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Abstract

This paper presents analytical expressions for reflected and transmitted
electromagnetic fields if a Delta function pulse impinges on a conductive
half-space. These impulse response functions were obtained by analytic
continuation of the Fresnel coefficients into the whole compiex w-plane and their
Fourier transform back to time domain. From a mathematical point of view.
the Fresnel coefficients are double-valued with a branch cut, and it is important
for all further considerations to remain on the “physical" Riemann surface.
Besides the branch cut no further singularites (e. g. poles) appear on this
Riemann surface.

Al response functions for reflection R(r) and feansmission T(r) can be
representéd by sums of two terms. The first term stems from the path integral
encircling the branch cut. The second term corresponds to the original wave
function reduced by a factor identical with the asymptotic value (i.e. w=-=} of the
Fresnel coefficient. '

Other representations of the response function are also given (e. g. in terms of
modified Bessel functions, and series expansions), and some examples for the
convolution with specific canonical waveforms (unit step function, exponential
decay, reciprocal sum of exponentials) in the time domain are presented.
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1. Introduction

As was shown in Ref. 1, the problem of scattering of an electromagnetic pulse
incident on a conductive half-space can be solved analytically by means of
Fourier transform techniques. By analytical continuation, the frequency-dependent
Fresnel coefficients for reflection and transmission are defined in the whole
complex frequency plane, then multipiied by the Fourier transform of the pulse
shape of the electric field, and transformed back to the time domain by contour
integration around the singularities. In particular, it was shown that the Fresnel
coefficients have only branch cuts along the interval O, -is;) of the negative
imaginary axis and are analytical functions otherwise on the ‘physical* Riemann
surface. Therefore, in the time domain, there appear integrals along both sides
of the cut which in general cannot be performed in closed form. Results were
given for both states of polarization of the incident electromagnetic wave. A brief
review of this technique is presented in Appendix A.

More recently, two papers were presented at the 1990 Nuclear Electromagnetic
Pulse Meeting (Ref. 2 and 3) choosing a somewhat different approach. They
apply inverse Laplace transforms to the Fresnel coefficients which corresponds to
the problem of finding the time domain response function of an mc:dent Delta
function pulse. :

The inverse Laplace transform is then accomplished with the aid of Laplace
transform tables. Response functions for any other pulse shapes can be
calculated. by application of the convolution theorem u?"nme domain.

There are some advantages of these approaches in comparison with that of Ref.
1. The response function has to be calculated just once, i. e. for the Delta
function. A Fourier or Laplace transform of the various incident pulse shapes is
not required, because their scattered and transmitted fields can be calculated just
by convolution in time domain. Moreover, the integrals remaining in the response
functions contain the time variable only as the upper limit of integration.
Therefore, from a numerical point of view, the time dependence can be
computed consecutively.



On the other hand, the performance of convolution integrals can compensate the
numerical advantages unless the wave form is an exponential function or sums
of them (e. g., the "Bell Laboratory waveform®). One of the standard wave forms,
the inverse sum of of two exponentials, cannot as easily be dealt with.

The intention of the present paper is to throw a bridge between the different

approaches, in particular, to prove that the analytical results are identical. Both
states of polarization will be considered.

2. Reflected Fields in the Case of Horizontal Polarization

In Ref. 1 it was shown that the reflected field can be determined by inverse
Fourier transformation according to

+ @

E0) = 3 | EsRe) 6% | (1)

-,

where E () is the Fourier transform of the incident pulse and R(w) denotes the
analytic continuation of the Fresnel coefficient on the 'physical’ Riemann surface.

For a Dirac Delta function, the Fourier transform is given by

E 0 = 5() =1 Ie'wtdw )

Thus,
sw) = 1. 3

Hence, the product E,(w)Rw) has a branch cut along (0, -is,) and is an
analytical function otherwise.



However, it has to observed that for the case of an impinging impulse function
E,(w)-R(w) = R(w) does not vanish at infinity. It rather takes constant values Ra.
Therefore, Jordan's theorem does not apply when evaluating the integral Eqg. (1)
by means of contour integration, and the contributions from the half circles at
infinity must be added to the contributions of the branch cut (see Appendix B).

