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ABSTRACT

This investigation is concerned with the development of a mathematical proof that for an
N-layer earth modei--including three-dimensional variations in the electromagnetic fields and
frequency dependence of electrical parameters--it is possible to express the three components
of the electric field and the vertical component of the magnetic field on the surface of the earth as
a space-time integration of the two horizontal components of the magnetic field. This result would
appear to simplify considerably the numerical modeling of the high-altitude-burst electromagnetic
pulse (HABEMP) when the ground response is coupled to finite-difference methods for solving
the atmospheric part of the problem. Special-case solutions are developed which include the
effect of coarse-graining from a finite-difference approximation.
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1. INTRODUCTION

This study concerns the formulation of a theoretical model of stratifica-
tion for realistic ground structures. The model can be used with finite-
difference methods to solve Maxwell's equations in predicting high-altitude-
burst electromagnetic pulse (HABEMP). The objective of this effort is to
improve the representation of electrical ground stratification and apply the
results to the computation of HABEMP to support critical Army programs for
JABEMP assessment and hardening.

For Army applications, the electromagnetic fields near the surface of the
earth and in the ground are important. At very early times the fields near
the ground may be determined by the use of reflection coefficients. However,
as time progresses--into the millisecond range and eventually into the one
second range--the coupling problem becomes more complex because of the larger
wavelengths associated with the intermediate-to-late times. From skin depth
considerations one easily sees that later times involve deeper penetration of
the fields into the ground. Thus, for HABEMP assessment of systems it is
necessary to characterize the relevant ground parameters on a regional basis,
and to include realistic conductivity-versus~depth profiles 1in the
calculation. Where appropriate, the effect of water content on the
conductivity and dielectric constant should be included.

In this investigation we have been able to develop an analytical solution
to the ground coupling problem which is applicable for all times. Also, this
solution can be incorporated into the finite-difference numerical model being
developed at the Electromagnetic Effects Survivability Laboratory of the Harry
Diamond Laboratories (HDL). This can be done by expressing the three
components of the electric field and the vertical component of the magnetic
field on the surface of the earth as a space-time integration of the two
horizontal components of the magnetic field. The aforementioned relationships
are sufficient for satisfying the air-ground boundary condition; they
essentially incorporate the feature of the conductivity-versus-depth profile
for an N-layer structure, including frequency-dependent electrical parameters.

It would appear that this formulation could reduce the cost of running
HABEMP problems, since it obviates the necessity of extenging the computation-- -
al grid into the ground. In addition, the special-case theoretical models
(sect. 4), derived from the general solution (sect. 3), appear to provide a
theoretical basis for simplifying the computations in selected cases.

2. PHYSICAL CONSIDERATIONS

Figure 1 describes the problem in geometric terms. We assume a layered
structure, each layer having uniform electrical parameters 014€4 and magnetic
permeability, u;. Horizontal variations of 0{1€4 and uy are neglected. How-
ever, although the fields will vary in x,y because the driving functions, that
is, the fields above the ground, are assumed to vary in the horizontal
directions.



If the ground were a perfect
conductor, then the boundary condi-
tions for Maxwell's equations on the
earth's surface would be
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where 3 denotes the normal to the
surface, and the subscript "'s" de-
notes the value on the surface.
N N TN EN'HN These boundary conditions become
modified when the earth's conductiv-
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shown in this study that 1irf

Figure 1. Geometric considerations. -
Yi(rs't) = {st’Exs'Eys’Ezs} , (2

then every member of the set Y, on the surface of a finite-conducting earth is
related to the horizontal components of the magnetic .field through the equa-
tion

t
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1i(Fert) = [, Tielfy - Bt - i (e )avranay: N
o s | (3)
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where Fs,Fé are points on the surface, t,t' are time, and T,,,T;, are func-
tions which are calculated from the solution of the layered ground problem.
Strictly speaking, the fields given by equations (2) and (3) are those in the
ground itself. By matching these fields to those in che air at the earth's
surface, we fulfill the boundary conditions leading to the solution of the
problem. The thrust of this effort is the determination of Tix and Tiy for
all i.



The representation of the electromagnetic response in each layer is con-
sidered in detail. In particular, we assume that the current density, 3. in
each layer is given by [1]

aB(#,t) . It-. aB(t")

Fit) = oof(F,6) + eu k(e - enaed )
J(Fit) = ogB(Fi) + ea——0 0 e K ) (%)

where dg is the dc conductivity, g, is the dielectric constant at infinite
frequency, and K(t - t') is a function which accounts for the frequency de-
pendence of the c¢onductivity and dielectric constant attributed to a volume
percentage of water. Longmire et al [1] and Scott [2] provide a good discus-
sion of the dependence of K on water content. Notice that equation (4) is
layer-dependent.

