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ABSTRACT

A study was performed to investigate the electromagnetic scattering in
the time domain by a plane interface between two half-spaces. One half-space
is assumed to be vacuum, while the other half-space is homogeneous and
consists of lossy material. The incident field is assuméﬁito be a uniform
plane wave. Hence, this study addresses the one-dimensional scattering
problem. For brevity, only the case of horizontal polarization is presented.

Starting with the equations for the reflected and transmitted waves in
the s- or Laplace-domain, corresponding time-domain expressions are obtained
by decomposing the s-domain expressions in such a way that standard Laplace
transforms can be recognized. The resulting time-domain expressions are in
closed form, i.e., are given in terms of elementary functions or integrals
of elementary functions.

Numerical results are presented for the scattering of a unit-step
function and a Nuclear ElectroMagnetic Pulse (NEMP) using the derived time-
domain expressions. The numerical implementation uses a time-marching

procedure.



Table of Contents

Section Page
i INTRODUCTION ' 3
2 DESCRIPTION AND SOLUTION OF THE ELECTROMAGNETIC

SCATTERING PROBLEM IN THE LAPLACE DOMAIN
2.1 Description of the scattering configuration

2.2 Solution of the scattering problem in the Laplace

domain 6
3 TIME-DOMAIN SOLUTION FOR A UNIT-STEP INCIDENT FIELD 10
3.1 Transmitted electric field 10
3.2 Transmitted magnetic fields 18
3.3 Reflected fields 19
4 NUMERICAL RESULTS 21
4.1 Numerical implementation 21
4.2 Unit-step incident field 22
4.3 NEMP incident field 25
5 CONCLUSIONS ‘ 29
6 REFERENCES 30
%
APPENDICES
A THE LATE-TIME BEHAVIOR OF THE FIELD QUANTITIES 31
B STANDARD LAPLACE TRANSFORMS OF SOME BESSEL FUNCTIONS 36
C RESPONSE TO WAVEFORMS OTHER THAN THE UNIT-STEP
FUNCTION 37



1 INTRODUCTION

In many electromagnetic coupling problems, the influence of the earth has to
be taken into account, because an object in the vicinity of the earth’s
surface is not only irradiated by the incident field, but also by the field
reflected by the earth. Such is the case, amongst others, in Nuclear
ElectroMagnetic Pulse (NEMP) interaction studies in which time-domain
results are desirable. Therefore, a study was performed to investigate the
scattering of a plane wave by a plane interface between two half-spaces in
the time domain.

One of the most well-known methods to obtain time-domain results is to
compute the response for many frequencies, after which a numerical inverse
Fast Fourier Transform (FFT) is applied. In this report exact, analytical
time-domain expressions are obtained by using standard Laplace transforms
found in many textbooks. An other approach was taken by Leuthiuser [6], who
obtained time-domain expressions by complex contour integration in the
complex w-plane.

The waveform of the incident field is taken as a unit-step function.
The resulting unit-step response is in closed form, i.e., is given in terms
of elementary functions or integrals of elementary functions. In Appendix G
a method is presented to obtain the response to any waveform other than the

unit-step function. This method typically involves a -convolution integral.'

For brevity, this Note preéents the results for horizontally polarized
incident fields only. Results for vertical polarizatio® can be obtained -
using the same techniques (See Klaasen {3]). In Chapter 2 the scattering
configuration is presented and the solution of the scattering problem is
presented in the Laplace domain for horizontally polarized incident fields.
In Chapter 3 the Laplace-domain expressions of Chapter 2 are transformed
back to the time domain. To illustrate the outlined procedure, the reflected
and transmitted electromagnetic fields of a unit-step function and of a NEMP

are determined in Chapter 4. Finally, conclusions are drawn in Chapter 5.




2 DESCRIPTION AND SOLUTION OF THE ELECTROMAGNETIC SCATTERING PROBLEM IN
THE LAPLACE DOMAIN

In Section 2.1 the scattering configuration is described, and in Section 2.2
the solution of the scattering problem is presented in the Laplace domain.
In later chapters the Laplace-domain expressions given in Section 2.2 are
used to obtain the time-domain expressions,

Because the material presented in this Chapter is well-known and can
be found in almost any textbook about electromagnetic scattering, see
Stratton [8], it is sketchy and serves merely as an introduction to the

forthcoming chapters.
2.1 Description of the scattering configuration

The one-dimensional scattering configuration depicted in Fig. 2.1 is consi-
dered. To specify the position in this unbounded space, we employ the coor-
dinates {x, y, z) with respect to a fixed, orthonormal, right-handed, Carte-
sian reference frame with origin 0. The base vectors along the axes are
denoted by ix, iy and iz' Then the position vector in this coordinate system

is given by
r = x;x+ yiy+ zi_ . (2.1)

