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A NOTE ON EMP PROPAGATION OVER
IMPERFECTLY CONDUCTING GROUND

K.S.H. Lee
The Dikewood Corporation
Santa Monica, CA 90405

The integral equation formulated by Longmire for the outgoing field
over an imperfectly conducting ground beyond the source region is solved
exactly by the method of Srivastav. From the exact solution various asympto-
tic forms of the solution are found, from which a simplified representation

of the exact solution is constructed in the frequency as well as the time

domains.
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I. INTRODUCTION

The AFWL code SCX in its present form treats the ground perfectly
conducting in the region beyond the outer boundary (Fig. la), where the
outgoing radiation field is expanded in multipoles. Recently a method has
been proposed to account for the ground impedance in the outer region (Ref. 1).
The method is essentially as follows. The region of interest is above the
ground, near the air-ground interface, and beyond the outer boundary (Fig. la).
In this region the outgoing wave F,_F = r(B¢ + Ea/c), satisfies the diffusion
equation and impedance boundary condition at the interface, as shown in
Figure 1b. At x = 1 (outer boundary), F is taken to be unity and can be
scaled to any function of the complex frequencf s. Let the surface value of
F be denoted by Fl’ i.e.,-Fl(x) = F(x > 1,0). Then, with the help of the

Green's function, the following integral equation for F1 results

B [x R D)
Yar T -xTx) |
where BQ=¢§;;7E ZS/ZO, L = radius of outer boundary, Zs = /;;§7T§ET;TET =
surface impedance of the ground in MKS units, and Zo==¢EQTE;!= impedance of
free space, ¢ = vacuum speed of light. In Reference 1 the method of power-
series expansion was first tried to solve Equation 1, but mét with no success.

The original differential equation (Fig. 1lb) was finally adopted to generate

numerical results. g,

The purpose of this note is to show that the integral Equation 1 can
be solved exactly without any approximation. Asymptotic solutions for
(1) x>+ =, x> 1, and(ii)|8| > @, ]BI + 0 can be easily obtained from the
exact solution. From the asymptotic solutions a simﬁle expression can be
constructed-to approximate the exact solution. In the time domain this

approximate expression corresponds to the simple form < exp(—atz).
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II. EXACT SOLUTION OF INTEGRAL EQUATION

Equation 1 is a special form of the integral equation of Abel type
(Ref. 2). Let f(x) = Fl(x) /Vx. Then Equation 1 can be written as

X ' 1
FG) = - B'[ £(x")dx (2)
< /2 1 vx-x'

Multiplying both sides by (-'E—x)_li and integrating the resulting equation

over x from 1 to £ one obtains

IE £(x)dx _ a2 Sin—l‘/ﬂ—— __B IE dx r‘ f(x")dx' 3)

1 YE-x V2r 1 YE-x 7y Vx-x"'

An interchange of the order of integrations gives
3 X coos £ £ £
J dx I £(xT)dx’ =I f(x")dx' I dx =7 I E(x")ax' ()
1 YE-xX 1 v -x' 1 < YE-x)(x-x") N

1
where the inner integral in the second step can be expressed in terms of the

beta function B()%,%), which has the value ©m (Ref. 3). Using Equations 2
and 4 in Equation 3 one gets

2 (E
£(E) - -S—I f(x")dx' = }1__+ B/%_sin-]'E— B /g_- (5)
[

1

Differentiation with respect to-{ yields

2
4 -8 B L T PR
FEO -5 f@=-3¢ & G- - ®
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The boundary condition for £ at £=1 can be obtained from Equation 2 and is

given by

£(1) =1 (N

Solving Equation 6 subject to Equation 7 one obtains, with g replaced by x
and f by F,//x,

2 2 X 2 :
Fl(x) = Yx eB /2 e_B /2 _ I g(u)e-B u/zdu (8)
1
where g is given by

g(u) = —+— 4 B 1 9)

