed from a general point of view, with use of
a hypothetical 1 MT shot for purposes of illustration. '

The presentation of an analytic solution for the demnsity of blown-
off radiatively heated ground, ignoring debris slap, constitutes the body

of this report.
GENERAL PROBLEM ASPECTS
Blow-off of the ground layer in which neutron capture occurs depends ‘

critically upon the details of energy and momentum coupling into the ground

at early times during the radiative expansion phase of the atmospheric fireball.



At the earliest times a thermal wave, propagated by radiation
diffusion, heats a layer of ground. When the thermal wave front slows to
near the isothermal sound velocity in the heated ground, hydrodyhamic motions
beébme significant and a strong shock is driven into the ground.: Because
of the large density difference, ground pressures both within the thermal
wa%e and behind the strong shock exceed the air pressure by factors of 100
to 1000. Consequently the ground surface blows off immediately, accelerated
by a hydrodynamic rarefaction which propagates into the ground and eventually
overtakes and weakens the strong shock. The density and location of ground
material within this rarefaction fan is the focus of our interest, but this

simple picture is far from complete.

7 At some time during these events the ground surface is impacted
by the high velocity (~108 cm/sec) material of the bomb debris. From the
surface of impact, shocks are driven both into the ground material and back
thrbugh the bomb debris. The shock into ground material will recompress
it and initially reduce or reverse its escape velocity into the air. Only
when the other shock, driven back through the bomb debris, emerges into
the air can another rarefaction propagate back through the bomb debris into
the ground material and re-establish a rarefaction fan of blow-off material.
One would expect the effect of debris slap to delay initial blow-off but
perhaps to enhance it later through the additional energy.delivered to the
ground.

Considered in all detail the problem is one of coupled hydrody-
namics and radiation transport in two-dimensional axially symmetric geometry.
The events described qualitatively above have different time scales and .
magnitudes dependent upon location with respect to burst point. Our approach
chooses to simplify as many of these complications as possible, consistent
with'a deécfiptionrsufficient for the purpose. We use common analytic
approximations for radiatidﬁ transport and one-dimensional hydrodynamics

_(motion normal to ground surface) which is parameterized by radial distance

y



along the surface away from the burst poirt. In this way we have secured
an approximate analytic expression for the density of blow-off ground material
at positions not too near (2 meters) the burst point in the absence of debris

slip. This partial solution constitutes the body of this report.

t
-

The modifications of this solution caused by debris slap and a
more careful analysis of events very near the burst point remain to be

undertaken.
METHOD OF PARTIAL SOLUTION (NO DEBRIS SLAP)

We calculate the details of the early radiation expansion phase
of the atmospheric fireball on the basis of an energy balance in a hemiéphere.
This calculation provides boundary and initial conditions at the ground sur-
face from which the thermal wave penetrating into the ground may be estimated.
(More detailed numerical codes show that less than 10 percent of the total
device yield is coupled into the ground. So the ground heating is considered
to be driven by the atmospheric fireball, which behaves as a heat reservoir
whose temperature is unaffected by energy interchange with the ground.)
The ground receives energy at early times, but cools more slowly éhan the

air, so later the ground radiates into the air.

_ When the velocity of the front of the thermal wave into the ground
slows to the isothermal sound speed it "shocks up'" driving a shock into the
ground. This transition from radiation transport to hydrodynamics occurs
much earlier in the ground than in. the gaseous atmosphere. On the basis of

planar shock dynamics we analyze this ground shock and the expansion behind

-~ it. The solution is continued to late times by fitting it to the self-similar

solution for a shock wave resulting from an impulse at the surface. This
procedure permits an estimate of densities in the ground material blown off
from the surface at different surface positions encompassed by the atmospheric
fireball. |



Since this analysis ignores effects of weapon and case debris

impact upon the ground it is valid only when this is a minor effect.

r
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ANALYTIC APPROXIMATIONS
s The calculation requires tractable analytic approximations to
describe material equations of state and radiative diffusion. Below are
listed the approximations we have used. Units are cgs and temperature is

measured in kilovolts.