Using the notation of Longmire [1], K(t - t') is given by

-g. (t-t")
K(t - t") =] ape B . . (5)
n

Taking the Laplace transform of equation (U4) gives
J(F,8) = gB(F,s) + e sB(F,s) + o*(s)B(F,s) , (6)
where

a
n

g¥(3) = 3 2 m
n

n

. (7)

From an analytical point qf view we can combine all three terms of equation
(6) to write '

J(@F,8) = o(3)B(F,8) , (8)

where o(s) can be regarded as a "generalized" conductivi&y, given by - -

a(3) = oy + €,8 + o¥(s) . (9)

The theoretical development of section 3 is carried out using the

generalized conductivity of equation (9). The calculations for specific

models presented in section U are executed for the class of generalized

conductivity expressions given by

g(s) = ag * s , (10)

where gg may be interbﬁeted as a frequency-independent conductivity and ¢ as a

dielectric constant. Within the context of equation (10) ss i3 recognized as
the usual displacement term.



The degree to which it is necessary to lncorporate several earth layers in
the calculation depends on the frequency content and hence on the time of
interest; it also depends on the electrical parameters and thickness of each
region. For intermediate-to-late times which are of interest it is shown that
the dominant ground effect is the conduction term. The skin depth for the top
layer is given by . .

8 -—:1-_—_ ’ (1)

1
/ufu1 991

where £ is the frequency, u, is the magnetic permeab_ilit.y. §nd 991 is the
conductivity in mhos/meter. Assuming pq = ug = 47 x 1077 H/m gives

1

r'f'tlo.l

where T = 1/f = period of signal and py = 1/001 = resistivity in ohm-m. Thus,
1f 24 is the thickness of the top region, lower regions may be neglected when

§, = 0.51

3 = 0.51 /Tp1 (km} , (12)

§p < &g - (13)

To be sure, there may be a wide variation in the values of Tpy which are
of interest for systems assessment. For example, using a combination of a
relatively long period (corresponding to late times) of 0.1 s and a relatively
large value of resistivity of p = 10" gives

1= 0.51/0.1(10%) = 16 km . (14)

On the other hand, for sea water (g = 0.3) and intermediate periocds (T =
10™?% 3) the skin depth would be as small as

§

81 = 0.51/707°(3.3) = 0.029 km = 29 m . (15)

Because of the wide range of electrical properties of the earth, it is
desirable to model the earth as accurately as possiple for results to_be
meaningful. Information on ground conductivity structures is available from
magnetotelluric experiments. These experiments are usually concerned with
deep-lying layers which are related to relatively long periods. Nevertheless,
it appears that sufficient data have accrued to provide adequate models for
the crust (top layers). Much of these data have been assembled by the author
for subsequent use in the numerical computation. Samples of the information
are stown in figures 2 through 5, which are taken from references 3 through 6,
respectively. In particular, figure 5 shows an attempt to deduce lateral
variations in conductivity from the magnetotelluric sounding. Gregori and
Lanzerctti (7] provide a comprehensive summary of crustal conductivity. On a
nation:.l scale, figure 6 [8] shows a model of crustal conductivity deduced
from radio station measurements at 10 kHz.
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Figure 6. Surface conductivity determined from radio station measurements.

In summary, it would appear that for most of the range of interest, only
one, or possibly two, 1layers would be necessary to account for earth
effects. For late times (21 s), this could conceivably involve three layers
in special cases. :

3. GENERAL SOLUTION OF SURFACE INTEGRAL REPRESENTATION

In this section we shall present the theoretical Fgrmalism for relating
the three components of the electric field and the vertical component of the
magnetic field to the two horizontal components of the magnetic field at the
earth's surface. The functional form describing the relationships is given by
equations (2) and (3). Specifically, we are concerned with developing a
method for calculating Tix and Tiy'

As we shall see, the process of computing T.X(Fs - Fé. t - t') and
Tiy(Fs - 4, t - t'), which are essentially Green's functions, involves the
process of performing an inverse Laplace trarsform (time) and inverse Fourier
transform (space) in succession. It is not clear that this can alway: be done
analytically. However, for a number of cases which are relevant to the HABEMP

effort this is poasible; these special-case results are presented in section
4,



The geometry of the problem is defined by figure 1. If we replace 3/3t by
the Laplace transform variable "s," Maxwell's equations in the n h layer
become

VxR, = Jp = o8, . (a)
VxB, = -u SR, (b)
V(oB,) =0 , and (e)
V(uwR,) =0 , (d)

(16)

where o, is the generalized conductivity within the layer. As previously
mentioned, o¢,(s) is not a function of x or y, and is uniform throughout the
thickness of the layer.