The time coordinate is denoted by t, with t € R. Let the Laplace transform
of £(t) be denoted by f(s) Then f£(t) and f(s) are related by the Laplace

transform with respect to time, defined by

<0

L{f(t)} = ;:'(s) =-J' e St f(t) dt, (2.2)
0

while the inverse Laplace transform is given by

atieo

£(t) = ——J St £(s) ds, (2.3)

where 1 is the imaginary unit, and s denotes the complex frequency. The



integration is performed along the Bromwitch contour, LePage [5], i.e., if
t > 0 the path of integration is closed with a semicircle of infinite radius
in the left half-plane of the s-plane and, if t < 0, with a semicircle in
the right half-plane. The positive real number « which occurs in Eq.(2.3) is
chosen such that all singularities lie to the left of the line a-iw, a+iw.

This ensures a causal solution for f(t). More details can be found in

Appendix A.
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Fig. 2.1. Electromagnetic scattering configuration.
=
Let the half-space I& be given by
Dl ={x,y,ze€eR | z<0}, (2.4)
and let the half-space Ib be given by
D ={x,y,zeR | z>0}. (2.5)

2

This configuration is irradiated by an incident uniform electromagnetic

plane wave with horizontal polarization, i.e., the electric field has a



component in the y-direction omnly. The source which generates the incident
field is located in I&. The constitutive constants of the half-space i{ are
assumed to be those of wvacuum, i.e., € and By The half-space ﬂb is assumed
to consist of homogeneous, isotropic, time-invariant and linear material.
Furthermore, the material in $b is Instantaneous and locally reacting, and
it is characterized in its electromagnetic behavior by the permittivity e,
the permeability u, and the electrical conductivity o. Furthermore, there
are no sources present in IE.

The incident wave propagates in the direction of the propagation
vector X;- The propagation vector X; is of unit length, i.e., ”Zi" =1, and
makes an angle ®s with the mormal n on the plane interface between the two
media, with Ps < 900. The vector n is also of unit length, and is directed

inwards Ib.
2.2 Solution of the scattering problem in the Laplace domain

At t = 0 the incident field hits the interface between ﬂi and I& at r = 0.

Then the incident electric field is given by

Ai A "YO(K]-_'E)

Ey(;,s) =E(s) e ) red (2.6)
in which X; denotes the propagation vector given by

x; = sin @i;x+ cos ¢ . i . ‘ S ' (2.7)

In Eq.(2.6), %y denotes the propagation constant given by

1/2

1, =5 (e) " =2, (2.8)

A

in which ¢ denotes the speed of light in vacuum. In Eq.(2.6), Eo(s) denotes
the Laplace transform of the waveform of the incident electric field.
The incident magnetic field follows from Maxwell’s equations and is

given by



Ai Ai
Hx(g,s) = -cos ¢, YE

oy’
red (2.9
Ai . Ai 1
Hz(g,s) = sin ¢, YoEy'
where YO denotes the wave admittance of vacuum given by
A A €0 1/2
Y0 - H0 / Eo = [ ;; ] . (2.10)

The propagation constant of the transmitted fields in IE is given by

v = |2l = (sp(sera))'?, (2.11)
where y is given by

Y=y i+ v i, (2.12)
in which

= v si .
Tx T 7SR ¢y

(2.13)

Let v denote the propagation speed of the waves in DZ in the lossless case,

i.e., ¢ = 0, then v is given by ‘ <% . o

v = (2.14)

1
Veu
Subsequently, we define ¢, as the angle of refraction, also in the lossless

case. Hence,

/ 2
cos o = 1 - z;sinzwi, (2.15)

(o]



which follows directly from Snell’s law. .
Using Eqs.(2.11)-(2.15), the propagation constant 1, is represented as

cos @
v, = —F Vs%+2as, (2.16)

z
v
in which

o 2
a=5-cos ¢_. (2.17)

The reflected fields in $i propagate in the direction of the propagation

vector = sin .1 - cos . i and are represented b
Xy Pitx Pityo P y

AL A A -yo(xr-g) A A -5 % sin ?s + s % cos ¢,
E'(r,s) =R Ee =R Ee ,
y 0 ()}
5 (x,s) = cos 0. YE red (2.18)
x = i oy’ = 1
Hz(g,s) = sin ?s YoEy'

