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Abstract

This note discusses an approach for computing the electromagnetic field reflected
from a lossy half-space directly in the time domain. This approach requires first
evaluating the impulse response of the half-space and then convolving it with the specified
incident field waveform. To obtain the impulsive reflected field, either for vertical or
horizontal polarization, approzimations to the Fresmel reflection coefficients are made,
thereby permitting an analytical expression in the time dont®in. - Several differefit
numerical ezamples using this technique are presented to illustraie the use of the method
and the error contained in the solution.
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I. Introduction

In many electromagnetic (EM) coupling problems, it is necessary to determine the
plane wave reflected field from a finitely conducting earth. For problems analyzed in the
frequency domain, such calculations involve the use of the Fresnel reflection coefficients
[1], [2]. Transient results, if desired, are typically obtained by performing a numerical
Fourier transform of the frequency domain response spectrum.

In some instances, it is desirable to perform EM coupling calculations directly in
the time domain. Such is the case for problems involving time-varying media or
nonlinear system behavior, or in cases where the lossy earth causes the reflected field
response to persist for very long times, thereby causing difficulties with FFT ailing. For
this type of analysis, it is useful to have an expression for the transient reflected field
from the earth—air interface. As an example of such a problem, Engheta (3] has
determined the time—dependent current on an above—ground horizontal cable for an
incident transient plane wave excitation. This is done by first computing the the earth
reflected field in the frequency domain and then transforming it into the time domain
using Fourier techniques for a transient calculation for the induced current. An
alternative to this approach would be to compute the plane wave reflected field directly in
the time domain and use this in the coupling calculation.

A survey of the available literature on this topic has provided some information on
expressions useful for this purpose. Several earlier authors [4], [5] discuss transient fields
reflected from a lossy earth, but use the conventional frequency domain approach.
Dudley [6] develops a time domain expression for the reflection of a double exponential
plane wave in the earth by evaluating the required Fourier transform in the complex
frequency plane. This results in the reflected field being represented by a simple pole
term, plus a real—valued, singular integral which accounts for a branch cut occurring in
the Fourier transform. More recently, Klaasen [7] develops solutions for step—function
reflected fields from a lossy earth in terms of two definite integrals involving modified
Bessel functions.

In this paper, is is desired to develop approximate analytical expressions which are
simpler to those presented in [6] and [7] for the transient earth-reflected fields. Both
vertically and horizontally polarized impulsive plane wave fields are considered to be
reflected from a conducting earth. As discussed in [8], transient problems involving lossy
media typically involve the use of a convolution operator in the temporal domain.
Consequently, the form of the earth—reflected field is expected to be that of a convolution
operator on the incident field.



I1. Earth Reflected Fields
A. Frequency Domain Representation

The earth—reflected electric field spectrum from an incident plane wave Einc(s)
which is impinging on a finitely conducting half—space with a vertical angle of incidence
¥ is given by [2] as

E™(s) = R(is) E"(s) (1)

In this expression s is the complex frequency Laplace transform variable and R(%,s) is
the Fresnel reflection coefficient. Figure 1 illustrates the geometry of this problem, where
the incident field is decomposed into components having vertical and horizontal
polarization of the electric field vectors. For each polarization component of the incident
field there is a distinct Fresnel reflection coefficient, denoted by R . and Rh

respectively.

The total E—field at some point above the interface is composed of the incident
plus the reflected field, taking into account the vector nature of the fields. For example,
the x—directed (horizontal) component of the electric field at a height h for a vertically
polarized incident field is given by

E;OF(S) = Einc(s) sing cosyp [1 — Rv(f,b,s)e‘2h3/ ¢ sinzb] (2)

L= -— -

where ¢ is the azimuthal angle of incidence shown in Figure 1, and ¢ is the propagation
velocity of free space, ¢ = 3.0 x 108 m/s.

Similarly, the total horizontal component due to a horizontally polarized incident
field is expressed as )

ELO%s) = E0(s) sing 1 + Ry () 20/ S1nY ] (3)

The y and z components of the total E—field can be expressed in a similar fashion.
As discussed in [2], the Fresnel reflection coefficients for a conducting half-space

and an electrical conductivity o _ are

having a relative dielectric constant ¢, o
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Figure 1. Incident Plane Wave Field on Lossy Half—Space



R () = U500 [6(1r5d - cos?y!/2 (4)
Y e (1+%8)siny + [ (1+22) — cos?y!/2
and
: - ]__|_£g - 2 1/2
R, (15) = sing — [e,(1+55) — cos®y] .

sing + [cr(1+1375E - 0052¢]1/2

where ¢ = €65 and € is the permittivity of free space, equal to 8.854 x 10_12

farads/m.