The boundary conditions between the nth and n + 1 regions are given by

Untiz 0 = Bnetlz per o (a)
%Ez,n ® %n+1Ez,ne1 o ()
Hy n = Hy et o (e) an
Hyn = By ney s (d)

Ex,n = Bx,n+1 » and (e)
Byon = Byoner - (£)

It is essential in solving the problem to notice that equations (17 a-=f)
are not entirely independent (9], as can be seen from Maxwell's equations.
Thus, for example, if we consider the expression for Ez n and Ez,n+1 as given

by the z-component of equation (16) we have , = _ -
| H
3Hy’n - ° XA . 5 E (a)
ox ay nz,n '’
and
My et ) Hy 1+t _ . ) (18)
ax y Tn+1 z,n+1 °

Ir Hy, and H, are continuous (compare eq(17c¢,d)) across the boundary, so are
their derivatives; hence, we immediately deduce from equation (18) that °nEz,n
= °n+1Ez n+1» which is the result given by equation (17b). Similarly, we have



oE oE

y,n X,Nn
- = -u_sH , (a)
9x ay n z,n (19)
and
aEy'n+1 _ aEx'n‘i'T - - H (b)
X NG un+1s z,n+1 °

Using equations (17e,f) at the boundary and assuming the continuity of Ey and
E, reduces equation (19) to equation (17a).

The prinecipal conclusion drawn from the aforementioned discussion is that
only four of the six continuity equations between the boundaries are neces-
sary. In all cases we shall use equations (1Te-£).

Taking the curl of equation (16a) and using equations (16b-d) gives the
result

Vz.l-’[n = sunon*ﬂn ’ (20)

>
with an identical equation for En being derived from the curl operation on
equation (16b); that is,

+ >
‘:»"I:".n = Su,0,E, 21)
If we now let

-~

-lrln(s,z.ny-) = IKX "-'y ﬁn(s1z|Kxory]ei'cxxeigyydl<xd|(y N (a)

f

Eq(s,2,x,y) = frx fry En(s,z,rx.xy]elrxxeiryydrxdry , (b)

- e (22)
ﬁn(s,z.zx.ry] = (5%]2 II fn(s,z,x,y)e llcxxe_myydxdy , (e)
- Xy : = -
and
En(s.2,kgixy) = (5%]2 /] En(s,z.x.y)e*inxe-iKdexdy ,  (d)
Xy

and substitute equations (22a,b) into equations (20) and (21), we obtain

N
a2fiy, 3
Tiie (supon + k% + K§)Hn (a)
and (23)
32E, 5
gz_r = (S‘Jnan + Kx + K;)En (b)



The z-dependence in regions 1 + N is of the form exp(~A,z) and exp(+Anz);
for the N + 1 region there can only be a downward travelling wave (recall that
z i3 positive in downward direction) of the form exp(-iAy.;2). We have

9
a_z"Yn'tA_n- (a)

and (24)

- z T
An /sunan A ky . (b)

~ -~

The interrelation between the components of ﬁn and En is determined from
equations (16a,b). Replacing

3
3—x = llcx , (a)
. (b) (25)
oy y °
and
9
5; = 'Yn (e)

in the aforementioned equations gives
ixyﬁz,n - Ynﬁy'n a ‘Sunﬁx.n , (a)
Ynéx,n - 1rxﬁz,n = 'Sunﬁy,n . (D)
ixxﬁy'n - 1Kyéx,n = 'sunﬁz,n y (e) (26)
icyHz,n = Yofly,n = onfy,n (= -
Yoy ,n - ikxfz,n = onBy,n +»  (e)
and
icgHy,n = ikyHx,n = onz,n - ()
Alternatively, we can recast equation (26) in the form
MpEq = -supln, - (a)

> > (27)
Man = UnEn y (b)

11



where M, is the following matrix:
M =fY 0 -igx (28)

and En, ﬁn are expressed as column vectors. Equation (27) can be cast as an
eigenvalue problem for the propagation constant Y. (assuming we did not
already know it) by operating on equation (27b) with M, and then substituting
equation (27a). We have

-~ ~ ~

Mﬁ-ﬁn = UnMnEn = -su"cnﬁn . (29)

Working out the matrix multiplication gives the following result for
equation (29):

_erl + l(; -Kny iYnK'x Hx'n
"Kny -erl + Ki iYnKy ﬁy'n a 0 . (30)
iYnle iYnKy K; + K;‘E ﬁz’n

It can be shown from the determinant of the foregoing matrix that a nontrivi-

al (ﬁn = 0) solution exists when Y, satisfies the equation

= p3 z .
Y, = ¢ /Sunon * Ky Ky (31)

which as promised is the same as equation (24).

-— - -

When equation (31) is substituted back into‘equatigﬁ (30), we obtain

-2 - q
Ky KyK'x 1Ynl<x Hx'n

"Kyl(x _ICy iYnI(Y Hy,n =0 . (32)
iYnKx iYnKy Yﬁ Hz,n

Notice that each component of =2quation (32) reduces to the same equation,
namely,

inHx’n + leﬁy-'n + Ynﬁz’n = O . (33)

12



Equation (33) could of course have been written down immediately from equation
(16d). However, the formalism of the present method ghows that there are two
linearly independent solutions driven by Hy , and Hy,n- We thus rewrite
equation (33) in the form

-

1 . N .
Hz,n = ﬁ [['ifx)Hx,n + ('hfy]Hy,n] . (34)

The corresponding functional relationships involving the three components
of the electric field are determined from equation (27a). We have