A

where R denotes the reflection coefficient for horizontal polarization, and
A

1s determined from the electromagnetic boundary conditions at z = 0. R is

given by
A S - stz+2as . ) - = ' .
R = : , (2.19)
s + stz+2as
in which
cos @
p=Ve s ——E. (2.20)

cos @,

A

Observe that for the lossless case R yields

.o l-p
lim R =~ £, (2.21)
>0 1o



An important property of p is that when the angle of incidence equals the

well-known Brewster angle, p = 1. The Brewster angle can be calculated from

1/2
.ur(ur - er)
tan N , L= € (2.22)

Note that the Brewster angle exists only if B is larger than or equal to
€ - From Eq.(2.20), we can deduce that p is smaller than one, if €. < B

and the angle of incidence 7] is smaller than the Brewster angle ?y, -

Using the expression for 1, given by Eq.(2.16), the transmitted fields

in D, are expressed as

2
e A a =(y-x) A A -(s % sin P, + % cos thsz+Zas)
E(z,s) =TEe =TEe ,
y 0 0
85r,s) = -Y.EC D 2.23
EC(z,s) = Y YT,
z ny

where Yn and Yt denote the normal and transverse—or surface—wave

impedances, respectively, and are given by

(2.24)

~

T in Eq.(2.23) denotes the TE-mode transmission coefficients given by

A 2s
T - , (2.25)

s + stz+2as




3 TIME-DOMAIN SOLUTION FOR A UNIT-STEP INCIDENT FIELD

The Laplace-domain expressions for the transmitted and reflected fields
presented in Section 2.2 are used to obtain the unit-step response in the
time domain. This is done by decomposing the expressions in such a way, that
standard Laplace transforms can be recognized. The procedure for obtaining
the response to waveforms other than the unit-step function is described in

Appendix C,
3.1 Transmitted electric field

The transmitted field for the TE-mode is given by Eq.(2.23) together with
.Eqs.(2.24)-(2.25). Let U(t) denote the Heaviside unit-step function whose
Laplace transform is given by snl, i.e., Z{(U(t)) = s '. Because we determine
the unit-step response, we have that go = s'. The transmitted electric

field can then be expressed as

A
Et = 2 e

y
s+ p s’+2as

with p given by Eq.(2.20), and in which X, denotes the unit-vector in the

-S(gt-z)/v - % cos wt(Vsz+2as - 8)

(3.1)

direction of propagation of the transmitted field given by

~sing i +cosodl . - : < : (3.2)

4 2z

=t
The square roots in Eq.(3.1) have branch points at s = 0 and s = -2a which
have to be dealt with first. To ensure that they are single valued, a branch
cut is introduced. Fig. 3.1 shows the branch cut and the behavior of
(s%+2as)”2 in the complex s-plane. The sign of the real part of the root
has to be chosen such that a causal solution is obtained. A prerequisite for

.. , . . st
obtaining a causal solution is that e

E; must vanish along the semicircle
of the Bromwitch contour in the right half-plane. This follows from Eq.(2.3)
together with Cauchy’s theorem. Then, for t < (Kt-g)/v, to the right of the

1/2

line s = -a, we must have Re{(sz+2as) } > 0. The sign of the imaginary

part is determined by the sign of the real part.

-10-
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To obtain the branch cut of Fig. 3.1, we must have Re[(sz+25)”2} <0
to the left of the line s = -a. Otherwise a branch cut along the line s = -a

would arise.

iq

.

Re( sz+2as) < 0 f Re({ sz+2as} >0

Im{Vsz+2as} >0

S=-2a I =0
* : - p

l
Im{ sz+2as} <0
|
|

Re[Vsz+2as} <0 | Re{ sz+2as} >0
Fig. 3.1. Branch cut and behavior of (sz+2as)l’2 in ‘the complex s-plane.

Now the behavior of the complex square root is‘known,ﬁény poles of the
transmitted field can be analyzed. The transmitted field has a pole at
s = 0, and seems to have a pole at

2p2

p #* 1 (3.3)

g = -

p2-1

But consider the case pz > 1. Then s, is located in the left half-plane
where the negative sign of the root in the denominator of Eq.(3.1) has to be
chosen. Therefore, when p > 1, S, is not a pole. Subsequently, consider the

case pz < 1. Now S, is located in the right half-plane where the positive

-11-



sign of the root has to be chosen. Consequently, s, does not represent a
pole in this case either. Notice that s, is a zero of the reflection coef-
ficient given by Eq.(2.19). This zero supports the so-called Zenneck

wave—see Barlow et al. [1].