Air
Caloric equation of state (normal density, P10 = 1.293(10)"3gm/cm3)
3 2
el(ergs/cm ) = clT(kv)
11 -3
= 9.363(10) "T(kv) ; T>5(10) © kv
' \ 14 . : -3
el(ergslgm) = 7.241(10)  "T(kv) ; T>5(10) © kv
P, =2/3e . (1)

Rossland mean free path (normal density)

2 (cm) = 3.85(10)° T>0.5 kv
\2 _ml
1(cm) = bi T
= 2.8110)* [T 1288 0.01 kv<T<05 kv . (2)



Radiation Diffusivity (normal density)

Dl(cmzlsec) cll/S ¢ = velocity of light!

. m
l b,T 1 (3)

-

Aluminum (We use aluminum values to approximate both case material and
ground material)

Caloric equation of state (normal density, p20 = 2.699 gm/cmsj

ez(ergs/cn?3= c2T(kv)
15
= 2.15900) T (kv) 3 T>0.177 kv
e} (evgs/gn) = 8.0(10) 24T (kv) . T>0.177 kv (4)

Caloric equation of state (low temperature, variable density)

e, (eTgs/cn’) = 3.760(10) 011320, /0,97 %°¢ 5 0.177 Kv>T>0.01 kv
e} (ergs/gn) = 1.393(10) 151132 (0, /6,979 5 0.177 kv>T0.01 kv
Py = 2/3 e,
Rossland mean free path (normal density)
Lz(cm) = PET
= 0.0783[T(kv) 1237 |, 4 xv>T>0.05 kv . (5)



Radiation diffusivity (normal demsity)

Dz(cmzlsec)

Radiation
Energy density

er(ergs/cmsl

Pr

Black body flux

F(ergs/cmz-sec) =

-

c£2/3 c = velocity of light
m
2
b,T “ . (6)
a T4
1.37000) M T ev) 1
1/3 e, (7)
c a4 4 _ . .
—Z—-T = agT ¢ = velocity of light. (8)

-



SECTION 2 :
ATMOSPHERIC FIREBALL '

For illustration we will consider throughout a hypothetical weapon
whose mass (including case} is 1 metric ton = 106 gm and whose yield is
1 MI. We model the burst by the instantaneous release of the yield energy
in a solid aluminum sphere of this mass (radius T, = 44.6 cm) rTesting
directly upon the ground. In general, however, results are expressed as

a function of yield in the megaton range.
FIREBALL TEMPERATURE VS. RADIUS

We assume that only a fraction of the total yield is available as
thermal energy for heating of the early fireball, the rest appearing as
kinetic energy of case material. We denote this thermal energy by gt ,
and assume in the 1 MT case that E1 = 0.75E. The energy balance of the
fireball consisting of a hemisphere of air and the aluminum sphere can be
written,

(21/3) (&% - £ (@1’ + e T) + @n/3)rs(aT? + ¢,T) = gl

‘where R 1is the radius of the isothermal fireball. We have used (1), (4),

and (7). The resulting fireball temperature as a function of fireball radius
for the 1 MT case is shown in Figure 1. Thermal energy in the ground is

neglected in this calculation. At small radii most of the energy is in the
radiation field and T-k'0'75. Near a radial distance R1 = 4,39 (10)3 cm

at which the material energy density equals the energy density of radiation

‘a transition in slope of the curve occurs after which T~R™> and material

‘energy is dominant.



The temperature vs. radius of the fireball during this early
radiation expansion may be approximated by piecing together two power law
relations, each accounting for only one form of energy. Numericél evaluation

gives the following formulas:

t

- Tv) = 1.008(10) 2B M 1V R(em 17 s R<R, (9
Tkv) = 2.137(10) %L oMm) [R(em) 172 ; R <R (10)
Ry (cm) = 4.820010) [ oy 1Y/ | (11)

These formulas are in error both near R1 and at very small radii.
For example by (9) the initial temperature of the aluminum sphere R = 44.6 cm
is 5.9 kv, while its value by more accurate calculation is 4.8 kv. Both '
here and subsequently we have chosen simple power law expressions despite

their approximate nature, because of the requirements of later analysis.
RADIAL VELOCITY OF FIREBALL FRONT

The initial fireball expansion, or "burn-out' is not limited by
radiation diffusion since the fireball radius is less than the Rossland
mean free path at the prevailing temperature, but as the temperature drops
radiation diffusion limits the front velocity. These two phases are calcu-

lated separately.