~ -~

En bl -aunMﬁ!ﬁn » (35)

where M-1 is the inverse matrix of M,. The result of the matrix inversion,
cgmbine& with the use of equation (34) gives the following result for

Ex,n+» Ey,ns Ez n:

I

ln q’n

-~

1 -~ -~
Hx'n - Tg[riﬁx’n + K'xxyHY.n]] . (b) (36)

Nk

-~ Y -~ 1 - -
Ex,n = 5y [‘“Y.n * ir‘t!l‘("y"x"‘x.n * "f’Hy.nJ] » (@)

and

~

1 A -
Ez,n = o [(~ixy)Hy n + (1rx)Hy,n]] . (e)

The solution in each region is written as follows. First, we introduce
the parameters .

L = ) &, . (37)
1=1 -
, & _ -

Using equation (37) the range of z in the nt! region is given by
Lp-1 €2 <Ly (38)

For the N + 1 region the range of z is

Ly<zg= (39)
We now define
g (z) = ¢ n 1),
and (40)
hy(z) = e n 1)



Using equation (36) for Y, = &/X, and recalling that the solutions in each
layer except the N+1 consist of both exp(-i,z) and exp(+i,z) terms give the
following expressions for the fields:

1 <ng<N
n = Agga(z) + By (z) | - (41)
ﬁy,n = C,8,(2) + Dyhy(2) , (42)
ﬁz’n = %[inAn + 1Kch]gn(Z)
n (43)
1
- -l;[ixxBn + 1.<yon]hn(z) ,
rS -1 )
Ex,n = ;;7;['(3“n°n + x%)Cn * Ifnr.'fl,rAn]Bn(Z) (1)
1r. 2
+ °nAn[ (sunon + Kx)Dn + xxran]hn(z) '
A 1
Ey,n =~ unln[(sllnﬂn + x§)An - kx<yCn J8n(2)
(45)
1
+ [(su_o + «2)B - k. x D ]n (z) ,
onxn nn y’'n XxXyn n
and
A 1 .
] (46)
+ a—n[-ixan + ir:an]hn(z) :
n=N=+1 = last layer
ﬁx’Nq-] = AN+18N+1 (z) , (47)
ﬁY,N‘PT = Cy+18N+1 (z) , (48)

14



1

fiz, N+t = TraTLiKxANsl * LeyChat JeNer (2) (49)

Ex,u+1 == ;ﬁ:?%ﬁ:?[’[sun+1an+1 + K§]0N+1 + KxxyAN+1]gN+1(Z) ’ (50)

Ey,N+1 = - ;;:T%;:T[(SMN+1°N+? + kAN - KxKyCN+1]8N+1(;) ' (51)
and

EZ,N+? - UN:I[-ixyAN+1 + 1eyCn+1 JBN+1(2) . (52)

Before proceeding with the details of solving the boundary layer equations
between the layers, it is desirable to restate the ultimate objective of these
procedures. As previously mentioned, the goal is to express the three compo-
nents of the electric field and the vertical component of the magnetic field
on the earth's surface in terms of the two horizontal components of the magne-
tic fleld. 1In "s,ky,x," 3space, the desired relationship will be an algebraic
relationship in the transform variables SyKyrKye

For brevity, we now define the entities:

- 2
@ = Su.o * Ky (a)
B, = sm. o *+ x; all n (b)
(53)
P = KKy (e)
In anticipation of their use we also introduce the variables:
1<n<N
A=Az (8) ., (a)
n = Al | < .
By, = BA(%,) . (®)
. . (54)
Ch = Cngn(,) » (o)
and

(d)

= B
=
u
o
=
=
°
——

15



where

| gy(%,) = exp(-2pt) (@)
and (55)

R (2,) = exp(r %) - (b)

It should also be noted from equations (37) to (40) that at the top of every
layer

g,(z) =h,(z) =1 , (56)
since at these points the corresponding values of z are Ln-1' respectively.
Now let us consider the boundary condition equations between the N and N+1
regions. According to the previous discussion, the relationship between the
fields in the two regions is obtained by matching Ey, Ey. Hy» Hy at the inter-
face. Using the results of equations (53) through (56) we get
Ay + By = Aye1 (5T

Cy + Dy = Cy+1 » (58)

and

1

[anCy - PAN] * [-ayDy + oBy] =

ONAN ONAN
| ] (59)
_—— [a,..C - pA , and
°N+1AN+1 N+1 “N+i N+1
1 -~ -~ 1 -~ -~
TRyl BNAN ¢ oCy] + wry [BnBy - oDyl -
: % ., (60).
s 1 [-ByarAys1 * PCyar]
N+1"N+1

For computational purposes we recast equations (59) and (60) in the matrix

form
KN ﬁN AN+t
Ryt. | - RN{. | = RN+1( N , (61a)

Cn Dy Cr+1

1 [P N
Ry = s (61b)
onrn XBy P

16
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and RN+1 1s the corresponding matrix with N replaced by N+1. From equation
(61a) we have