After multiplying the denominator as well as the numerator of Eq.(3.1)

by stz+2as - s (notice that this term corresponds to the numerator of the
A

reflection coefficient R), we obtain

z /2
£ 0™l p é2+2as - s e—s(x ‘r)/v - = cos Pr (Vs 21 2as - s)

y 2 -
p -1 s s,

E

, (3.4)

in which S, denotes the Zenneck zero given by Eq.(3.3). Notice that the
Zenneck zero of the denominator is always canceled by the numerator.
The reflected and transmitted field quantities can be expressed in
A

"

terms of the functions fo and f1 defined as

A -z(V(s+1)*-1 = (s+1))
£(s,6,2) = (1+ 225 ¢

s+s V(s+1)%-1
-z(V(s+1)%-1 = (s+1))

1
e
s + & . . - < ) -

(3.5)

%l(s,E,Z) =

where ¢ is a parameter to be determined later.
A

A

Using the just defined functions f0 and fl, the expressions for the

transmitted electric field can be represented as

t 2 -z/§ "S(X, D)/
= e e

(3.6)

>

1% ,s
( 7 £ & z/8),

R

’ fr 2/8) =

-12-



where § denotes the skin depth for the high-frequency/low-loss approximation

(Klaasen [2]) given by
§ = 2¢v cos @t/ o. (3.7)

Furthermore, in Eq.(3.5), ¢ denotes the Zenneck zero normalized by -a, given

by

: | (3.8)

The functions f0 and f1 are ready to be transformed to the time domain using
the standard Laplace transforms listed in Appendix B. After doing so, we

obtain for f0 and f1

fn(t,ﬁ,z) = {S(t) + (2-¢) e_Et } * e-tIO(Vt2+2tz) U(tc),

(3.9)

e ( L,(/ePe2ez)

£ (t,€,2) = e 8t w e {z + S(t)} Uce),
t2+2tz

where we have used the property f-l{f(s+l)} = e_tf(t). I0 and I1 denote the
modified Bessel functions of the first kind and of order zero and one, res-
pectively. Furthermore, §(t) denotes the delta functioﬁ% and the asterisk

denotes the convolution operator given by

t
g(t) = h(t) * f(t) = I h(t-r)£(s) dr. (3.10)

]

-13-



After introduction of the auxiliary functions ho’ h1 and h2 defined by

t

ho(t,ﬂ,z) = e-ﬂt J e-(l-ﬁ)f IO(V72+212) dr,
0
® 11(¢r2+2rz)
_d

h (e,8,2) = e % (142 J e (1-B)r

0 VTZ+212
h,(t,z) = et 1 (VeP+2ez),

T], (3.11)

and after applying the convolution operator, the expressions for f0 and f1

are represented as

fo(tyfsz) = hz(t,Z) + (z-f)ho(t!frz))
(3.12)
£(£.6,2) = h (t,£,2).

The Figs. 3.2-3.4 show the functions ho' hl and hz as a function of time for
different 8.
After applying the inverse Laplace transform to Eq.(3.5) analytically,

the time-domain expression for the transmitted electric field is given by

2

ES(r,t) = — U(t’) e'z'{ pf (at’,£,z') - £ (at'.s,z'>}, (3.13)
y 2 0 1 ?
p -1 . . R . “a . .-
in which
z' =2z /6. (3.14)

and where t' denotes the retarded time, which accounts for the propagation

time delay, given by
t! =t - (Xt-;)/v. (3.15)

A

In obtaining Eq.(3.13), we have also used the property f(at) = f-lli f(g))-

-14-
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¢

(b)
Fig. 3.2. The function ho(t,ﬂ,z) as a function of time
a) z =0,
b) z = 3.

«15-



h(t, B, z) []
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Fig. 3.3.
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The function hl(t,ﬁ,z) as a function of time

a) z =0,
b) z = 3.
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Fig. 3.4, The function hz(t,z) as a function of time.

The transmitted wave 1s, of course, not a plane wave, but from the
retarded time we can observe that the wave front propagates with speed v.
Furthermore, the transmitted wave is attenuated by a factor e-z/S while
propagating in Eb, and it depends only on at’ and z'‘.

The values of the time-domain representation at t = 0 and t = » can be
found from the Laplace-domain expressions with Abel’s éheorem, which states

that if the indicated limits exist, then

lim sf(s) = lim £(t),
S5 >0
(3.16)

lim sf(s) = 1lim f£(t).
s-50 tow

When we apply the second identity of Abel’s theorem to the Laplace-domain
expression for the transmitted field given by Eq.(3.1), we find that for the
late time the transmitted field approaches zero. But since the normalized

