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PREFACE

This report is the first draft of what we hope will eventually be
a comprehensive treatise on the theory and calculation of EMP coupling to

systems located in the source region.

There has been a strong tendency for many years to rely on computer
codes for EMP coupling calculations. We have noticed that computer codes
buiit in the absence of theoretical understanding almost always give the
wrong answer for the right problem, even though they may give the right
answer for the wrong.pfoblem. Source-region coupling, being only a  little
more difficult subject than EMP environments, is quite amenable to
theoretical analysis, and the present report shows how such analysis can be

carried out for some important examples.

We hope to add to this report over the next few years. More
examples are needed. A problem not discussed in the present rébort is the
effect of breakdown in air (e.g., nuclear lightning) and in the soil on
coupled currents. There are reasonable prospects that sufficient progress
will be made on these problems in the next year or so that they can be
included. Further, expefience with real systems such as MX and LoADS may show
us other problems that need analysis. We therefore hope that the copies of
this report will not be bound so tightly that they cannot be supplemented by

revisions and further chapters.
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CHAPTER 1
INTRODUCTION AND BASIC EQUATIONS

1.1 INTRODUCTION

A nuclear explosion 6n_or near the air-ground interface produées-
a large electromagnetic pulse (EMP). The principal source of the EMP is
the current of Compton recoil electrons resulting from collisions of gamma
rays with the electrons in air molecules. The Compton current is signifi-
cant out to distances of several kilometers from megaton explosions. Within

this source region, the air conductivity, associated with secondary

ionization produced by the Compton electrons, has a strong influence on the
fields generated. The presence of a conducting ground also has a strong

influence.

‘Calculations of the coupling of electromagnetic energy into systems
located within the source region must take into account the existence of the
gamma rays, the Compton current, and the air conductivity, as well as the

EMP fields. Thus source region coupling is more cémplicated than free-field

coupling, where only the fields need to be considered. Nevertheless, a

useful approximate theory of source region coupling can be constructed, and
this report presents the theory for coupling to some simple but practically
relevant system geometries. The theory will hopefully be extended to other

geometries as needs arise.

The coupling theory presented here closely parallels the theory

of source-region EMP environments developed previously by this author




(References 1-2 to 1-4). The latter theory was important in that it:

. gave the first predictions of general EMP environments;

. showed what parameters EMP depends on;

. showed how to build competent'computef codes for more detailed
predictions; '

. provided accuracy tests for the codes.

The goals and uses of the theory of source-region coupling are similar:

. to make approximate predictions of coupled currents and
voltages, especially in regimes where present computer

codes are not valid;

] to test computer codes and show how to improve them;

[} to provide understanding of coupling and how it depends on
- parameters;

. to allow other scientists to judge the correctness of

coupling predictions.

It is thus hoped that this report will be useful to a variety of
readers, from engineers faced with the task of making predictions for actual
systems to scientists who need or wish to judge the adequacy of our under-
standing of the phenomena and of methods for making predictions. In this
connection, a particular reader may be more interested in some sections of
this report and less interested in others. We have tried, however, to make

all of the report readable for the entire spectrum of likely readers.
1.2 MAXWELL'S EQUATIONS
The material media that we shall be dealing with most commonly, air

and soil, are essentially non-magnetic; that is, the magnetic permeability

‘has the value U, appropriate to free space. Both media are generally
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conductive, and the soil has a dielectric permittivity substantially dif-

ferent from €y the free space value.

The two time-dependent Maxwell equations are then

3 5

5‘{=-—VXE, (1-1)
9E + 1

s-a—=-J+—-\7xE, (1-2)
t T

where ﬁ is the magnetic field (webers/mz), E is the electric field
(volts/m), and J is the current density‘(amps/mz). It is clear that these
equations are sufficient to carry the fields forward in time if initial
values are given and,ifmji__i§”§P?§?fied' From these initial values we can
evaluate the right-hand sides of Equations 1-1 and 1-2, which then tell us
how E and B will change in the next infinitesimal time interval §t.
F;gm.the new values of E and B we canrre-evaluate-thé right-hand sides
and advance the fields another &t, and so on. This, in fact, is precisely
how numerical solutions of Maxwell's equations are obtained (the spatial
derivatives in the curl operations are also evaluated in finite difference

form).