AN+1 - Ay - ﬁn
(FN*W) = (RNi1RN) R '(RnL1RN] R R | ) (62)
Cn Dy .
where R;l1 is the inverse matrix. The matrix equivalent of equations (57) and
(58) is
By Ay An+1
Dy CN CN+1,
Substituting equation (62) into equation (63) yields
By .
~ J=0Qnl. , (64)
Dy Cn

where Qy is a 2 x 2 matrix given by
Qv = -(1 + Ryb1Ry)"* (I - REH1RN) (65)

and I is the identity matrix. The important feature of equation (64) is_that
we have been able to express the upward components of the waves By, Dy in
terms of the downward components Ay, By. This technique will be used re-
peatedly to work "up the ladder" to the first region.

Now let us consider the boundary conditions between the N-1 and N regions.
In matrix form, these equations are given by

An-1 By-1 Ay By\
. + . = + , {(66)
Cy-1 ON-1 &N Dy
and . . . Py _ —
AN-1 BN-1 An By
Ry-1t . - Ry-1i.. = Ry - R . (67)
CN-1 N-1 CN D
Using equations (54) and (64) the foregoing equations become
Ay-1 By-1 0 R £
. + 1. = EN R + thQN R . (68)
Cn- N-1 Cn Cn
AN-1 ByN-1 U £ B R AN\
Ry-1{ . - By-1\ . = By'Rul. /- hy'RNQui. | - (69)
Cn-1 DyN-1 Cn N/

17



From equation (69) we have

IiN iN-1 §N-1
= (Jx'Ry-1)\.. - (J§'Ry-1)\ , (70)
C CN_] N_1

where J&‘ is the inverse matrix of
Jy = E§‘Ry - hi'RNQN - (71)

Inserting equation (70) into equation (68) then yields

~

BN-1 An-1
- = QN—‘I - ’ (72)
-1 CN-1
where
Qy-1 = =(1 + Uy-1)7 (1 - Uy—q) (@)
(73}
and

Uy-1 = (83'T + hﬁ’QN)Jﬁ‘RN_1 . (b)

It is not necessary to carry out equation (73) any further to see that the
ultimate result will be the generation of the relationship

where Qq is a 2 x 2 matrix obtained by repeated application of the procedure
just developed, beginning at the N+1 layer and ending at_the first layer.
o ; , <, ' —
The method for calculating the four components of Qq is straightforward,
although lengthy for a large number of layers. It is not important, however,
to carry out the computation in this section to see how the result given by
equation (74) yields the result expressed by equation (3), which defines the
surface relationships between field quantities.

Let us now examine equations (41) through (46) at the earth's surface,
defined by z = 0, h.(0) =1, g1(0) = 1. We denote the fields at the surface
by the subscript s (e.g., Hxs). Evaluating equations (41) and (42) at the
earth's surface gives

ﬁxs = A1 + Bq (75)
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and
Hys = C1 + Dy . (76)

Using equations (53) and (54) in equation (74) we obtain

B A,
51(. ) = 81Q ) ’ (17)
D4 C1

or equivalently

B, -2r 8, 4,
= e Q, (a)
D, 1 (78)
- A‘l
where
-21121

Q=e Q . (79)

As observed, Q 1s also a 2 x 2 matrix whose components are simply
exp{-21,%¢) times the components of Q. Writing equations (75) and (76) in
matrix form and using equation (78b) gives

Hyg - (M
. = (I +Q) . (80)
Hyg C1
We can alternately write
A Hyg
= W - ) (81)
Cq ys -
- - i . [

where W is the inverse matrix defined by
wa=(r+a"" . (82)

Substituting equation (81) into equation (78b) gives

B4 - [Hxs Hyg
RS VR W : (83)
1 - Vlys Hys
where V 13 the matrix
V=QW . (84)



The essential point of equations (81) and (83) ie that
each of the coqfficienqs, 44, By, €15 Dy 18 a linear
combination of Hyg and Hys.

In order to demonstrate how the foregoing result translates into the form

of equation (3) let us work out a detailed demonstration for Hzg. * From equa-
tion (43) we have

Hzg = %T[(itx)(ﬂ1 - By) * ixy(cy - Dg)] . (85)

Using equations (81) and (83) we have
By = Wyplgg *+ Wioflys (@)
Ci = WaqHxg *+ Waollys (b)
- - (86)

D1 = V21ﬁx3 + V22?iy5 (d)

where W and V i are the components of the respective matrices. Substituting
equation” (86) into equation (85) gives -

ﬁzs(sth'Ky) = ?zx[S-Kx-Ky]ﬁxs(s'Kx-Ky]

- - 8
+ sz[ﬁ,l(x.Ky)Hy(Sng,lcy) ? ( 7)
with fzs and fzy being given by
FS ‘| .
Tzx = x;[lfx(w11 = Vig) * tey(Wpy = V2q)] (a)
- (88)
and , ‘ o : : =y ) — -