Zenneck zero £ can also become negative, it is not quite clear from

-17-




Eqs.(3.11)-(3.13) that it does. This topic is addressed in Appendix A, in
which it is shown that for the late time any remaining non-vanishing terms
cancel each other. So, the transmitted electric field approaches zero indeed

under all conditions for the late time.
3.2 Transmitted magnetic fields

The transmitted magnetic fields in Ib follow from Eq.(2.23) together with

Eq.(2.24). The normal transmitted magnetic field is simply found to be
Ho(z,t) = Y sin @_ E-(x,t) (3.17)
A - Wt y -1 L} -

where Y denotes the dielectric wave admittance of Ib given by

Y = Ve/u. (3.18)

To derive a time-domain expression for the transverse transmitted magnetic

field due to an incident unit-step function, we write

V52+2as

ot -1
Hx(g,s) = -2 Y cos P S - X -
s + p¥s“+2as
(3.19)
x . 4 /2 o = s
e-s 3 sln-¢t- v €O 9. Vs +2as 5 .

After multiplying the denominator as well as the numerator of Eq.(3.19) by

stz+2as - s, and again using the functions fD and f1 defined by Eq.(3.12),

Eq.(3.19) can be represented as

s
A 2 -;(gt-z)[
H = - —— Y cos ¢o_e e
X 2 t

p -1

(3.20)

2a, 1 7 s ,

p(l+ =) 2 £(5,6,2") -

P

0

£,E.62).

-18-



This yields for the transverse magnetic field in the time domain

t 2 -z'!
Hx(z,t) - - - Y cos (pt U(t) e {

p -1
(3.21.)
tf
p(l + ZaJ dr) fl(at',f,z') - fo(at',f,z')}.
0
Now, since
L
2a I fl(ar,A,z')dr = % (fl(at',O,z’) - fl(at’,A,z')), (3.22)

0

we finally obtain for the transverse magnetic field in the time domain

2
t , -z'!
Hx(g,t) = Y cos P, U(t’) e {

p -1
[ £(at’,£,2") + (p°-1) £ (at’,0,2') ] ) (3.23)
- fo(at',f,z’)}.

3.3 Reflected fields

<

The reflected fields propagate in the direction of X, gilven by
X, = sin p;1 - cos v;i, (3.24)
and can be found easily from the transmitted fields at the boundary. Since

R=T-1, (3.25)

-19-



we write directly in the time domain for the reflected electric field
r t
Ey(Lt) = Ey(Z=0. t-(x,-x)/e) - U(t-(x, -z)/e), (3.26)

which is a plane wave propagating in the direction of X, The reflected

magnetic fields follow simply from Eq.(2.11), and are found to be
r r
H (z,t) = cos e, Y Ey(.l_-'..t),

(3.27)
r . T
Hz(z.t) = sin ¢, Yo Ey(z.t).

-20-



4 NUMERICAL RESULTS

In this Chapter, numerical results are presented for the scattering by a
plane interface of a unit-step function and a Nuclear ElectroMagnetic Pulse
(NEMP). In Section 4.1, some aspects about the numerical implementation are

discussed.
4.1 Numerical implementation

The expressions derived in the previous chapter are ready to be implemented
in a computer program, except for the functions h0 and h1 given by
Eq.(3.11). The most efficient implementation of the time-domain expressions
uses a time-marching procedure, i.e., the fields at the time instant t+At
are found from the fields at the time instant t, where At is the time step
of the time-marching procedure. Consequently, we need to know h0 and hl_at
the time instant t+At in terms of h0 and h1 at the time instant t. After
some simple manipulation, we arrive at

-pat

h (t+at,8,z) = e (ho(t,ﬂ,z)

t+AL
+ e_ﬂt I e-(l-ﬂ)r IO(VTZ+272) dr )

t

(4.1)
h (t+at,p,z) = e At (hl(t,ﬂ,z)

oy

trhe I (Vri+2rz)
2 Ty

+z e Pt j e_(l-ﬁ)r

t Vr2+272

Numerical results are presented in the next sections. The integrals over the

T

interval [t, t+At] were computed with an adaptive trapezoidal rule. The
relative error in the total field solution as a result of the numérical

integration is always less than 1%, independent of the time step At.

-21-




4,2 Unit-step incident field

The initial value of the fields can be found from the Laplace domain expres-

sions using Abel’s first identity of Eq.(3.16). From Eq.(3.1), we get

Lim ES = =, (4.2)
t=0 P

and so,
lim E- = %iﬂ. (4.3)
t->0 P

This result agrees with the time-domain equations (3.13) and (3.26).

Fig. 4.1 shows some results which were obtained from the time-domain
expressions with er =9, B o= l, =1 x 1oﬁ and the angle of incidence
o, = 0. Consequently, E;(;=g, t=0) = 1/2 and E;(;=g, t=0) = -1/2.