Note that the relation of cause and effect in this way of looking
at Maxwell's equations is different from what most of us were taught;
particularly for Equation 1-1. The picture just given is that the value of
V x E determines how B will change in the next infinitesimal time
intefval, whegeas the traditional picture is that a changing 3 generates
(inductively) a solenoidal E, i.e., an E with finite curl. Either
picture gives the same result, namely that the right- ahd left-hand sides
are equal, and we do not actually need to decide which side causes the
other. However, the new picture, which is the one generally used by physicists,

makes it easier to understand how time-dependent solutions evolve.

11__1.'
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There are two other Maxwell equations,
V-B=0, (1-3) 7
®
V- (eE) = o, (1-4)
where p 1s the charge density. It would appear from the foregoing discus-
sion. that these equations are not needed in advancing the fields in time.
Such is indeed the case, for taking the divergence of Equation 1-1 gives ‘
% (V-E) = -v . (W) =0 . (1-5)
(The divergence of the curl of any field vanishes.) This equation says
that, if Equation 1-1 is satisfied, V - _ﬁ will be independent of time at o
all points in space. Thus if V - B vanishes everywhere initially, then
the solution of Equation 1-1 will have V - B=0 everywhere at all times.
Therefore Equation 1-3 needs only to be imposed as a condition on the initial .
'mégnqgic field.. If the initial magnetic field vanishes, Equation 1-3 is *®
satisfied.
To understand the role of Equation 1-4, take the divergence of
Equation 1-2, and obtain ®
] > >
SE'(V'EE) =-V.J. (1-6)
Now the conservation of charge, which is a well verified law of nature, ®
states that -
¥__yv.3. (1-7)
t - .
Subtracting Equation 1-7 from Equation 1-6 gives @
] + ‘
3¢ (V-€E-p) = 0 . _ (1-8)
Thus it follows from Equation 1-2 that, if the quantity in parentheses
®

vanishes everywhere initially, it will vanish everywhere at all times.




Therefore Equation 1-4 also needs only to be imposed as a condition on the
initial E and p. If E and p both vanish initially, Equation 1-4

is satisfied.

1f E, E and p all vanish initially, we need only concern ourselves
with Equations 1-1 and 1-2. Note that these equations do not contain p
at all; p need not be calculated. If p 1is desired, it can be found by

time integration of Equation 1-7.

Note that Maxwell's equations and the conservation of charge,
Equation 1-7, are linear in the variables 3 P, E and B. Thus if current
density J1 produces pl, E and Bl’ and Jz produces 02’ 2, and+B2
then current density J + J will produce Py * Py El + E2 and Bl + B2
We have assumed here that e (and uo of course) is the .same in all cases.
This linearity is somewhat restricted in practice when 3 depends on E

as we shall see.
1.3 SOURCE AND CONDUCTION CURRENTS

In EMP problems the current density is made up of two parts. First,
there is the source current J of Compton recoil electrons produced by
the flux of gamma rays, which is the source of the EMP. ‘Second, there is
the conduction current Jc associated with the flow of low-energy electrons

and ions induced by the electric field. The total current is the sum

-5_—)- -> )
= J5 +-Jc . (1-9)

The Compton current is formed by recoil electrons that have start-
ing energies of the order of 1 MeV. These electrons are'stopped, in
material media, by inelastic collisions with the media atoms. In air, the
stopping range of the recoil electrons is a few meters. Therefore, if the

electric field E is less than about 105 V/m, the effect of this field on

13
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range will be small and may be neglected. If the field were 106 V/m, the
range would be substantially affected by the field. The hagnetic field B
deflects the recoil electrons. The deflection will be small if the Larmor
radius is long compared with the stopping range. The Larmor radius is a few

3

meters when B 1is about 20 gauss = 2 X 10° webers/mz. Thus for magnetic

fields of this size or larger the deflection will be substantial.

In many applications the fields are less than the critical values
just given. In these cases we may assume that Js‘ depends only on the gamma
~flux and is independent of the fields. In cases where the fields are higher,

we shall estimate corrections to JS due to the fields.