According to Appendices A and B we therefore have

So

Rp()= E,() = - 2 cose u(t) f _Weis) oSy 1 R Lsm) (8

3 o/eq-S(e-1) '
where  W(-is) = Vso/e - (e-sin20) (5)
So = m . (6)

cosd - Ve-sin2e

Rho =
cos8 + e-sinz_e
and ¢
e (O if t<0
u = I s()dt’ = [1 if t>0

-0

in Ref. 1, these expressions were evaluated by numerical integration. In the
present paper, Eq. (4) will be rewritten in such a way that it can be compared
with the corresponding expressions in Ref. 2.

To begin with we introduce dimensionless times

'r=%sot20 (7)

and substitute in Eq. (4) s by

p = 25/s, - 1 (8)

to arrive at
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-T -
Rh(r) = agacosé e U(r) I \A-.o—_z_ e Pt de + %0 Rh,» 8(t) ©
Meo(e-)V e-sine 2 P Po

with

Po = s;efoszi (10)
Using the identity

'pT T )

e _ e‘POT[ 1 R [ e-(p-po)TdT'} (11)

PP P Pq

(o]

we obtain

T +1
Ru(r) =~ & cos8 u(r) e—(1+Fb)T. IepoT’[(T,) der 1 J‘ \6_;2 Gl +
) 3 1 T n P

(e-1)V e-sin2e P™Po

+ 28 Ry L5 (12)

where 1, is the modified Bessel function with the integral representation

+1

4() =-J—J V102 e do (13)

and the second integral in Eq. (12) can be evaluated for example by means of
contour integration in the complex plane:

+1
%I \.A—"’—z—dp =V p21 - p, (14)
P-Pq

-1
If in Eq. (11) the lower limit of integration would have been extended from O to
-=, Eq. (12) will simpiify to

R



.
Ri(r) = - = —2052 Ul e'(’+"°)rf " fr) T v2om, s (12)

€0 (e-1) Ve-sin?s T2

from which as a by-product we obtain the identity

-0 T’ . dr’ /
Je T e
0

Numerical Results

To reduce the computational efforts, Py a@s given by Eq. (10) will be introduced
as an independent variable. Therefore, the integral in Eq. (8) has to be evaluated
only for a one-parametric instead of a two-parametric set of variables (e,8].

Since

e-1 =

N +1
e-sinfe = 207" cng2g

EQ. (9) writes as

.1 * = -

. 3

Rh(T) = 2_2_ U(T) \ /pg_.l I p:‘p: e (1 +p)po + %O [Vpg"1 -pOJS(T) (15)
.

Thus, actually any two of the three parameters (o, ¢, 8) are independent and
can be condensed to the set Sy Pol. Some results for the .numerical
integration in Eq. (15) are presented in Fig. 1 and Fig. 2. The contribution of
the Deita function term is not shown. Therefore, strictly speaking the plots apply
only for 7>0.
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Normalized Time =t

Fig. 1: Reflected delta function response in case of horizontal polarization
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Fig. 2: Reflected delta function response as a function of Po iN case of
horizontal polarization .



3. Reflected Fields in the Case of Vertical Polarization

According to Appendices A and B, the reflected pulse for an incident Delta
function pulse is given by

So

2

(Se-afe) W(- e'5t
Ry® = = u(t) cose [ o) WCiS)

cos?6(se-0/¢ )2+ W2(-is)

ds + Ry . 5(t) (16)

o

After some tedious calculation, the denominator D(s) can be factorized as
follows

D(s) = [6200529 + sinlg - e] (8-84) (s-S,) (17)
where s, and s, are the two zeros of the denominator:
. g 1 .

== - 1

Sy o (18a)
g 1

= —_— 1

52 €6 e-t929 (18b)

As emphasized in Ref. 1, these zeros correspond to poles on the imaginary axis
of he “unphysical" Riemann surface, they do not appear on the "physical" sheet
of the two-fold Riemann surface. Therefore, they do not contribute to the inverse
Fourier transform.