Early Radiation Burn-out

Fireball front'velocity in the burn-out is estimated by equating
the heating rate of a differential volume at the front to the surface radi-
ation flux (assumed black body) of the hot fireball. Using (1), (7) and
(8),

10



4

ch 2mR? dt = (aT* + ¢,T) 2mR? 4R r
or *
- C c aT4 o
aT +c1T

Except for the small effect of material energy this is the expansion rate
of a sphere of radiation in thermal equilibriuﬁf The early-time burn-out

velocity is plotted in Figure 1 for .the 1 MT case.

Radiation Diffusion

Both numerical codes and similarity solutions show that within
a sphere expanding and éooling by radiation diffusion the divergence of the
radial flux of radiation energy is approximately a constant, independent of
position. This fact accords with a spatially uniform temperature and cooling
rate within the sphere. We therefore model the radiation diffusion within
the fireball by a linear increase with radius of radiation energy flux. The
radiation flux is the negative of the radiation diffusivity times the
gradient of the radiation energy demsity. Using (3) and (7),

-ble1 é%-aT4 = kr

where k is the constant of proportionality. Integrating the above between
r=o0 where\thé temperature is T _to the front radius R where the temper-

ature is zero, we obtain kR, the radiation flux at the front.

m- +4

8ab,T 1

kR = —_1_-_-— -
(m1+4)R

< - , :

A lower limit of velocity, since radiative equilibrium is not possible
without scattering. In fact, front velocities of the actual sphere of
nonequilibrium radiation may start near c.

1
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Figure 1. Fireball temperature and front velocity
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~'gt the front to the temperature, T, provides the propagation velocity, by -

This flux equated to the heating rate necessary to warm a layer of cold air

r

radiation diffusion, of the fireball front.

. 8ab Tm1+4
R = 1
- (ml+4)R(aT4+c1T)

(radiation diffusion) . - (13)

Bt S R IRV

This velocity as a function of front position is plotted in Fig-
ure 1 for the i MT case. The ndiffusion” velocity on this. plot intersects
the "burn-out" velocity at a definite radius Ro' This radius marks the
transition between the two propagation mechanisms and is of the order of
the Rossland mean free path at the prevailing temperature. For yields in
the megaton range Ro is less than Rl, so the transition occurs when
radiation energy still dominates material energy in the fireball. We
equate (13) with material energy omitted to (12), express_-T in terms of

. R by (_9) and obtain an approximate expression for R,- When R becomes
larger than R1

density may be dropped from the denominator of (13). After these operations

the material energy dominates and the radiation energy

are performed and numerical constants introduced we obtain the following

approximations for fireball front velocity.

R (cm) = 2.140(10)° [ ) 10+ 22755
e e = R(cm/sec) = c/4 i R<R_
R(en/sec) = 2.33810) [} o 10 7 [R(em) 17 15 5 R < R<R):
R(cm/sec) = 1.960(10)77[51(»41')15'868[R(cm)]'13'604; R,< R
/ - 3.02200) 77 [} 0um) 15+ B[R my 1718+ 604

13



SECTION 3 :
THERMAL PENETRATION INTO GROUND

The thermal boundary conditions at the ground surface, we assume,
are provided by the temperature as a function of time (or front radius) of
the atmospheric fireball. We model the early ground heating by a one-
dimensional wave of radiation diffusion whose front is parallel to the
ground and which propagates normal to the ground surface. Since the radi-
ation mean free path is much shorter (a factor of 10'5 or so) in the ground
than in the air, the early nondiffusive ''burn-in" into the ground is con-
fined to an extremely thin surface layer. We ignore this brief early phase
and consider radiation diffusion only. Although ground blow-off would start
immediately we delay its inception until the thermal wave develops into a
shock. Up to this time ground material is assumed at rest at its normal
density. For our purposes this is a conservative assumption, in that ground
blow-off is slightly delayed.