For problems involving a lossy earth typical values of Jg

millimhos/meter {2], although conductivities as high as 100 millimhos/m are sometimes
encountered in the literature. Typical values for €. range from 10 to 30 [2].

range from 1 to 30

B. Time Domain Representation of the Reflected Field

The transient counterpart of Eq.(1) for the reflected field is given as the
convolution of the incident field and the inverse Laplace transform of the reflection
coefficient r(t) as

é

t
Bl = (B0 gy ae = Q

In this manner the transient quantity r(t) is viewed as the impulse response of the
conducting half—space.
Thus the total vector E—field at a height h thus is given by

E(t) = E%4) T+ EF¥f(i £ - (1)

where the 1 and k vectors account for the various vector directions of the fields, and t*
is a retarded time t* =t — 2h/c sinyp . The presence of this time shift is evidenced by



the exponential functions in Eqgs.(2) and (3), and accounts for the propagation delay time
experienced by the earth—reflected field.

For the remainder of this paper, the incident field term, the vector nature of the
fields, ‘and the propagation time shift in Eq.(7) will be ignored. We will concentrate on
developing an expression for the impulse response r(t) for the lossy half-space, for both
vertical and horizontal polarizations.

II. Evaluation of the Impulse Response, r(t)
A. Approximations to the Reflection Coefficients
The evaluation of r(t) in Eq.(6) directly in the time domain requires the analytical

inverse Laplace transform of the Fresnel reflection coefficients. This is difficult to do
without making some approximations. To begin, Eq.(4) can be rewritten as

(w,s) s+7 — Bys(s+4) (8)
s+7 + BYs(s+7)

where 7= o0/e, f= @ ,and 7= T(l—c082¢/f) 1 For the cases where € is
€ smz/)

on the order of 10 or more, and the angle 1 is large, so that cosy is small, the
parameter « is approximately equal to 7. This allows Eq.(8) to be approximated as

/sT—af = o

R (s (9)

T o

Note that this approximation will limit the applicability of the solution to non—grazing

angles of incidence.
The parameter B can range from about 0.25 to ». When f#= 1.0, the angle of

incidence ¥ = cos_l(J er/(er+1) ). This is approximately equal to the Brewster's angle,

hy, = cot ™t (v ¢, ) - The relative difference between these two values is on the order of

1079,



For %<, ,wehave > 1, and the reflected electric field adds to the incident

field at high frequencies, where |s| > 7. For B < 1, the reflected field subtracts from
the incident field.
The horizontally polarized reflection coefficient of Eq.(5) has the form

Js- — erBJs+'y
\/S- + erﬂ,/s+')'

Ry () = (10)

Noting again that ¢ ~ 7 for cases involving a large relative dielectric constant and
non—grazing angles of incidence, Eq.(10) can be approximated as

Vo1 — (e

Ry (¥58) % — (11)
h ?
s+7 + (e f) s
J (.85
Both the vertical and horizontal reflection coefficients now have the form
Js+2a — nfs
R(¢s) » (12)

N
Js+2a + H\/S_

where a = 7/2 and & = f for vertical polarization and & = (c]_,ﬂ)_1 for horizontal

polarization. The leading + sign is used for vertical polarizationwhile the — sign is used
for horizontal polarization. Hence, to determine the transient reflected field for either
polarizations, the same inverse Laplace transformation can be used.
B. Analytical Inversion of the Reflection Coefficients

In order to invert Eq.(12) into the time domain, the Laplace transform pair

£ F(s—a)] = 2 f(t) (13)

can be used. Eq.(12) can be written as a function of (s—a) as
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R(s—a) = i- (14)
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which can be expanded to give

R(s—a) = = [ 1=k, 4k . & ] - (15)
Ite (148)%5, k2 a2 4 a(1~&)/(1+x)
Defining K = 1=K and S = s+ys?—a? , Eq.(15) can be written as
1+
R(s—a) = * [K + 4—"2 5 (—1)2+! (Ka)® s‘n] . - (16)
1-K° p=1

The inverse Laplace transform of this expression is given as [9]

l—K; n=1

ZR(s—a)] = + [Kb"(t) LT P (—1)" nK" I (at)] (17)

where §(t) is the Dirac delta function and I n(1;) is the modified Bessel function of order n.