It is noticed that Isy 5I>s,> Q. Hence, there is no singularity within the range of
integration. Change of variable according. to Eqg, 8) and partial fraction
decomposition of 1/D(s) yields

cosé  u(r)
¢, COS28 (e-sin2g)3/2

.2 A ; .
. e T_}: 1 -D'eT I [(1+p)e-2(e-sin29)] \E eppo+
1=

£p;
-1
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2n cos28 PP
-1
+1
- V' 1-02 . .
(1 - B2 J 107 T 4, + 2R, s)
pq+1 ) P=Ps 2 ’ (19)
with
€ +C0s26
=2 1= —
e-tg26.cos28
Py = 2S,/8,-1 = <12 (20b)
As in Section 2, we introduce the identity
T
-pT
PP P-p;
0
by which _
+1 T
Vi-p2 - -0 T '
! e do = T (Vo1 - g - &7 ) O (22)
n PP; : T
-1 0

where 1, is the modified Bessel function of orderg] as given by Eg~ (13).
Comparison with the result for horizontal polarization (Eq. (12)) shows that there
is complete analogy in time dependence for the different zeros pg and p; (i=1,2),
respectively.

The special case 8= 450 requires some caution because of degenerate roots

-11-



im P1Pa _ 521
e-F cos2e 2 (e-1)2 (23)

and therefore

+1

_ 2 u@eT pe-(e-1) /5 _-pT Sy
Ry(r) = 7 @12 VT J' (p-p0)2 1-pc 8 dp + 5 Ry «8(1) (24)
-1
where p = Ei_1 and Ry o = V21 25)
e+ V 2¢-1

Figs. 3 and 4 show some numerical results for different parameters ¢ and 6. In
contrast to the case of horizontal polarization, the set of parameters cannot
again be grouped together into a single quantity.

For vertical incidence (8=0) the reflected E field should be indentical for both
states of polarization.

This can easily be verified since for 8=0

_ e+1 _ - 1
P = e = Pp Po =
1 P1"Po

-e —_
p1+1

and therefore EQqQ.(19) and- EqQ.(15) turn out to b&s identical (except for the
opposite sign which is due to the fact that Ry and R, are defined as response
functions for the electric and magnetic field vectors, respectively).

Eg. (19) shows that the integrand changes sign for

2 .
p = 1 - =sin?e.
€

Therefore, for sufficiently large relative dielectric constants « and/or sufficiently
small angles of incidence R, remains positive.

=-12-
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Fig. 3: Reflected delta function response in case of vertical polarization.

Angle of incidence 8 = 67°
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Fig. 4: Reflected delta function response as a function of the angle of
incidence in case of vertical polarization
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4. Transmitted Fields in the Case of Horizontal Polarization

For the transmitted electric field of a horizontally polarized Delta function pulse
impinging on the surface of a conducting medium the following expression was
obtained in Ref. 1 (see also Appendix A).

i & st N
Thix, 1) = 5— ult-t,) J (T*(is)-T(s)) e " ds + Th (0 e 2 Os(tt,) (26)
0o

where
s cos8 sin [% W(-is))- W(-s) cos [E W(is)) (27)
ofey - s(e-1)

Tt (-is)-T"(-is)= 4i cose

Thol0) = Ve3-1-p, + 1 (see Appendix B)
h, ) o)

X .
and t, = = Vesin2e > 0.
c

Introducing dimensioniess times (see Eq. (7))

and penetration depths

s, V e-sin2e

(o]

>0 (29)

o=
O Ix

we have

-15-



TRt ) = —9- u(r-¢) Vet -t .e J de Po™_ (1+p) sin [5 V 1-p2 ]-

PR Pot1
4
/ - -
1-02 cos [ V 1-p2 ] epT + %ﬂTh,‘,(O) e s(r-f)
\/__ +1
= g—: u(r-5) Vp2-1 e’ [—pﬂi— { sin [a 1-p2 ] e T do +
po+1 '

P Pq

var J " anl Vi ) or

1
+ §2r1T «(0) & "s(r-t) (30)

Figs. 5 and & show transmitted response functions calculated on the basis of
Eq. (30) for t>¢. These functions can change sign in a certain depth which is
due to the fact that for a monochromatic wave the phase lags increasingly with
deeper penetration until it reaches 180° at the skin depth.

Another representation of the transmitted response function will be derived' in the
following.