GROUND THERMAL WAVE (ONE-DIMENSIONAL)

If we call y the distance from the ground surface, measured
downward into the ground, the one-dimensional radiation diffusion . equation

can be written,
‘a3 my 3 .4
5ty o gy 1)

where the subscript 2 denotes ground material and the quantity in brackets
is the negative of the flux of radiation energy. The quantity € = e, + e,
is the sum of material and radiation energy densities. We multiply the above

equatidn by y and integrate between y = o (the surface) and infinity.

14



.

The right hand side of the result may be integrated by parts. The integrated

term vanishes at both limits; at the surface y = o and at infinity the flux

is-zero. There remains, *
: ® ' T,

- * m,+3 3 = lTl2+3 '
%€ 4y = my*3 or f

fy 5t dy = -f 4b,aT 3y dy = 4b,aT dT

: o) o TS .

where the right hand side is expressed as an integral over T which can be
explicitly evaluated. The region of thermal penetration is a regiom of
approximately uniform temperature (radiation diffusion permits no sharp tem-
perature gradients) bounded by'awave front at distance Y , beyond which the
temperature is zero. Since Y is a variable of integration, integrated be-
tween fixed 1imits,.the left hand side is the total time derlvatlve of the
first moment of energy density. Also, because the temperature (or energy

density is approximately uniform within the wave region and zero beyond,

d eYz 420y Wyt
dt = 2+4 s

where T, is the ground surface temperature. The time integral of this

equation y1e1ds the first moment of the energy demsity of the heated layer.

t

2 4ab
e’ | ~2mez+4 it
2 m.+4 s

2 "%t

a

At any ground position the integration starts at t_., the time of arrival
of the atmospherlc fireball front. The temperature of the ground surface
follows the temperature of the atmospherlc fireball which in the 1 MT case
falls as t -3/4 at distances within 20 mete:s of the bomb. Since m2+4
is 6.307 almost the entire contribution to the integral comes at times
immediately after t,. We therefore make little error by extending the
upper limit to infinity and considering each ground position to receive a
thermal impulse at t, given by the integral which fixes a constant value

of the first moment of energy density at that point. Hence,

15



2 4ab ©  no+4
ey? _ 4ab, _ 2 |
7 " P vhere P -f T Y dt . . (14)
t, :

A similarity solution exists for a one-dimensional thermal wave
with a constant energy moment. However, the essential features of this
similarity solution may be obtained by assuming the radiation flux to vary
linearly with depth through the heated region. (Compare the previous dis-
cussion of radial radiation diffusion in the air.) One assumes the flux
to equal zero at Y/2 and to be negative at the ground surface.* (The
ground radiates into the air which is assumed at zero temperature once the
thermal pulse is over.) Equating the radiation flux to this linear functionm,

341

C Myt
27 dt _ X
- 4ab2T & - k(y 2)

and integrating between Y/2 where the temperature is Tg’ the ground

. temperature, to the wavefront Y where the temperature is zero gives,
m2+4
4ab2Tg 2 .
—mea = /2 (/DT (15)

Now assume times are late enough and temperature low enough that

the radiation contribution to ground energy is negligible. Using (4),
Equation 14 can be expressed in terms of the ground temperature, Tg'
c TgY 4ab
.2 m2+4

P . (16)

Equations 15 and 16 defermine the constant of proportionality Kk
in terms of P and either Tg or Y. Knowing k the radiation flux at
the thermal front can be equated to the energy required to warm a layer of
thickness dY in time dt to the temperature Tg , and the velocity of

the thermal front obtained. The velocity can be,integrafed to obtain the

T *
. The exact similarity solution suggests that a flux distribution symmetric
about the center of the heated layer is a good approximation.

16
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front position Y as a function of time and (16) used to express Tg as

a function of time.

T
(]

The essential results, suppressing for the moment multiplicative
constants, are as follows:

1

Y ~ [Pm2+3(t-ta)]2(m2+4)' (17}
1

T~ [P/ (t-ta)]m2+4 : (18)

7 The depth and temperature of the heated ground layer depends upon
position through the thermal impulse P and weakly through ¢t , the time
the position is reached by the atmospheric fireball. Note the ground temper-

ature decreases less rapidly in time than the atmospheric fireball temperature.
o EVALUATION OF THERMAL IMPULSE

For yields in the 1 MT range of near surface-bursts the estimates
of Section 2 indicate that at radial distances less than 20 meters the
atmospheric fireball temperature is given by (9) and the front velocity
is approximately c/4. Blow-off within this distance is our prime concern,
so these expressions are used to evaluate the thermal impulse. Two trans-
formations of the integral (14) are useful. We replace time as a variable
of integration by fireball front radius X measured horizontally along
the ground from ground zero. ‘

oo m,+4

fT“‘z*“ s =f [Tx] 2 &
s : X .
t X

a

The variable x is ground position. Change variables again by letting
w= R2 = Xz + xi where R is the fireball radius and X, is the vertical

distance above the ground of the bomb center.

