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Abstract
This note discusses an instability which can exist in a soil-filled
coaxial structure. This instability is characterized by the so0il breaking
down beyond a critical radius to the outer conductor in an uncontrolled
manner. A method for removing the instability is described. This stfucture .
is used in experiments relevant to the MX power line resistive link and MF

antenna.



It has been pointed out that an dinstability will exist in a coaxial
structure filled with soil which we plan to use in certain experiments relat-
ing to the R-cable. It is the purpose of this note to illuminate the origin
of this instability and show how it may be removed.

The coaxial structure is to be used in a continuing set of experiments

relating to the R-cable. Specifically, we can measure the radial extent of

streamers, under the conditions of soil breakdown, for a given applied voltage.

Also, the details of the geometrical configuration of streamers can be inves-
tigated. Finally, we can answer the all-important question of whether

streamers produced by a strong radial electrical field will enhance soil con-

%
The coaxial structure is shown in Fig. 1. It consists of a metal inner

ductivity in the Tongitudinal direction. -

rod of radius a and an outer metal cylinder of radius b. The length of fhe
coax is £ and it is filled with soil of conductivity o. The inner rod is
grounded while the outer cylinder is connected through a resistor R0 to a
pulser which applies a peak voltage VO. The voltage of the outer cylinder is

Vp-

e’



Figure 1. Coaxial geometry; structure is filled with soil from a > r < b,



The model that we use assumes that the voltage VR is large enough to
break down the soil out to a radius o and does so with cylindrical symmetry.
For r < o the soil conductivity, at least in the radial direction, is
infinite. We assume that there is a critical electric field Eg which will
cause the soil to break down. Thus, the radial electric field at "o is Ep.

According to Liew, et al. [1], EB should be from 100 to 300 KV/m. Note
that this is the breakdown voltage at the tips of the streamers in the broken
down soil. In the absence of streamers, e.g., at fhe inner rod surface at
r = a before the soil is broken down, the breakdown voltage wi1i be much
higher. Typically, this breakdown voltage will be about 2000 KV/m [2].

From Gauss' Law and other elementary relations, the radial electric

field at r 2 is

Ve -
By = OB W
Thus,
ik (2)
E, = 2
B (ro/b) Qn(b/ro) _
Calling x = ro/b,
| Vy/b &
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The function -x &n x is plotted in Fig. 2. It has a maximum at x = /e
with the function-having a maximum value of 1/e.

In Fig. 2, it is seen that -x 2n x is a doubly valued function of x,
ji.e., for a given value of VR’ there are two values of x which will satisfy

(3). Presumably, to move the outside radius of the streamers s fromr = a to



r = b, one would increase VR/bEB from -(a/b) &n(a/b) (neglecting the large
initial breakdown voltage) to 1/e and then to zero again if the streamers
should choose to track on that portjon of the -x 2n x curve with the negative
slope. Suppose we are at the operating point 2 in Fig. 2. Further, let the
resistance R0 be very small compared to the resistance of the unbroken down -
portion of the soil R. We hold Vo fixed. Suppose that there is a small noise
fluctuation in the system which causes the current IR to increase slightly.

VR will then drop, and according to Fig. 2, x will increase, decreasing R.

IR will then increase further, etc., with the result that x will continue to
increase until x = 1, at which time the soil is broken down all the way across
the cylinder. We see that points on the negative slope portion of Fig. 2 are
unstable operating points leading to an instability which will cause the soil
to rapidly break down until ry = b is reached.

On the other hand, if we are at the operating point 1, if IR increases
and VR decreases, according to Fig. 2, x will decrease and R will increase.
Thus, the resistance of the soil R changes in such a way as to tend to damp
out noise fluctuations in IR’ and point 1 is a stable operating point.

We call this instability a geometric instability, since it primarily

depends on the cylindrical geometry of the coaxial strgﬁfure.

The stable region of operation is thus for x froﬁ approximately zero to
1/e = .3679. This means that only about 13% of the volume of the so0il may
contain streamers. Thus, if we wish to develop streamers out to a radius of
.50 cm, we would need a cylinder 2.7 m in diameter. For a meter-long cylinder,
the volume of the soil required to fill it is 5.8 m3, weighing about 8 tons!

The corresponding volume of the soil containing the 50 cm long streamers is

.78 m3, weighing about 1 ton.



Since the 8 ton structure may be logistically unmanageable, it is
highly desirable to devise a method of eliminating the geometric instabi1ity
so that only .78 m3 of soil is required. ‘

Consider now the case where R0 is large compared to R, and we are again
at the operating point 2 in Fig. 2. A noise fluctuation causes IR to first
increase; VR drops; x increases; R decreases. Next, however, IR will increase-
only a small percent of this first increase because R is small compared to Ro'
As the process continues, IR will increase by only a small percent of its
previous increase. Thus, we may expect IR and x to reach 1limiting values.

We see that by adding a sufficiently large resistor, we have removed the
instability.

To calculate the required value of R, we Tet

R, = (2102) "1 | (4)

and note that

R =R, an(1/x) . (5)
We have

Vg = IR, + Vp = VR(Ro/R) + Vo (6)
Using (3), (4), and (5) in (6), we can obtain %

VoD R /R |

j%;-= (-x &n x)(1 - ;L : 7

The function on the left side of (7) is plotted in Fig. 3 for Ro/Rc = 1.
In Fig. 3, we see that for any choice of VO, the slope of the function is posi-

tive, leading to stable operating points. Thus, R

0 - RC will remove thg

instability.
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Figure 2. Plot of -x £n x vs. x ‘
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Figure 3. Plot of (-x £n x)(1- Rc_f-"_T) vs. x for RQ/Rc =



Had we chosen Ro/Rc < 1, we would find that the function on the left
side of (7) would have a maximum at x < 1, and that there would be a range of

X for which the system is unstable. For R0 = R_, this maximum occurs at

C!
x = 1; for R0 > Rc, the maximum occurs for x > 1, and the system is uncondi-

tionally stable. We call Rc the critical resistance.
-3

For ¢ = 10

pendent of a and b.
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mho/m and £ = 1 m, RC = 159 ohm. We note that RC is inde--
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