Using Eq.(13), the resulting transient response for the reflected impulse field r(t)

is then given by o _ ‘ i

(t)-d:[Kﬁ(t)+ i e z:( —1) L pg? I (at) (18)
1-x2 ¢ n=1

Note that this expression for the impulse response of the ground—plane contains
two terms. The first is an impulse which is independent of the ground conductivity, and
the second is a response term persisting in time. Inserting this expression into the
convolution expression for a general incident E—field in Eq.(6) yields the following
expression for the reflected field

N’



Eef(4) =« [K EinC() + fE‘“Ct —£) §—£ 2 (-1)2+! gK® I (af) dg]. (19)

n=1

This expression is valid for both vertical and horizontal pola.nzatlon, depending on the
values for x and K and the * sign.

C. Numerical Verification

As a check of the development of Eq.(19) and to see the effects of the
approximations used in developing the reflection coefficient expressions in Egs.(9) and
(11), consider the reflection of the double exponential transwnt electric field given by

ER(t) = A (7% ) with A_ = 52.5 (kV/m), @=4x10% (1/sec) and =476 x

108 (1/sec). This waveform, shown in Figure 2, is the "Bell Laboratory waveform" which
is frequently used in electromagnetic pulse (EMP) coupling studies [10]. This incident
field is assumed to strike an imperfectly conducting earth, having a conductivity of 0g =
0.01 mhos/meter and a relative dielectric constant ¢, = 10, with an angle of incidence of
¥ = 45°.

Using Eqs.(19) for both the vertical and horizontal polarization cases, the
convolution integral was evaluated numerically in the time domain to provide the
earth—reflected fields shown in Figures 3a and 3b. Also shown in these figures are the
reflected fields computed from the original reflection coefficients of Eqgs.(4) and (5) in the
frequency domain and converted into the time domain by &a. FFT. Note that the
agreement between the two waveforms is quite good, indicating that Eq.(19) is correct
and that the approximations used in deriving the reflection coefficients of Egs.(9) and
(11) are not bad. It is expected, however, that there will be a larger error in the response
for smaller angles ¥, due to these approximations.
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IV. Approximations to the Impulse Response

Although the impulse response for the lossy ground in Eq.(18) is seen to be
accurate, its application to practical problems is hindered by the infinite series of
modified Bessel functions. Such functions can be numerically evaluated [11], but it is
tedious to evaluate this sum and then perform the indicated convolution operation.
Consequently, it is desired to obtain further approximations to the reflected field which
permit a simple evaluation.

In order to simplify the summation expression in Eq.(18), consider re—writing it as

r(t) = + [K&(t.) + Ak gmat 9] (20)
1-x

where the term & is defined as

7= 3 ()" k™1 (at) (21)

n=1 t

Substituting the series expansion for the modified Bessel function [9]

o 9k+1
I(aty= 5 (820 (22)
koo k! (a+k) !

into Eq.(22),and interchanging the order of the sums over n and k yields the
expression:

® © 1 2k
k=0 n=1 t k! (n+k)!
Analytically summing each term in n for a fixed k yields
I= X fk (24)

k=0

where the following terms can be defined after some manipulations:

12



0 9
£ =—=(1-X)-2x
2K 4
2
fy = =L (X-1) + L (X+1)
4K? 16A
with

Inserting this result into Eq.(18) gives an approximate expression for r(t) of

2
OLY [Ka(t) +2E B [ By y LX)~ x4 L (x—1) + (x+1)]] .
1-x2 2 2K 4 4K? 16A

(25)

As an example of the accuracy of this approximation, Figures 4a and 4b present

the actual and approximate functions for r(t), with the é~function term extracted, for

both vertical and horizontal polarizations. The curves labeled "Sum" comes from a direct

evaluation of the term [14—52 e g ] in Eq.(20), with 7 being evaluated using the
-K

Bessel function sum of Eq.(21). The curves denoted as "Term #1", "Term #2" and

"Term #3" result from approximating J by fo , f0+f1 , and f0+f1+f3 , respectively.