First, we consider the integral .
| -+ ‘
Fie, ) = J sin (¢ V102 ) e dp

-1

cos (§V 1-p? ] cosh (p7)

1
N
QJIQJ
— o

3 e
=23 J de cos (¢p) cosh (r V1-02 )

-16-
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o = 1.025

Fig. 5:

M.
2 L 8= - 8 T

Normalized Time t

Transmitted delta function response in penetration depths ¢ in case
of horizontal polarization (p, = 1.025)
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Fig. 6:

2

Transmitted delta function response in penetration depths ¢ in case
of horizontal polarization (p, = 5)
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- m g? I [\/ 72 az] (Ref. 5, p. 518)
== 4 (V) @1
Ve %

2 52

Second, we observe that

+1 Wars
. _ 2 R
GGz, 1) = J S'”p_s 159%) et
o}
e

de (32)

satisfies a second-order differential equation

2
- (b3 B T) = by - ) F(r, 1 @3)

With the boundary condition G(0,7) = O the solution of Eqg. (33) becomes

1 : V
G(z,7) =\/§-_1 f smh[(g-a’) p3-1 ] F(e',7) de’ +

0

sinh (¢ V/ p2-1) S |

aJE E=o0

-+

;
Vp3-1

where (see Egs. (9) to (14))

+
?_G _ J’ 1-p2 -oT

a§ E:o

N T )
= e"’OT[\/ b2 -1+ pg - J &1 ) & ] (35)
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A different representation of G(x,7) is derived in Appendix D. Eq. (34) can further
be simplified by means of integration by parts and Eq. (33)
4

G(g,1)=- n (pd 831') Jcosh [(5-5’) VP§'1 ] I (\/ T2'§'2)-d5'

p3-1

o]

sinh ¢V p 1)

(36)

af,ﬁo

ak

pg-1

With this we arrive at the final expression for the transmitted response function

- \/T2_:2
Ths,T) = %" u@-g) e [(90'1) g A0
' \/T2_€2

A

1| )V o2 [o e2e?) - 1 f](\/rz-c@)JdE

T2‘£’2

p2-1 8G(e,1) ,

S g e
3t + > Th,m(O)e 8(T q), (37)

=0

However, from a computational point of view, the equivalent expression as glven
by Eq. (30) seems to be far easier to handle. % -~

5. Series Expansions

Since in Ref. 3 approximate analytical solutions are presented in the form of
series expansions in terms of modified Bessel functions I, we also attempt to
find series expansions of the exact solutions Eq. ©) or (19).

Without loss of generality, only the case of horizontal polarization will be
considered. In Eq. (8) we encounter the integral

~20-



L(7) =;— o 0 (39)

4

The Taylor’'s series expansion of L(r) about T = 0 is

=t doL(T)
L = E:O k! dr* l
T=0
+1 >
@« K _
rr e [ e, ()
T y=0 k! P~ Po
-1
For « = Dand 1
+1 >
1 1- S
o lpo) = 7 J —dp =V 21 - g (41)
n PPy
-1
+1 12 +1
1 i 1 /
Lilpg) = - Ip o dp = — J 1p2dp + oy Lyfo,) (42)

. . . % . -— - - -
were already evaluated in the previous sections. For «>2 we have in analogy to

Eq. (42)

LK+1('°0) =LK+1(0) + .po Ll( (po) (43)

We observe that

+1
Let® = 5 [ oV 107 o 44)

X

-21-



is zero for uneven values of «.

For even values of «, the integral is evaluated by contour integration in the
complex plane. The complex function

F.(2) = z¥ \V z2-1 (45)

has a branch cut along the interval [-1, +11. At infinity, as seen from the
expansion

im F(z) = z¢t1 § [‘,/2] (-22) (46)
Z-o j=0
there is a pole in case of | = («+2)/2. Thus, by determining the residue at

infinity, we have

[:;;1] ’ x even

o) =
Lk+1( ) (47)
0 x uneven .

with the binomial coefficients

X %l X(x-1)...(x-n+1) n>0
[ n ] ) 1 n=0
0 n<0

As a result, all L,(o,) can be determined recursively While increasing the ofder of
the expansion (40).

" An alternate series expansion is obtained by expanding the denominator of Eq.
(88) with regard to p about Po

- +1
e[ (B Vi e g (@8)
o] o

(o] K= 1

L(r) =

This expansion seems to be particularly useful if Po > 1.