From Eq.(3.26) one can observe that the reflected field depends only
on at’ and p. Therefore, when p is kept constant and we vary the electrical
conductivity o, and thereby at’, only the time scale changes. Consequently,
the rise time and half-width of the reflected fields vary inversely propor-
tional with o. Fig. 4.2 shows the reflected electric field for various p but
with fixed o. The rise time for any other electrical ‘conductivity ¢ can be
easily found from this figure in the following way. Select the curve with

the correct p. Read the pertaining normalized rise time té. The rise time

for any other electrical conductivity ¢ is then determ®hed from

260p2t£
tr - (4.4)
o cos ¢,

The transmitted fields depend also on z/§, so a similar observation cannot

be made. Fig. 4.3 shows the transmitted fields for €. = 9 and for different

ratios of z/§.

-29._
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4.3 NEMP incident field

In this Section results are presented for an incident Nuclear ElectroMag-
netic Pulse (NEMP). The NEMP is a transient signal with a very-short rise
time of about 5 ns and a large electric field strength with a peak value of
50 kV/m. The NEMP is approximated by a double exponential function given by

(Bell laboratory waveform)

E(t) = A (e - e PYy u(yy, 4.7)

with

A= 5.278 x 10" [%],
a =3.705 x 10° (s, (4.8)
g = 3.908 x 10° [s7']. '

The transmitted electric field due to a NEMP is obtained from the unit-step
response in the way described in Appendix C. We then find from Egs.(4.7),
(3.13) and (C.8)

E;(;, t) = A(F(at’, f/a, 2') - F(at', a/a, z')), (4.9)
where
€=t - (xoD/v, | <
(4.10)
lz' - z/§,

and where F is given by

t

2a
e ? J e ¥(E-7) {pfo(r,s,z) - fl(r,f,z)} dr. (4.11)

F(t,a,z) =

p?-1

In Eq.(4.11), € denotes the normalized Zenneck zero, given by
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Now using the ldentities

t

I e-a(t-f) ho(r' €, z) dr = 1 (ho(t,g,z) - ho(t,a,Z)).

a—§

0

t

J-e-a(t—f) hl(T, E, Z) dr = L (hl(t-‘f,z) - hl(t'a'z))’

a—§

0

L
J o a(t-T) h (7, z) dr = h (t,a,2),

0

together with Eq.(3.12), F can be written as

p( (@-2)h (t,a,z) - (£§-2)h (t,€,2) )
+ hl(t,a;z) - hl(t,E,z) ].
Obviously, thg reflected electric field is then given Bx
E;(;, t) = A(F(at’,8/a,0) + e P%' F(at’,a/a,0) - e @,
where the retarded time t’ is now given by

t! = t'(Kr'Z)/co'

Figs.4.4 and 4.5 show the transmitted and reflected NEMP, respectively, for

€. = 9, B, = 1, Py = 0.
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Fig. 4.4, Transmitted NEMP for different z. €. = 9, po= 1 ?;

a) ¢ = 1x10°,
b) o = 1x107Z,

-27-



o
s - - T y | - 7 T
N
S
I
~
T«
L o -
— o, !
€3]
\
o
>N o
[$3] I
@
2L
I
2 :
T
-200. o. 200. 400, 600. 800.
L [nsec]
Fig. 4.5. Reflected NEMP for various electrical conductivity. €. = 9,

pr=l,tpi=0,z=0.

-28-



5 CONCLUSIONS

It was shown that time-domain expressions for the scattered electromagnetic
fields due to a unit-step incident field, can be obtained from the Laplace-
domain expressions. This Note investigated the case for horizontal polari-
zation only. For vertical polarization the same procedure can be applied,
Klaasen [3]. The time-domain expressions for vertical polarization are more
complicated, because the reflection coefficient has two Zenneck zeros
instead of one.

The scattered fields due to an incident field with a waveform other
than the unit-step function, can be obtained from the derived unit-step
responses. In Appendix C a method is presented for doing this. This method
typically inveolves a convolution integral.

The presented time-domain expressions exhibit the useful property that
in those cases where the waveform of the incident field f(t) can be written
as f(t-7) = fl(t)fz(r), the convolution can be determined very efficiently
by a time-marching procedure. This is because the part fl(t) can be taken

outside the integral sign so that the integrand becomes time independent.
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APPENDIX A THE LATE-TIME BEHAVIOR OF THE FIELD QUANTITIES

In this Appendix the late-time behavior of the field quantities i's investi-
gated. Especially for certain conditions, it is not clear that the time-
domain representations given in Chapter 3 have the proper late time be-
havior. These conditions are that €, < by and that the angle of incidence Py
is smaller than the Brewster angle Py - However, in this Appendix, it shows
that for the late time and under all conditions the transmitted electric
field approaches zero, and the reflected electric field -1. These results
correspond with those found after applying Abel’s theorem to Eq.(3.1).