These results are again for the parameters ¢ = 45° | € = 10, and ag = 0.01

mhos/meter. o ' ‘ = . -

Note that for three terms in the series for J , the result are not convergent to the
actual solution for at > 5. For the specified values of ¥, %y and €., a= /2 = 5.6 x
107. This implies that the approximate transient response will begin to deviate from the
actual response at a time of t = 0.9 x 10_7 sec. Of course, the total transient response
also contains the effect of the é—function term, as well at the convolution integral, both of
which are neglected in Figure 4. This suggests that the deviation of the final transient
results may not be as large as that indicated in this figure.

The impulse response of Eq.(25) for both polarizations has been convolved

numerically with the double exponential waveform of Figure 2, to provide the transient

13
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reflected fields shown in Figures 5a and 5b. Because of the relatively simple dependence
on the variable t of the terms in Eq.(25), it is possible that for certain incident field
waveforms, the convolution integral can be performed analytically. In the present case,
however, this integral is evaluated numerically in the time domain. The curves marked
"Actual" are the same discussed in Figure 3, and the "Approximate" curves result from
only a 2—term approximation for . There are noticeable differences between these two
curves, but the early—time portions of the waveforms agree almost exactly. By taking
additional terms in the series representation for J , the agreement at later times will
improve.

To see the behavior of this approximate 2—term solution for the reflected field, a
series of calculations was performed for a number of different angles of incidence 3% and
the results plotted as a contour plot. The values of the earth and waveform parameters
were the same as for the previous cases, and vertical polarization was first considered.
Figure 6a plots constant contours (in kV/m) for the actual transient reflected field, as
computed directly from the Fresnel reflection coefficients. This is shown as a function of
the angle over the range 0° < P < 90° and for 0 <t <1 us. Similar responses are plotted
in Figure 6b for the approximate solution. Agreement between the two appears to be
good for large values of 9 , as expected from the approximations made in the analysis.
For 9 < 10°, however, the agreement is not good.

The difference between the actual and approximate waveform surfaces, expressed
as a percent quantity, is one possible way to quantify the error in these calculations. This

may be defined as (% Error) = Eac v ual-Faperox 199 , and also can be plotted as a
Eactual

contour surface, as shown in Figure 6¢c. Note that for large values of 9 and early times,
the error is small. Large errors are seen to appear for late timesgbut as shown in Figure
4, the amplitudes of the transient waveforms at these times have decreased to low values
80 .this error may not be very important in problems of practical interest. However, for
angles less than 10°, or so, the error increases dramatically, indicating that the
approximate solution is not valid in this region.

Similar data for the horizontally polarized incident field are presented in Figures
Ta—T7c. In this case the agreement between the approximate and exact waveforms is much
better, even for grazing angles of incidence. Evidently the approximations made for Ry

were not as severe as for the vertically polarized case.

15
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V. Summary and Conclusions

This paper has discussed an analytical approach for computing the electromagnetic
field reflected from a lossy half—space directly in the time domain. This approach requires
first evaluating the impulse response of the half—space and then convolving it with the
specified incident field waveform.

To obtain the impulsive reflected field, both for vertical and horizontal
polarization, several approximations to the Fresnel reflection coefficients can be made to
permit an analytical representation of this response. As shown in the paper, the form of
this response is identical for both polarizations, and involves a Dirac é—~function and an
infinite sum of modified Bessel function. ‘

Approximations to this sum can be made and an analytical expression for the
impulse response of the half—space results. Several different numerical examples of this
technique have been used to illustrate the use of the method and the amount of error
contained in the solution. From the results presented in this paper, it is apparent that for
non—grazing angles of incidence and early times, this method provides a good
approximation to the earth—reflected fields for either vertical or horizontal fields.
However, for vertical polarization, the accuracy of the method is questionable for angles
of incidence less than about 10°. This is due to the approximations used in simplifying
the reflection coefficient. Such restrictions are not particularly evident for the horizontally
polarized field. At late times, the accuracy of the method also is degraded, principally
due to the truncation of the infinite sum. Additional work in developing higher order
early—time terms for representing Eq.(21) is clearly desired, along with the possible

development of a suitable late—time approximation to this term.
o : : . _ -
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