-22-



With the definition

1

+
F (1) =:7 I V12 &g, (49)
1 N
Eq. (48) reads as

Un) = = T ey Ryl (50
o] 14

By definition, F; and F, are identical with the modified Bessel Functions i and
12, respectively. However, this correspondence does no longer apply for orders
higher than 2 because different recurrence relations are valid for Fe

The new recurrence relations are derived by applying integration by parts to

+1

T 2/ 3
Fe-1 - Feseq= ;f dp o V1-p2

+1 '
=1 [ d [(1-p2)(x-2)p“'3-sp"‘1]\/1-p2 o
4
+ 1
=— % [ dp[(z-Z)p <3 (k+1)p" ]\/1-p e’ (51)
-1
Hence, for «>2 we have
1
FK+1 = FK-1- ; [(K+1) FK - (K-2) FK_2:| (52)

and F, .4 can therefore be determined recursively from the modified Bessel
functions /4, and f for which very accurate polynomial approximations are
available (e.g. Ref. 4) in case of a numerical evaluation of the series expansion
Eq.(50).

-23—



6. The Case of General Incident Pulse Shapes

Once having solved the reflection problem for an incident Delta function pulse,
the reflected fields for general incident pulses Ej(t) can easily be calculated by
convolution

t
E(t) = J E(t") Rttt dt’

. (53)
= f E (t-t") RE") dt”
o

The convolution becomes particularly simple i the incident field can be
expressed as sums/differences of decaying exponentials (dimensionless times t
will be used in what follows)

E(r) = Eq ¢ u() | (54)
where u(r) = 1 for >0 and u(r)=0 for T<O0.

With Egs. (15) and (54) we have after performing the integration over t"

+1 / -aT  -(1+p)T
£ \/_1 J do 1-p2 [e -8 ]

=1 2
@ = 7 EoVes (epo)(p+ 1)

+ Bnae T 20 (55)

-1 ‘ -
which can be cast into the standard form by partial ffaction decomposition of the
denominator. It is worthwhile noting that any possible zero of the denominator is
cancelled out by the numerator. If desirable, Eq. (65) can be written in terms of
modified Bessel functions analogous to Eq. (12).

Compared to the approach chosen in Ref. 1, Eq. (85) has the advantage that
the problem associated with poies of E(w) located on the branch cut of the
Fresnel coefficients is circumvented by performing the convolution in the time
domain instead of dealing with products in the frequency domain.

-24-



As a special case of Eq. (54) we consider the unit step function

Ei(t) = u®

for which Eq. (55) reads for 720 and E, = 1.

+1 [
Epn () = 2\ 21 [ 1p? [Le’“*"’)T] + R (56)
A A " e+ 1) e
-1
On partial fraction decomposition we obtain (120)
1 oa-T
Er,h(T) = = _Q?]- [\/pg 1 - pgtt - (57)
+1
I deV 1-p2 [1 - —1-]9_(1+p)r}+ Ve2-1 - o,
PPy p+1 o

T

T
Po+1 (r) + 11(T)] * e-(HP)TJePO,T‘H(T') ar

The last line was obtained with the aid of Ref. 4:

T .
Ie’rq ) fTT =-e" [Io(‘r) ¥ I1(T)J + 1 | (58)
0

For comparison, the contour integration approach of Ref. 1 is applied to the unit
step function in Appendix C.

The transmitted unit step function response is calculated similarly. Figs. 7 to 11
show some numerical results for reflection and transmission.

-25—~
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Fig. 7: Reflected unit step function response in case of horizontal
polarization

-26-



‘Er,v (T)

1.0

0 - T : T ‘;f ;
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Fig. 8: Reflected unit step function response in case of vertical polarization.

Angle of incidence 8 = 67°
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Fig. 9: Reflected unit step function response as a function of angle of
incidence in case of vertical polarization
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P0=1025

157

Normalized Timet

Fig. 10:  Transmitted unit step function response in penetration depths ¢ in
case of horizontal polarization (o = 1.025)
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0 5 10 15

Normalized Time T

Fig. 11:  Transmitted unit step function response in penetration depth ¢ in
case of horizontal polarization (po=5)
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For other pulse shapes such as the inverse sum of exponentials

eoT
Ei(r) = A O<T< (59)

é (x+8)T’
14-8 e

the advantages are not so evident because the convolution integral cannot be
performed analyticaily.