The transmitted electric field is represented as (cf. Eq.(3.13))

E;(Znt) = _z'g_ U(tr) e-z'{pfo(at',f,z') - fl(at’,f,Z')}, (A-l)

p -1

with z' € R+, § given by Eq.(3.8), and (ef. Eq.(3.12))

fo(tvgnz) = hz(t,Z) + (2‘€)ho(t,£,2),

(A.2)
£(t,§,2) = h (t,£,2).
The functions ho' h1 and h2 in Eq.(A.2) are given by (cf.Eq.(3.11))
t
h (tlflz) = e-ft J‘ e-(l-E)T I (VT2+2TZ)‘ d.T, -
L] . i 0 I < -
. 0
et p -(1-e)r I (Vr'42rz)
h(t,6,2) = e ¢% (142 f e L 4, (A.3)

0 V12+212
h (t,z) = et IO(Vt2+2tz).

For certain conditions the parameter § can become negative, because p can
become smaller than one. These conditions are that €. < B and Ps < @y - For
all other conditions, € is positive (larger than two to be exact). So, the

late-time behavior of the field quantities must be determined bearing in
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mind that € can be positive or negative.

To prove that the transmitted electric field approaches zero for all
values of £, we will derive alternative representations for h0 and hl, but
first we deal with hz' Combining the e-z’term which occurs in Eq.(A.1) with
hz' and using the asymptotic expansion for Io((t2+ 2tz)1/2). it can easily
be proved that e'zh2 approaches zero for the late time. The alternative
representations for h0 and h1 are derived from their Laplace-domain repre-

sentations. Combining Egs.(3.4) and (3.12), we write

-z(Vs®+2s - (s+1))

;lo(lelz) - 1 = ’
. s + £ é2+23
(A.4)
. L -z(Ys®+2s - (s+D))
(s,§,2) = e .
1 s + &

The functions hu and h1 are obtained by applying the inverse Laplace
transform according to Eq.(2.3). This integral is solved by applying
Cauchy’s residue theorem to the Bromwitch contour. To do so, we first have
to locate all poles and branch points of ﬁo and ﬁl. Both ﬁo and ﬁl have a
simple pole at s = - and branch points at s = 0 and s = -2. The pole2 is
located either to the left of s = -2 or to the right of s = 0, because
either £ > 2 or £ < 0. Fig. A.l shows the path of integration along the
Bromwitch contour, and the location of the singularitigg and the branch . .
points of ﬁo and ﬁl in the complex s-plane, in which s=p+iq. The contour C,
represents a semicircle with an infinite radius, while CBr denotes the

. 2 1/2
contour along a branch cut pertaining to (s“+2s) '2_ The branch cut ensures

that this complex valued square root is single valued in the entire s-plane.

2 Although £ denotes the normalized Zenneck zero, it represents a pole for
the functions h0 and h1
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—

a-iw

Fig. A.1. Location of the pole and branch points in the complex s-plane

pertaining to the functions h0 and h1'

Fig. 3.1 shows the behavior of (sz+25)1'l2 in the complex s-plane with a = 1.
To the right of the line s = -1 the sign of Re{(s*+2s)?} is chosen posi-
tive. This ensures for t < 0, -that the hn(t) =0 and h%(t) = 0. Note that ---
the imaginary part of the root is positive in the upper half-plane, while it
is negative in the lower half-plane. .

For the time being let us focus on h1' Using Cauchy’s residue theorem,

we obtain

h = —17 { I eSt h ds - J eSt h ds } + Res[eSt h }, (A.5)
1 2ni 1 1 1
c c
Br ©
where Res(...} denotes the residue at s = -£. It is a simple matter to prove

with Jordan’s lemma that the contribution from Cco vanishes for t > 0. The
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contribution from the branch cut is

1 e A -t -1 1 st-z(iVl-sz - s)
Py J eS hlds = §~I { I —_ ds +
i Ca, m 1 s+(€-1)

(A.6)
1 1 st-z(-iVl-s2 - s)
f —_—— e ds},
-1 s+(£-1)

where we have used the fact that the contributions from the semi-circles

around the branch points vanish. After collecting terms, Eq.(A.6) can be
rewritten as

A 1 _s(t+z) Y
Elf eSt hds = 2 I £ sin(z l-sz) ds. (A.7)
i N 1 T ) s+(£-1)

The residue contributes

-6tz ((6-1)H/e(€-2))