2uv/n V27 wu-1

let R = x- 1. Then, Equation 8 is simplified to

2 VR [ e — 2.2
Fl(R,B) = YR+ 1 e8 R/2 1 - J l: 5 & 3732 + 822/1\':|e—8 & lzdl; (10)
0 (r”+1) ™ +1

after changes of variables have been made. Note that

r[ c B/Zl_fr] -8%c%/2
a2 2

dr = 1 (11)
¢ +1 y

T

Equation 10 can be written in a more convenient form

2 00 2 2 .
P (R,8) = RTT o8 R/2 [ [ ; z 75+ 32/2/n ]e—a z lzdc a2
'/E (Z_: +1) 4 +1

where R = x-1 > 0. Another convenient form can be obtained from Equation 12

by a simple change of variables u = CZ-R and is given by



F ool 2
P, (R,B8) = EE f | o B2l ]e“B "2 3
o0 | (u+R+1) (u+R+1)Yu+R

When R >> 1, one may replace R by R+1, and vice versa, in Equation 13.
In doing so the resulting integral can be evaluated explicitly and the result
is (Ref. 3)

P .
PR ~ G+ 8/8TD) [ 1 - ipe terselvh | 1)
where the "numerical distance" Py is defined as
2 .
Py = B'R/2 (15)

The expression in the square bracket of Equation 14 is exactly the Norton
formula for the Sommerfeld problem of a dipole radiating over a finitely

conducting ground (Ref. 1).

In Figure 2 the exact solution given by Equation 12 is shown together

with the numerical solution given in Reference 1.
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III. ASYMPTOTIC SOLUTIONS

In this section various a}symptotic solutions will be derived. from the

many different forms of the exact solution developed in the previous section.

1. R>> 1

Equation 14 gives

P
Fl ~ (1L + gv2/m) [1- /Ele 1erfc/p_l ] , for any B8/R (16)
-—%— (1 + 8/2/7), for /R >> 1, |arg 8| < 3n/4 (17)
B'R _

where Py = BZRIZ.

2. R << 1
Expanding the integrand in the square bracket of Equation 10 in powers

of ¢ and keeping only the leading term, one gets (Ref. 3)

P
F,~ e lérfc/p_l-, for any BYR (18)
~ 1 - /2/7 8/R, for R << 1 . (19)

3. B > 1, |arg(82)| < /2

From Equation 12 one has, for large B8,.

2 : o 2.2
F, ~ VR+1 &P R/2 r____Bz?-/‘n e B L lzdc
/R-c +1

Since the value of the integral comes mainly from the lower limit, one gets

p o BT g2 [ 6%z
r
RH1 VR
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p

S e lerfc/EI, for any 8YR ' (20)
YR+1

1 2/m
~g }—_'—R(R-i-l) s for 8VR >> 1 | (21)

4 B << 1, |arg(8D)] < n/2

One may neglect the second term in the integrand of Equation 13 and

obtains
»  -g%u/2
YR+1 e u
i T 377 du
_ 0 (u+R+1)
which gives (Ref. 4)
Py _ o
F1- 1- Vﬂpl e erchEi, for any BYR (22)
~ 1 - v/a/2 8VR, for gVR << 1 (23)
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IV. SIMPLIFIED REPRESENTATION OF THE EXACT SOLUTION

From the asymptotic solutions given in the previous section it is clear
that for large 8 and any R one may take Equation 20 to approximate the exact
solution. On the other hand, if one is interested in small R and any R one

should take Equation 22, namely,

Fy

P
=1 ~ /up, e lerfc/sl (24)

with Py = BZR/Z, which reduces to unity, as it should, when R=0. Equation 24
is plotted in Figures 3 and 4 together with the exact solution given by the

integral 12 and the approximate solution of Reference 1.

To get the time-domain counterpart of Equation 24 one recalls the

Zs s / rolc
B = sro_c 7" = sto/e {(25)
T

definition of B, i.e.,

o 3
with €. = a/eo. Assuming the radical is a constant as in Reference 1 one
can rewrite Equationm 25 as -
B = s1q (26)
where T, can be obtained by iteration by solving
- 1 rO/c
1 ole+1l/T
£ 1
r
With B given by Equation 26 the inverse Laplace transform of Equation 24 is
(Ref. 4)
s T 2 2
Fl(R,r) = —expi-tT /(ZRTl) , T>0 27)
R‘I:l N
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