In Eq. (89) the time scale can be shifted such that A=B. Unless it is considered
to evaluate the convolution integral numerically, a series expansion of Eqg. (59),
e. g. in terms of exponentials, might be helpful (see Ref. 1).

( Ae™" ; (-1)"8"(“""3)7 <0
Ei('r) = (60)
Ae“T E (_1)Ke-x(a+B)T >0
k=1

In case of horizontal polarization the reflected fields are given by

() <0
, : : + 1 /
al + k x{a+B8)T 1 d 1-02
Efn) =Ae™ I (1) (BT — V21 J m + Rp oE(7)

(61)
where p, = 1+a+x{x+8).

The integrals over p can be evaluated immediately upon partial fraction
decomposition of the integrand to give

E”{T) =AeaT /pzo r Z‘“ (_1)K LD(:;OL‘:O(-F)K) e’((a‘i'B)T + Rh’mEi(T) (62)
K=0 0 K

= AT S (1) | Lfpg)+ Vg -1 Loled) - Ln("’*)]e"(“ﬁh

=0 p0+pK

~31-



The series converges even for 7=0 since successive terms have alternating sign
and go to zero for x-=. it can further be shown that Eq. (62) corresponds to
the (infinite) sum over Fresnel reflection coefficients evaluated at the poles w, ot
E; (w) in the upper half-plane.

m r>0

Eie) =< e E e O v j :

K =- (p- po)(p+p,c)

+ Rh!mEi(T)

+A \/ J __V2 g (1+aT ST

1 PP - PFP,

= -Ae™ 1 (1) [ o) +Vp21 - (o) L(py) }e"(“+3)+

k=1 Pot Py

+

A/ J "aavi? o (THP) T
a+B 0 (e=pg) sin (X2 ) (63)

Again, the infinite sum is associated with the residues of the poles of E(w),
whereas the integral represents the contributions from the contour integration
around the branch cut of the reflection coefficient.

This explicitly exhibits the equivalence of the ‘convolutien in.time domain and the
frequency domain approach chosen in Ref. 1.
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APPENDIX A

Applications of Fourier Transform and Contour Integration Techniques to the
Evaluation of Reflected and Transmitted Fields

(Summary of Ref. 1)

The complex Fresnel reflection and transmission (i. e. refraction) coefficients for a
plane electromagnetic wave incident from the vacuum upon the plane surface of
a conducting semi-infinite medium are

o - ot .
AW = e WY A2
‘ A ¢
) = oW © o (A3)
X
Tyw) = (zmecofei:i:):;cz?: /in W) e A4
where
W() =\/u2(e-sin?e) + wofe, _ (A.5)

and x is the penetration depth in the conducting medium.
Since all these functions are double-valued, the analytic continuation into the
complex w-plane requires some caution in order not to leave the physical

Riemann layer.

The Fresnef coefficients have a branch cut on the interval (0,-is,) of the
imaginary axis with

-33-



g

S0 = L (esin%) (A-6)

and are analytic otherwise. Their behavior at infinity is discussed in Appendix B.

On the physical Riemann surface, the limiting values of W(w) on the branch cut
are (s=iw)

WEis)= £ Vs2(e-sin20) + S/, se(0Sg) (A7)

when approaching the cut from the right-hand side (+) and left-hand side (-),
respectively.

Furthermore,

W(s) = & i Vs2(e-sin%8) + so/e,,  s¢ (O5.) (A.8)

on the positive (+) and negative (-) imaginary axis, respectively.
If ‘
to
E () = J E_ (e at , (A9)

now denctes the Fourier transform of an incident ele&romagnetic pulse Eg(t) the
reflected pulse E,(t) is calculated according to

+m
E,(t) = %r [ E, () Rw)e ™ dw (A.10)

-
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Table C.1 shows Fourier transforms of a few standard pulses

E,() E(w) Remarks
é(t) 1 Delta function
u(t) iP [%] + 15 (W) P: 'principal value
u(t): unit step function
-at 1 -
u(t)e o - iw «>0
1 n «, B>0, w<t< +=
-at at ot iw infinite number of poles on
e + e {e+8) sin[ m n] the imaginary w-axis
=4

Table C.1: Fourier Tansforms of Standard Pulses

Dependent on the numerical values of o, ¢, and 8, poles of E(w) can eventually
be located on the branch cut of W(). Only the reciprocal sum of two
exponentials shows also poles on the positive imaginary w-axis.