In soil, the recoil electron range is only a few millimeters (soil
is about 103 times more dense than air). Here the fields are never large
enough to affect the Compton current. Gamma rays are attenuated by a factor
e in 15 to 20 cm of soil. Hence the Compton current is appreciable only in

the top meter or two of the ground.

The conduction current is generally well approximated, in both air

and soil, by Omm's law,
J =oE, ’ _ (1-10)

where o(mhos/m) is the conductivity. In air, 0 depends somewhat on E,
making Maxwell's equations nonlinear. We can usually choose an E-independent
value of © which over-estimates coupling effects. Since the air conductivity
results from ionization produced by the Compton recoil electrons, O depends
on tihe and position. In the ground, ¢ is independent of E, except at very
high fields where breakdown occurs. It is also little affected by ionization,
except at very high dose rates. It may be assumed independent of time and
position, but it does depend on the frequency of the driving E-field (as

does also €). These points will be discussed in detail in later sections.

-4
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1.4 A STANDARD FORM FOR MAXWELL'S EQUATIONS

We shall write the dielectric permittivity in terms of the value

€ for free space,

0
(1-11)

where E'I_ is the relative permittivity. If we also make use of Equations 1-9

and 1-10, the Maxwell Equation 1-2 becomes

- -> 1 >
EE.7—=-J -0E + —=—VXB. (1-12)
T o

It is convenient to replace € "and Mo by two other paraméters, namely

the speed of light in vacuum,

c= —L _~3x 108 m/sec , ' (1-13)

. .. VHOEO

and the impedance of free space,

fu ' . :
Z, = 9 ~ 120m ~ 377 ohms . : (1-14)
0 EO .

These equations can be solved for Uy and €g>

Uy = ZO/c » €9 = 1/cZ0 . ’ _ (1-15)

Inserting these expressions in Equation 12 gives
€ o N

r - - _ = 3 -

?F = ZOJS ZOUE + ¢V x B . (1 16)

Q

Every term in this equation now has the dimensions volt/mz; note that cB

is the electric field of a wave in vacuum, as follows from Equation 1-1.

In the remainder of this report we shall drop the subscript r on

€,.; € will always mean the relative permittivity. Thus our standard form
. for Maxwell's equations is

15




T= -V x _E)- R (1_17)
€ oF _ * r B
=5 Zodg - ZOGE + cV X B . (1-18)

We note here also the relation between the current I(amps) in a wire and

the static magnetic field BB encircling it at radius T,

21rrBe = uOI = ZOI/c or 1= ancBe/Z0 . (1—19)

Finally, note that

ZO/ZW ~ 120m/2m = 60 ohms . (1-20)
REFERENCES FOR CHAPTER 1

1-1. For general background in electromagnetic theory, see Stratton, J.A.,
"E1ectr0magngtic Theory," McGraw-Hi11 Book Company, New York, 1941.

1-2. Longmire, C. L., "Close-in EM Effects Lectures," LAMS-3072 and 3073,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1964
(Unpublished).

1-3. Longmire, C. L., "Theory of the EMP From Nuclear Surface Bursts,'
LANC-R-8., Los Alamos Nuclear Corporation, Los Alamos, New Mexico, 1970.

1-4. Longmire, C. L., "On the Electromagnetic ?ulse Produced by Nuclear
Explosions," IEEE Trans. on Ant. and Prop., Vol. AP-26, No. 1, p. 3
(January 1978).
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CHAPTER 2
THE IMPEDANCE OF SOILS

2.1 THE RC MODEL

7 Scott2~! measured the conductivity and permittivity of many
samples of soil over the frequency range 102 to 106 Hz. He noticed that
the results correlated quite well with the water content of the soil. He
made mathematical fits to his o and € results as functions of frequency
and water content. In making these fits, he made no attempt to ensure that

o(w) and €(w) bear the relation to each other required by causality.