Res[eSt hll = e (A.8)
where the plus sign has to be taken when the pole lies to the right of

s = -1, and the minus when it lies to the left of 5 = -1 (seé Fig.3.1).
Finally, combining the Eqs.(A.7) and (A.8), h1 can be EgPresented as

t

-t 1 _s(t+z) -§t-z ((£-1)H/E(¢-2)
h = eﬂ I 2 sin(zvVl-s?®) ds + e ( ‘ )

: -1 s+(€-1)

’ (A.9)

where the first term originates from the branch cut and the second term from
the pole,

-34-



In a similar way, we find for h0

, (A.10)

e " Jl o5t coS(ZV{?;?) ds * e-gt-Z((g_l)- §-2)
h = s I
T -1 s+(€-1) ﬁ-sz gzgtg;

where the plus’sign has to be taken when the pole lies to the right of
s = -1, and the minus when it lies to the left of s = -1.

For the late time, the contribution from the branth cut to ho and h1
approaches zero for all values of £, but the contribution from the pole
approaches zero if § > 0 only. So, for the late time the possible non-zero
terms of the transmitted electric field are the contributions from the pole.

Therefore, we write

AL G Te s Bl G )

y 2
Pl Ve (£-2)
-aét’ -z’ ((6-1)1/e (£-2))
e

(A.11)

2

Using the expression for the Zenneck zero given by Eq.(3.8), this result can

be rewritten as

2 ' | . -aft’' -z’ ‘-1 iyfgitgﬂ" -
ES - - R [t!p2-1| .\ 1] raeerez (@D )
7 Pz-l pz—l
(A.12)
=0 VY p €R.

So, the contributions from the pole to the transmitted field cancel each
other always. This is to be expected since the transmitted field does not
exhibit a pole. Obviouély, for the late time E;(;,t) indeed approaches zero
for all values of £. The late-time behavior of the reflected field follows
from Eq.(3.26), and is found to approach -1. For the magnetic fields a

similar proof can be given, but for brevity this will be omitted.
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B

STANDARD LAPLACE TRANSFORMS OF SOME BESSEL FUNCTIONS

£(t)

%(s)

Io(at); t=0

1

I(a t2+2tb); t=b>0

1 e-b(Vsz-a2 -s)

Ve

s -a

/2 2
s -a

aIl(at); t=0

—=2b I (aVt™+2tb); t2b20 1

t?+2tb

/2 2

—=_ Il(av/t2+2tb) F 8(t);e20 | eTP(YSman -s)

t2+2¢tb

/ /2 2

8t Il(a t2+2tb); t=b=0 [ S - 1] e-b( s -a” - s)

t?+2th (22 ]
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C RESPONSE TO WAVEFORMS OTHER THAN THE UNIT-STEP FUNCTION

The impulse response of a linear system is the response of that system to a
delta function excitation. Let the impulse response of such a system be
denoted by h(t). Then the response to an arbitrary input f£(t) follows from

the convolution theorem given by

t t
g(t) = h(t) * £(t) = I h(t-r)f(r) dr = J h(r)f(t-r) dr, (C.1)
o 0

where we have assumed that the system is causal, i.e., h(t) = 0 for t < 0O,
and that f(t) = 0 for £t < 0.

For the purpose of the derivation, we rewrite Eq.(C.1l) as follows

@D

g(t) = f h(r)U(r) £(t-r)U(t-r) dr, (c.2)

-0

where U(t) denotes the Heaviside unit-step function given by

0 t<o0
u(t) = (C.3)
1 t>0 ,

Now, let w(t) denote the response to a unit-step function. Then w(t) can be

obtained from the impulse response by
o . e, _ - -

© t
w(t) = j h(r)U(r) U(t-r) dr = j h{(r)U{(r) dr. (C.4)

-0 -0

Observe from Eq.(C.4) that atw(t) = h(t) U(t). Therefore, Eq.(C.2) can be

rewritten as

-+]

g({t) = I arw(r) £(t-r)U(t-7) dr, (C.5)

-~

-37-



which yields after partial integration

@©

g(t) = f w(7) at(f(t-r)U(t-T)) dr. (C.86)

-

Now, using the identity
at(f(t)U(t)) = £/(L)u(t) + £(r)s(r), (C.7)

where the prime denotes differentiation with respect to the argument of the

function, Eq.(C.6) can be rewritten as

t
g(t) = w(t)L(0) + I w(r)f'(t-r) dr = w(t)£(0) + w(t) * £/(t). (C.8)

0

Eq.(C.8) gives the system response to any arbitrary input f(t) in terms of

the unit-step response w(t).
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