Al Fourier transforms except for the Delta function which requires special
treatment (see Appendix B) vanish uniformly at infinity.

To evaluate the integral (A.10), the integration contou&\ is closed by a semi-circle
at infinity - in the upper half-plane for t<0. Except for the Delta function, the
integrals over these semi-circies do not contribute due to Jordan's Lemma.

If there are no singularities in the upper half-plane, because of Cauchy’s
theorem, .

E,) =Qfor 1 <0 (A.11)

which, as a consequence of the causality principle, might appear trivial.
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In case of the reciprocal sum of exponentials

Ex) = i T Res E@| - Ry e t<0 (A12)
k=0

U=NK

_where w, = -i(x(«+B)-«) are the poles of E(w).

In the lower haif-plane (t>0), the contribution from the path integral enclosing the
branch cut must be added to the residues of E(w). We therefore arrive at

S
Eo(t) = Z:—HJCE(-is) [n+(-is)-R-(-is)]e'Stds-

- i T Res E@)] R()e ™ t>0 (A.13)
X (.I)K

where R* denote the limiting values of R(w) for Wt.

If there exists a pole wj on the interval (0,-is,) the cut contribution must be
rewritten as follows ‘

. SO
- 2;[ PJ E(-is) [R*(is) - R(-is)] eSls  +
o)

g [R""(wj) -I‘-‘R‘(w]-)] ?“’it | (A.14)

[Eore]|

N =

w=w)

where the first term has to be understood as a Cauchy principal value integral,
and the second term originates from the contribution of small semi-circles
centered at wj on the left (-) and right (+)-hand side of the cut.

What still has to be done is of purely algebraic and numerical nature. Explicit
numerical results for different incident EMP shapes were obtained in Ref. 1
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APPENDIX B

Fourier Transforms of Fresnel Coefficients

For the evaluation of the Fouriertransfprm

-+ @

L J Rw)e " “dw (B.1)

R(t) = >

which is indentical with the Delta function response, it is noticed that R{w) has a
branch cut along the interval (O,-isq) of the negative imaginary axis, and takes
constant values at infinity '

cose -V e¢-sin?e
cos8 + Ve-sin2e’

cos8 -Ve-sinle
Ryw = - : (B.3)

ecos +Ve-sin2e

in case of horizontal and vertical polarization, respectively.

If the contour of integration is closed by an infinite half-circle in the lower

half-plane, we have by Cauchy’s theorem e -
; T -iut ’ -iut
REt) = — [ [R +(u)-R-(u)]e du + ——J Rwe du
2n 2n
. (B.5)
(o] C:
S
i ° . o -st 1 -iwt
- 5[ [R (-is)-R (—IS)]e ds + 5~ R, Je du

o] on

-~

-37-



Note that the integral over C. does not vanish since the conditions for the
application of Jordan’s lemma are not satisfied.

This integral can however be rewritten by means of Cauchy’s theorem
1 -iwt 1 -iwt _ ’
7R [ du = on R Je dw = R, s(t) (B.5)

since et is an analytical function on the entire complex w-plane.

For horizontal polarization, Eq. (B.2) can be expressed in terms of Po @s defined
by Eq. (10)

+1
/ 1 vV 1-
Hh’m =-py +Vop,l = - J 2 dp - (B.6)

PPg

For the transmitted fields, the exponential in the transmission function requires
special caution.