. 10, ;
Tay = y7licx(Wr2 - Vi2) + icy(Waz - V22)] . ()

We interpret the T's as transfer coefficients. Using equation (86) in equa-
tiong (44) and (46) at z = 0 gives analogous functional forms for Eyxg, Eyg,
and Egzg.
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The space-time relationships at the earth's surface are obtained by ex-
amining a typical term generated in the 8,KysKy Space. If we let

Y = {fzqsExgsEyssBrg} (a)
(89)
% = {figssfiys) (%)
and
T = the representative transfer coefficient, (c)
then
¥(#,s) = T(#,8)X(2,s) , . (90)

where ¥ = (‘x"y)' Taking the inverse Laplace transform of equation (90)
gives

~ t - -~
r(B)(2,¢) - fo T2, - e )x(E) (2,80 )at (91)

(the superseript (t) indicates time space). We now write

o
leer_a

vIFE e) - [ e (R ) (92)
b4
and
-~ 2 - +.
x(t)(2,t') = (5%) }[ e 1k ?sx(t)(i‘g,t']d?é . (93)
3
"Substituting equations (91) and (93) into equation (92) yields
5 t > >
Y(®) (7, ,e) - J 1, 1 - 20 - e )x () (Fy,er)af e, (94)
T3
where
N ' 1\2 o ige(F_-F!
T(Fg - L ,t - t7) = (2—) le < (7 s)'r(.?,t - t')de . (95)
o
K

We thus complete the proof establishing the relationship between the field
components at the earth's surface.
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The utility of the formalism developed depends on the ease with which one
can perform the inverse Laplace and Fourier transforms. In the next section
we develop special-case solutions.

4, SPECIAL SOLUTIONS

In this section we shall apply the general theory outlined in section 3 to
specific cases which appear to be of interest in HABEMP modelling.

4.1 One Layer/One Dimension

This problem has been studied before by numerous authors, but is
repeated here because of its connection with the more complicated models
considered in sections 4.2 and 4.3. Since we are dealing with only one layer,
we have taken the liberty of dropping the subscript "1." Working from equa-
tions (41) through (46), we note that here we set

k. = ky 20 (a)
=D =0 (b) (96)
A = /suc (e)
and
ﬁxs = A (a)
Hys = C (b)
Azs =0 (e)
Bys = 22C = 2= fiyg (@) o
-Eys = - §IA = - E% Hys  (e) < -
Ezg = O (f)

Since equations (97d) and (97e) are mathematically equivalent, we
consider the solution for Eyg with ¢ = 0y + €s. We have

sy 4

- 1 -
E = H = Z ({——— H ' 8
xs = 7o—= flys (/5 —_— mo) (stys) (98)
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where
z =5, (a)

wy = (I/TR) ) (b) ; (99)
and

Ty = (e/64) = relaxation time . (e)

Taking the inverse Laplace transform of equation (98) yields
£ § 2e-tn) .
-~ -y - W .
e,&? = Z j'o ge 2 Io(—g (t-t'))‘ H,(cg)(t')dt' , (100)

where the superscript (t) denotes time-space (compared with "s" space), and
the {} term is the inverse Laplace transform of 1//s (Vs + mo); that is,

1 L wot
] = 2 —_
L (/5/s+_wo') e 10(2) , (101)

where IO is the modified Bessel “unction.

Equation (100) is exact. 1In the limit where wg is large compared to
the frequencies in Hyy, we can replace Iy by its asymptotic value:

e

I.(g) » , Lim E+w (102)
0 v21E '
and we obtain
. - . ~ - é. -—— .
a(t) - [ (* LY € 5 DU :
Exs N — Hys (t')dt . (103)

Equation (103) (or eq (100)) can be used when the skin depth is less
than the thickness for the firat layer, and horizontal variations in the
fields are assumed to be negligible.
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4.2 One Layer/Two Dimensions

For this case we neglect variations in the y-direction (equivalent to
neglecting variations in x) and thus set x, = 0. As in section 4,1, we again
drop the subscript "1" notation. In this two-dimensional case we have

A = /sug + ri . (104)
From equations (41) through (46) we deduce
~ in -~
st = (—‘_)Hxs ’ ’ (a)
A (105)
Eys = '(s_;l)ﬁxs ’ (b)
and
B C""ﬁ (a)
zs * \—5 /Pys a
o/ (106)

A (suo + k). Su) A KE\ A

Notice from equations (105) and (106) the decoupling of the general
solution into two independent sets of solutions--those driven by Hxs (eq
(105)), and those driven by Hyg (eq (106)).