17



(o]

4
) fT e f[T(w1/2)1m2+ 12 g

a x2+x2
o]

Using (9) the integral, complete with constant factors, gives,

2..1,1.578 2 2

= 2.6502(10)° (D) (Paxd)” 1.8651

(19)

1 . . .
with distances in centimeters, and E in megatons. The dimensions of

P are (kv)6 307-sec

THERMAL WAVE-SHOCK TRANSITION

A strong hydrodynamic shock develops from the thermal wave front
when the front velocity drops to the isothermal sound speed in the heated
ground. On the assumption that the strongly heated ground has an effective
heat capacity ratio, Y , of 5/3 the isothermal sound speed, Cp 2 is,

= 2/3 c2T .

Using the previous analysis we may equate the isothermal sound speed to the
thermal front velocity and determine the fime and depth of the shock wave
‘origin as a function'of ground position. We denote the time as ts and
the depth as Ys , both of which are power law functions of P , the thermal
impulse. After evaluation of constants the results are:

1. 9997(10) -4, 1)0 6398( 2, 2) -0.7568 (20)

ct
]

ct
1}

5..1,0. 7141 2, 2

1.0735(10) (E ) Pexd) -0.8447

-4
"

(21)

1, ‘ . . . .
E" is the thermal energy of the atmospheric fireball in megatons, distances
are in centimeters and time in seconds. The distance X, is the height

above ground of the bomb center and

18 -



1/2_xo]

t, =-%[(x2+x§) (22)

is the arrival time of the fireball front at position Xx.

g These results are plotted in Figure 2 for the case of 1 MT yield
(El=0.75 MT) at the standoff distance x, = 44.6 cm. It is interesting to
note that the ground shock develops firﬁt at a distance of 2-5 meters from
the bomb at a time less than 10-7 sec. At larger x the shock develops
very soon after arrival of the fireball while nearer the bomb the ground
shock is significantly delayed. Owing to our planar shock approximation
these results have only qualitative validity near ground zero. Larger

standoff distance, Xy would give better answers in this region.

19
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Figure 2. Thermal wave-shock transition in ground of 1 MT surface burst.
(Depth, Ys , and time, tg , of transition as function of X,
distance from ground zero. Fireball front arrival at ta.)
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SECTION 4 :
* LATE TIME GROUND BLOW-OFF '

In the present context late time means times from 1 usec to
10 msec when the thermal wave has effectively stopped and the expansion
fan of underdense ground material is developing behind the ground shock.
At these times the hydrodynamic structure, of a plane shock, can‘be described
by a similarity solution given by Zeldovitch and Raizer (1967)* for thé
case of an impulsive pressure applied to a plahe material interface with
a vacuum. For the case of y = 7/5 this solution can be given in a closed
analytic form. For convenience we model the late time hydrodynamics with
this solution, although Yy = 7/5 for ground material is inconsistent with
our earlier assumption of 5/3. The shock position Yl is given by,
Yl = AtS/S
in terms of which the similarity variable & = y/Y1 is defined. The
density, velocity, and pressure at values of £<1 are then given by,

p = 690(5-45)'5/2 ; u=-5/6Y,(1-28) ;'p_f_54§p°i§£§:4g)j?/2

where Po is the unshocked initial density of the material. -

N

Unfortunately the constant, A , cannot be determined from simple

parameters of the initial impulse such as momentum or energy, but depends

*7eldovitch, Ya B., and Y. P. Raizer, Physics of Shock Waves and High
Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York,
1967, p. 829.