Series expansion about w = = yields

. X . .
|—\/w2(e-sm2e) + iwo/e,
im e C =

)= -

X S ' i |
s €-sin?e (w + o - )

2e (e -sin2g)

= &g

e | (8.7)

where t, =

and E =

NI 0)x
Q
} X

Hence we have
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e iwt -
Th,q. ) = 2 cos elmoa
cosé +\Ve-sin2e
2 \A—cose' eiwto-a

ecose + V ¢-sine

Ty,= )

In correspondence with Eg. (VB.S)

+
J T.0e e = T.(0) et j g w(t-tode
G

It

EE n

To(0) €% s(t-t,)

(B.8)

(B.9)

(B.10)

In case of horizontal polarization, T.(0) can again be expressed in terms of Po

Th’,(O) = 1-po+\/pg -1=1 + Hh’m
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APPENDIX C

Reflected Electric Fields for an Incident Unit Step Function u(t)

According to Eq. (1), we have
+= .
) = %z J U@RE)e u C.1)

—_—

The Fourier transform of u(t) is given by the generalized function (distribution)

uw) = - PG;] + 1 5(w) (C.2)

where P stands for “Cauchy principal value” when performing the integration
over w

. +o
E () = %R(O) i 2:1—1 P [ Llu R)e™ dw (C.3)

The same result would have been obtained for an integration contour along
the real axis where the pole at w=0 is encircled by a small half-circle C+ with
radius ¢~0 in the upper half-plane (Fig. C.1)

J—J 5R(w)e-iwtdw = % (C.4)

2ni
+

C

€

since RL(0)=-1 if we consider horizontal polarization only.

To evaluate Eg. (C.3) for t>0 by contour integration, the integration path is
closed by an infinitely large half-circle C., in the lower haif-plane. Since the
integrand tends to zero at infinity, the integral over C_ vanishes, too,
according to Jordan’s lemma.
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Due to Cauchy’s theorem the contour of integration can now be distorted to the
closed contour around the branch cut (0,-is,) and the pole at w=0 as shown in
Fig. C.1

. . sO
Enl) = 5 J o Rne™ + = J %[R; (-is)-ﬁh(-is)Je'Stds (C.5)
(o}

Note that the integrand does not diverge for s=0 because RF{ 0)-RR(Q) = 0,
and

1 dw -iwt
g J‘ L-)_ Rh(h))e = 1. (CG)

CE

Change of the integration variable s to p according to Eq. (8) and introduction
of normalized times t then reveals equivalence with Eg. (57) obtained by
convolution in the time domain:

+1 —
1 Vo2 -1 [ de _JLEE____A 'fV+P)T

E (1) =-1--Vp , T 20 C.7
rh (T) n (P=po)(p+1) .0
-1
A similar consideration leads to E-(r) = 0 for 7<0, as also expected from

causality, because there are no singularities in the upper haif-plane.
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— Rew

To [nfinity

Fig. C.1: Integration contours in the complex w-plane for an incident unit
_step function
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APPENDIX D

Another Representation of the Transmission Function

Instead of Eqg. (34), we use the following representation of G(e,7) and its
derivative

sin ([ 8VA-02 ) ot
G(&,7) = J Lvi? ) o o,
P=Pqo
A '
T
= .g"0 [ ePo’ F(e,7") dr’
T
. ’ 12- 2
- e oo [ e o7 A(VTEEE)
Vr2.e2 (C.1)
T
8 = oPoT| Pol 8 _ ’ : I
” G(z,1) = -e Je 3 F(¢, 7)) dr (C.2)

where

2
2t - - n 24 [V )
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Introducing these expressions into Eq. (30), another representation of the
transmission function in terms of modified Bessel functions can be obtained.
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APPENDIX E

Asymptotic Behavior of the Response Function for Long Times

For T » 1, Eq. (15) can be approximated as follows

+1
V1-02 -
s 1-p e (I+p)T do

Rp(T) = Qv pg-‘l [ ?b-;

- (E.1)
X1

~- 20 e-T Po! J V 1-p2 e-ppo =

: E.3
2 \/po+'| \/ 2n ( )

Some numerical examples are compiled in Table E.1 to demonstrate the quality
of the approximation

T Exact Eq. (E.1) Eg. (E.2) Eq. (E.3)

1 1897 : -.1200 ‘ “-.2303 -
2 -.0793 | -.0621 -.0814

5 -.02108 -.01893 -.02060

10 -.00739 -.00700 -.00728
20 -.00260 -.00252 -.00257

Table E.1: Comparison of Different Approximations for 2RK(1)/sy (pp=2)
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Hence, in particular approximation (E.3) seems to be reasonably accurate for 1 »

2, whereas for short times (r « 1) the Taylor series expansion as given in
Section 5 could be used.
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