Longmire and Longley?~2 noticed that Scott's fits could be refitted
very well by assuming that between opposite faces of the soil sample there
is an RC network of the type shown in Figure 2-1. In this network, I/R0
represents the zero-frequency conductivity, C, represents the infinite-
frequency dielectric constant, and the other branches account for the change
in o and € with frequency. A good fit was obtained with one such branch
for each decade in frequency covered, with the time constant R;Cy of the

relevant branch chosen equal to the reciprocal of the median w in that

o 1 .
Lo, X, ==, =¢, _L

C
0 R] R2 R3 %R‘q —l— s

Figure 2-1. Network representing soil impedance.

17



e
decade, i.e., (RiCi)~1 = \[IE-ani, where fi is the frequency at the lower
end of the decade in question. Thus the products Rici were chosen .
arbitrarily, to cover the frequency range uniformly. The ratios Ri/Ci- and o:
C, were then chosen to fit Scott's € curve. Only one parameter, RO,
was then left to fit the ¢ curve, but it was found that a good fit to O
was obtained. Furthermore, it was noticed that changing the fit for a

soil of different water content was accomplished by scaling all of the
resistors, except RO,'by the same factor and leaving the capacitors unchanged.
Longmire and Smith?-® used these results, and data at higher frequencies,

to make a "universal impedance function' of soils over the frequency range

102 to 10® Hz. ‘ | .

2.2 THE ‘SOIL ADMITTANCE

- The Maxwell Equation 1-18 for-fields varying as It (j2 = -1)

takes the_fdrm'

vy

nE = - 2,3+ oV x B, (2-1)
s
.
where ’
n= 200 + j %5- (meters)'—1 . : (2-2)
In Equation 2-1 the conduction and displacement currents have been combined o :
into the term on the left. If we define the admittance Y(w) of unit
volume of soil by the relation between total E-driven current jE and E
35 = YE , (2-3)
then obviously .
) _n _ , 3
n=2Y,Y=%-=0+ Jwee, . (2-4) #
0 Z0 0 .
The dimensions of Y are mhos/meter,. while those of n are (meters)-l. %!
‘We shall call n the relative admittance. .%
3

18~




The admittance of the RC network is

1 ijn
Y = R_ + choo + Z: i-—_:m— » (2-5)
0 n nn 7

The real and imaginary parts of Y are related to 0 and € by Equation

2-4. Defining RC rates Bn by

B = rc) ! (2-6)

n nn ?
Reference 3 fits Scott's data by the formula

13 jmeo

Y=0,+ jwe e + ). a ———m= (2-7)
0 ©®0 44 Tnl o+ jw/B
Here 9, is the zero-frequency conductivity, €_ 1s the‘infinite—frequency
relative permittivity, € is the permittivity of free space in MKS units,

the -Bn are a fixed set of rates,

B = 2r(10)™ ! sec™! (2-8)

and the an are a set of dimensionless fit coefficients. For scil contain-

ing 10 percent water by volume the fit parameters are given in Table 2-1.

For this fit the relative permittivity and conductivity are

13 an
e=e v Y — 1, (2-9)
n=11 + (w/Bn)
13 ;anEOmZ/Bﬁ
g = 00 + (2-10)

n=; 1+ (m/Bn)2 .

It can be seen that € decreases while o increases with increasing frequency.

Graphs of € and 0-0, as functions of frequency are given in Figures 2-2

0
and 2-3. Figure 2-4 shows how T varies with water content, and also
gives the scale factor F by which the rates Bn must be multiplied for

different water content.

19
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Frequency Scale Factor F
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Table 2-1. Fit parameters for soil containing 10 percent
water by volume.

3

= 8 x 107 mho/m e, = 5 (relative)

- n a
n an an n n

1 3.40(6) | 6 1.33(2) | 1 9.80(-1)

2 2.74(5) 7 2.72(1) 12 3.92(-1)
3 2.58(4) 8 1.25(1) 13 1.73(-1)
4  3.38(3) 9 4.80(0)

5 5.26(2) | 10 2.17(0)

This fit is expected to be good for frequencies between 102 and 108 Hz ==

“for a wide range of water contents. The author has never seen any data that

cannot be fitted reasonably well by this model by adjusting only the assumed

water content and the value of ¢

0 (to a value that may be different from

that indicated by Figure 2-4).