The first step in converting equations (105) and (106) into time and
space dependence is to take the inverse Laplace transform. Using

0 = 0g * 3¢ (107)
and ey —
A = Ypes? + Sugy + K; , (108)
we can readily show [10]
1 N wpbt'
Tl =) = (- 0 = t
b (0) (e)e Gr(t") (109)
-1 1 1 ~wat'/2 £
L l(x) =V_z e “0 Jr)[(f.zy.:;‘; - 1)1/2 _“_’g.__] = GZ(Kx!t'] , (110)
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and

- 1 t!
o) = J'o Gr(t'=tm)Ga(tm)dt" = G3{ky.t') (111)
where
wot"
‘l.l.lot' t wat"
63(xxst') = corrorrr fo e 2 Jolle2eg - 1)1/ D laen . (112)
The parameters, wgy and £, are given by
wy = (1/TR) = —g + Tp = relaxation time , (113)
and
L =2 f=— (114)
O 1 :

The length, "%," whicH is derived from the theory, has an interesting physical
significance. It is proportional to the skin depth,

T
ﬂuoo

’ (115)

calculated for a period T equal to the relaxation time, TR' Substituting TR
into equation (115) gives

1
§% = | o — g 116
™Moy o7 ' (e

Using the convolution theorem for the inverse Laplace transform, we
now take the inverse Fourier transform of equations (105) and (106). We shall
carry out the computation .explicitly for equation (105§) and then state the -
resulting equations for equations (10%b) and (106).

Once again using the superscript (t) to denote time space, there
results

(t)

j.)Cxx
Hzg

diygdt! (a)

IZ l (ikx)Galky,t-t" JEEE) (kyot')e

(117

£ . .
3—2f0£ Gz(Kx.t-t']Hg)(xx.t']el"xxd.cxdt' . (b)
X
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Writing

RS (kytt) = 5 [ e () (xr e yaxe

X!

and substituting equation (118) in equation (117b) yields

(¢)

HZS

0 xt

where

ik (x-x")
CT(x-x',t-t") = (E%) [ e F G (xx,t-t')dxx

2
X

Using the foregoing techniques, we can write

E;:) -uf f T(x=-x"', t-t')H(t)(x tLetidxtder
0 x'

(t)
t (£*)
S o | G1(t-t')(—JEL-—;)dt' ,
0

z3 ax

and

g(t)
X3

uf f T(x-x',t-t"' )H(t)(x

0 x'
82
Tt

,£1)dxtdt!

(t)(x

j f T*(x-x', b=t )H o* (x',£1)dx" dt"

0 -

<
where

1 ixx(x-x')
T* = (2?)£ e G3[rx.t-t')dxx

t-t
- | Gy (E-£'=t") T(x-x",t")de" .
0
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(118)

(119)

(120)

(121)

(122)

(123)

(124)



It is evident from the foregoing analysis that the fundamental build-
ing block in the calculations is

- /2 ix Ax WAT

1Y 1 x 2.2 _ 11172 Y0 _

T(AX,7) = — e (E) [ e Jo[(l 2= 1) S, - (125)
11 Kx

Because Jo[ ] is an even function of ky» the integral in equation
(125) becomes

inAx ®
F = { e Jol+] ae = 2[0 cos (i ax) gy« Jax, - (126)

X

E-l
F = 2[0 cos(zxdx)lo[(1 - k§e2)r/2 Eg:]dxx

(127)

@ woT
+ zfz_lcos(rxAx]Jo[[22x§ - 1)1/2 ‘E‘Jd‘x .

Using equation (127) we find a number of relatively simple (e.g., power
series, asymptotic expansions) methods one could use %o calculate F exactly.
However, it is easy to show that for all cases which appear to be of interest,
the upper limit of % (computed from eq (114)) is less than 1 km. Since & is
then smaller than the grid spacing for numerical computation, the contribution
from the Jo[-] integral of equation (127) is negligible.

One may conjecture that for a large number of situations the spatial
variations of the fields would be such that

K;LZ <1 . (128)
In this case we can writé '

(1 - «22)172 0 g - % k222 (129)

A further simplification of equation (127) occurs when we assume

WaT

o . T
T—ZTR >0 1 . (130)
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Most of the values of TR which will arise are less than 1 us; in certain
cases, TR will only be a few microseconds. Thus, for the times of interest in
this study, equation (130) is valid. Under these conditions we can use the
asymptotic expression for Ij (see eq (102)) and obtain

(wnt72) =(wat/2)[k222/2]
et o TRl s

ZR(mot/Z]

Using equation (128) in equation (127) and approximating &~! by = (an
excellent approximation when g is large) gives

2
mor/2 ax U0g
e “00 - ’4'[
F = 4 e

T

. (132)

/wmot

Substituting equation (129) into equation (125) yields

(fxzucé)
T(Mx,t) = [E%;) e 4t . (133)

When we substitute Ax = x-x' and 1 = t-t' into equation (130) and
insert the resulting expression into equations (119), (121), and (123), we
deduce the required space-time relationships between the field variables. For
example, equation (121) becomes

x-x")2%ug

— [( 0]
t | ——————
(¢)  -u 1 §(t-t') (t), o, oo et
EYS C2n J’o l. t -t ° Hys (x7,t")dx'der . (134)

. : : L=y B .
When Hxs is space-independent, the resultant relationship reduces to the case
presented in section 4.1.