21



upon the details of the starting impulse. This is the reason we have been
forced to analyze initial conditions in the previous sections. In this
section we continue the analysis to a later time at which the hjdrodynamic
structure may bé matched to the similarity solution. The matching deter-

mines, A , and the subsequent hydrodynamics.

EARLY GROUND SHOCK

When a one-dimensional hydrodynamic shock develops from the thermal
wave front it is driven by the pressure of an approximately isothermal expan-
sion fan within the heated ground which is produced by a rarefaction moving
back toward the ground surface. Both the material velocity and the pressure
must have the same value at the contact surface between the shock heated
and the radiation heated ground. We can express the pressure in the iso-
thermal expansion fan of radiation heated ground in terms of material speed

u and sound speed ¢

A The pressure balance with material accelerated by

a strong shock gives,
' 2
exp(-u/c,) = (6/5) (u/cy)

for Yy = 7/5. - From this relation one finds the material velocity u behind

the shock and the shock speed v in terms of the sound speéd,

0.6572

u/cA

\v/cA 0.7886 .

Until the ground shock is overtaken by a rarefaction wave propagating from
the surface, these velocities remain constant. (We assume the sound speed
constant, since it is a very slowly varying function of time.) At the time
and shock position at which the shock is overtaken we match it to the sim-
ilarity solution. The time and position can be estimaféd by considering -
the wave diagram_following. The heads of rarefaction waves are indicated

22



by dotted lines. Prior to pbint 1 a rarefaction from the surface propa-
gates into the heated layer at the sound speed A uptil met bx a rare-
faction propagating from the shock origin. Between I and II thts rarefaction
pfopagates through the remaining heated ground at a speed assumed to be

c4tu. Beyond the contact surface, between II and III the rarefaction propa-
gates through shocked material at the speed cB+u , Where g is the

ordinary adiabatic sound speed. By piecing together these segments one finds,

Y111

It

2.684 Y
s

t

2.136 (Yslc

111 A)

for the coordinates at which the ground shock begins to attenuate by feeling
the effects of the open surface. At this time between the shock and the
contact surface the material velocity decreases linearly with distance in

a manner described by a simple adiabatic expansion wave.

Shock

23
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FITTING TO SIMILARITY SOLUTION

- If we assume the material velocity behind the shock féllows the
adiabatic expansion wave relation even behind the contact surface, we find
the velocity passes through zero at a position, y = 2.048 Ys. We note that
the similarity solution gives a velocity of zero at one-half the distance
to the shock front. Consequently fitting the similarity solution at this
time requires a shift of coordinate origin. It also requires a shift of

the time origin. We look for a similarity solution in the form,

_ 3/5
Y-Y = A(t-t))

The consideration above already establishes Y0 = 1.411Ys. From

the ratio (Yl-Yo)/Y and the shock velocity, 0.7886 Cp» t, = 1.167 (Ys/cA)'

" Finally, matching of the shock position requires,

A=1.298 (c

3/5 ,2/5
A) YS

The late time shock position, Yl , can be expressed by the
similarity solution,

_ 3/5,2/5 3/5
Y, - 1.411Y_ = 1.298(cy) ™ "Y' (t-tq) (23)

where t1 = to +t. to include the time delay in the heating before the

shock starts.

We define the origin-shifted similarity variable El_as,

y—Yo _
g1y 1! -
l o,
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in terms of which the ground density ratio, n = p/p, » for all points
" behind the ground shock is,
n=6(s-4g)"2 . | (24)

.

BLOW-OFF GROUND DENSITY

We have now completed all the analysis required, and it remains
only to put it together into a form from which the density of blow-off
ground material can be computed. To implement the similarity solution
requires the values of Ys , and ts as a function of distance from the
burst point which are given by Equations 20, 21, and 22. The additional
quantity needed is the isothermal sound speed at the time tg when the

ground shock starts. The numerical formula for this speed is found to be,

1,0.0743 -0.0879

¢y = 5.466 a0y’ &Y (x2+x§)

.. . 1 . .
where ¢ is in cm/sec if E~ 1is megatons and distances X,X, are cm.