4.3 One Layer/Three Dimensions

Virtually all the mathematical steps performed in the two-dimensional
case are repeated here; the major difference is the use of the two-dimensional
space transform (zx,x ) instead of only Ky As in the previous section,
closed-form expressions for the T(x - x',y - y',t - t') functions are obtained
when "¢" i3 smaller than the mesh spacing, and for times of interest which are
greater than the relaxation time, TR‘ For brevity, we give the results in two
representative cases. If we let

ua
, - I L(x - x)?2 e (y - y")2]
r(x - x*,y -y',t -t') =e Ble-tr (135)



we obtain

t dt! 3
Hég)(x.y.t) = YTuog IO z;—:-zj;;7; [%; f f PH;:)(X'.y',t')dx'dy'
x' y! _ .
(136)
+ 5% f frﬁég)(x',y'.t')dx'dy']
and
t '
E(t) Y.t = ;372 _L rﬁ(t)( t,yt,tt)d rdJ
w98 =WV [ ivi. ys'(Xe¥TeetIdxtay
(137)

V“u 32 32 t de! (t T Y Tdyt
" _"(3"2 ’ ayz) ’[0 (t - tr)3/2 [3[(' {umys)(x bY't)dxTay .

(t)

Similar. expressions may be written for Eét) and g « However, in
all cases the analytical forms can be incorporated into numerical methods.

4.4 Two-Layers/One Dimension

For many situations, particularly involving one or more highly con-
ducting layers in the upper regions of the crust, the relaxation times will be
small, the relative depth of penetration will be shallow, and the importance
of horizontal variations will be negligible. In this situation, the one-
dimensional set of equations applies, and we have

F{x‘] = A1e-)‘1z + B1e+hz (a)
A A =Mz 0 Az
Ey1 = - ; Are + ; Bie (b)
Hyg = A + By - . (e) & N
~ . A‘I
Eyg = = H(M - B1) (d)
figz = Ape '2% (e) (138)
A
A 2 -Aoz
= - — Ace (f)
2 2
Ey %
g, = constant (g)
9, = constant (h)
Ay = /su1c1 (1)
Ay = Vsus0, (J)
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Matching boundary conditions at z = %4 gives

S W 3 Al
11 171
A1e * B1e = A2

and

There results

-21, 2,
B1 = EA.l r
where
1 -7
5= (T : f)
and
u,o
£ - |21,
¥4 05

Using equation (139) in equations (138c,d) gives

E i E 1 - Ee-21111
ys ® =221 41 ’

1 + Ee

where Eo is the solution for an infinite layer:

~ A2A . -
Bo = - oy Hxs

Using the expansion

1
1 +y

-]
= 7 -,
n=0
combined with algebraic manipulation gives the result

EYS=EW+ Z an 14
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(v)

(139)

(140)

(141)

(142)

(143)

(i)

(14s5)

(146)



where

Em = QmEa . (147)

and

~2mA & .
q, = 2(-1"" e (148)

The time behavior is given by
§)((§) - B8 + 7 E(t) | (149)
m=1

shere ﬁ&t) is determined from the inverse Laplace transform of equation (146).
It is convenient to organize the inverse transform of equation (147) by re-
arranging it as

Ep = (?%) (sEa) . (150)

We have

L“(?E;-) - 2(-1)mEmErchn\r—$ ) , (151)

where 14 is the diffusion time to traverse the top layer; we have
T4 = n1a1£7 = diffusion time . (152)

In most cases of interest Td/T >> 1, and we can use the asymptotic
expansion for Erfe. For large 9 we have

. . -8 < < -
Erfe(g) » 1 - 2 (1 - 5%7 + i) ﬁ? ' (153)

ovaen

which when applied for 9 = m#rd/t yields

erto(a /i 7E) - - (3)

(154)
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Using equation (150) and applying the convolution theorem give§

-1/2

- -1)mgm T -m? PPN
Eét) = 2(-1)Tel I (_Q) e B Tg/ T Eit)(t't')dt' . (158)
Y21 m 0
Equation (151) appears to be a rapidly diminishing function of "m" so
that perhaps only a few terms would be required to calculate E( t) as given by
equation (1“9)

5. CONCLUSION

In this investigation we have developed a mathematical proof that for a
layered earth model--including three-dimensional variations in the electro-
magnetic flelds and frequency dependence of electrical parameters--it is
possible to express the three components of the electric field and the verti-
cal component of the magnetic field on the surface of the earth as a space-
time integration of the two horizontal components of the magnetic field. This
result would appear to considerably simplify the numerical modelling of the
HABEMP when the ground response is c¢oupled to finite-difference methods for
solving the atmospheric part of the problem. Special~case solutions are
developed which include the effect of coarse-graining due to rinite-dlfrerence
approximations.

In addition, we have provided examples of realistic models of crustal
conductivity-vs-depth profiles which could be used in various geometric loca-
tions.

Further exploitation of approximations based on the developed formalism
would appear to offer a greater range of application of the technique.
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