A
We have used this method to calculate the density distribution

of ground material at several late times. An example is shown in Figure 3
which gives density contours as a function of distance from ground zero, x ,
and vertical distance y at 1 msec after a 1 MT burst (E1=0.75 MT), at .
-a standoff distance X, = 44.6 cm. The calculated ground shock position
Y1 is included. The dotted line is the locus of positions at which the
material velocity changes direction from into the ground to out of the
ground. (Note‘that in Figure 3 positive y 1is upward, contrary to our

usual convention.)
Evidently the plane wave approximation of the shock front at

this time begins to fail seriously at distances within 5 meters, since the

shock front there is not even approximately parallel to the original ground
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Figure 3.

Density contours of ground material 1 msec after 1 MT

surface burst. (Radial distance,
distance, y , from ground zero.):
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surface. The situation is worse at distances less than 2 meters which are
not included in the figure for this reason. Physically, near the burst point
one expects a quasi-hemispherical shock front which at this tim; would have
eﬁgulfed a portion of the planar shock propagating from the surface. These
fgilings are less serious as the standoff distance increases beyond the

S very small one chosen for this example.

e
-

One finds by calculation with the similarity solution that shifts
of spatial and temporal origin introduced in the fitting process become
s eeew..insignificant at late times. For example, in the 1 MT case for x>200 cm,

Yo is less than 15 cm and t, is less than 1 usec. Consequently for

1
times greater than 10 usec the origin shifts may be dropped - from_the

$imilarity solution without appreciable error. A functional relatlon for

e "the 51m11ar1ty constant A is the single requirement. This is given by,

e ———
———
T

o e

- = 5, 8625(10)6(E1)0 3302( 2+x§)'0'3906

with the variables in the same units as before. With this value the sim-

ilarity variable & = y/m'.s/5

may be constructed and substituted into (24)
to obtain an explicit formula for the blowoff ground density ratio as a
function of spatial position, time, and stand-off distance and yield of
the devi;e.

2.48y(x 2, 2)0 . 3906

(E1)0'3302t0'6

5/2

. p/p, =N = 6(5-42)" where z = (25)

In this formula distances - x, X,» ¥ are meters, E1 is megatons, and t
is in psec. The ground shock position corresponds to z=1 and vertical
position y 1is positive downward. This formula provides a convenient

estimate of ground mater1a1 densities when used with proper Tecognition @~

of its limitatioms.
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' SECTION 5 g
. SUMMARY REMARKS

The analysis presented in this report has achieved an approximéte
analytic expression for ground material densities of the early blow-off in
the immediate vicinity of a surface nuclear burst with which the gamma-ray
source from neutron capture in ground material may be computed. This result
is qualified by the analytical approximations and methods used, but may
provide sufficient detail for estimates of ground gamma sources in circum-

stances of minimal debris effects.

However, these results are incomplete through their failure to
incorporate the effects of case debris and through the inadequacy of plane-
wave approximations very near the burst point. Both of these problems have
a common aspect, the strongly spherically divergent nature of physical pro-
cesses very near the burst. We have examined these problems, but have been
unable to complete analysis of them within the limitations of this effort.
They appear to be amenable to a combination analytical and numerical analysis
in one-dimensional spherically symmetrié geometry. The results of this treat-
ment can be fitted to the present plane-wave approximation (as modified by
debris effects) in the region farther from the burst. In our view, this approach
is a much needed alternative or complement to full two-dimensional coupled

radiation-hydrodynamic codes for obtaining an adequate solution of this problem.

GROUND CRATERS

A final remark concerns the relation of our analysis to an entirely

different outstanding problem, the failure of numerical codes to reproduce
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the observed final shape and volume of ground craters from nuclear surface
bursts. Observed craters are wider and shallower-than predicted{and have
volumes 10 to 100 times greater than code results. We suggest that a con-
tr%buting cause may be omission from the codes of the strong quasi-planar
gréund shock propagating downward at distances of tens of meters from the
burst. This is the shock which we have analyzed by a similarity solution.
The fine grids required by numerical codes for adequate resolution at early
times may not extend far enough away from the burst point to include the
inception and development of these shocks, an omission which excludes the
physics of their eventual interaction with the quasi-hemispherical shock

. centered at the burst point. This remark is conjectural since we are not
familiar with cratering codes, but may illustrate an insight available from
an analytical solution. The insight could be used to improve the computer

codes.
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