The fit for the relative admittance is, according to Equations 2-4

and 2-7,
® 13 jw/c
= s W S LA 2-
n=Z0,+J oE,* &é& a T3 T (2-11)
2.3 CAUSALITY AND REALITY

The requirement of causality is that the current must vanish until

a field is applied. For example, let E(t) be

E(t) =0 , t<o0o,
(2-12)
t

E.eY , t 20 . (Y= real, positive)

E(t) = E,

1l
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The Fourier transform of E 1is

o
E
E(w) = f E(t)e Wtie = T30 (2-13)
-0
The current density 'in the frequency domain is then
EO
Jw) = Y{w) i (2-14)
and in the time domain
[v2)
1 EO jwt
J(t) = 5= Y (w) me dw . (2-15)

-C0

For t < 0, the integration contour can be extended to enclose the negative

imaginary half plane. The factor 1/(y+jw) has a pole at w = jy. If
Yﬁu) has no poles in the negatlve imaginary half plane, the integral will
vanlsh as requlre&fifor t < 0. Inspection of-Equatlon 2-7 shows that the
poles of Y are at w = JB , in the positive imaginary half plane. Thus
causality is satisfied. The generally required relation between a physical
o and EHEW is that they must form the real and imaginary parts of a
complex function which, when analytically continued from the real w axis
into the negative imaginary half plane, has no poles there. Any RC metwork
provides this property. Resonances in ¢ and € could be accommodated by

adding inductances, but it appears that none are needed.

The fact that the electric field E(t) and the current density

J(t) are real functions of time places another condition on the admittance

Y(w) and the relative admittance n(w). For general real E(t), Equation 2-13

shows that the complex conjugate E*(w) is related to E{w) by
E*(w) = E(-w) . (2-16)
The same relation holds between J*(w) and J(w). Since

Y(w) = JW)/E®) , (2-17)




it follows that Y and n also obey the reality condition

Y* () = Y(-w) ,
(2-18)
n* () = n(-w)
From Equations 2-2 and 2-4, it then follows that
o(-w) = o) e(-w) = e(w) . (2-19)

2.4 EXPONENTIALLY RISING FIELD

In the early part of the EMP the electric field rises approximately

exponentially to a level fairly near the peak field,

E(t) k:Eoeat ) | (2-20)

Hence it is useful to evaluate 0 for the case in which - juw is replaced

by . One obtains the real expression,

13 '
= 3 o, —%fe
n=2Z0p+ 6 * 3%& a1 7 | (2-21)

A graph of n as a fun;tion of o for the 10 percent water soil
is shown in Figure 2-5. The same figure shows the real and imaginary parts
of n as a function of w® for the oscillatory case. Note that while
there is no simple relation between n(x) ﬁnd nrﬁn) and ni(w), except
that contained in Equation 2-11, n(a) is not far from the sum of nrﬂn)
and “i(“)’ for w = o. (Actually, n(a) is a little less than the sum.)

We shall call the case graphed in figuré 2-5 our standard soil.
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2.5 TIME DOMAIN TREATMENT

Reference 2 showed how to treat frequency-dependent media in the
time domain. Write the total E-driven current that flows into the network

as the sum of the currents in its branches,

-> 3E _é ->
= = = 2-22
JE C. T Ro + % Jn s ( )

where
t
- 1 >
Jn = (E - E_fJndt)/Rn
n-m
t

(2-23)

Bn(an_ - f J do) .

Comparison of Equation 2-5 with the fit formula (2-7) establishes the relations

= N S = = 2-24
Co = €f9 » 7-=99 » C,=2a8 =g - ( )
4] 0
Thus Equations 2-22 and 2-23 can be written as
> €o a+ - -+ . (2-25)
%0'e =T ot * Zo%E Y %o & Jnv
t
T an = ¥ 2-26
J=B(—E-det). (2-26)
n n czo n ,

Inserting ZojE for rﬁ? in Equation 2-1), we can take that equation back

to the time domain, with the result

£ >

2 9E _ _ x %7 3 2-27)
c 9t ZO(Jsm0E+§Jn) *evx B . ¢ \

. This is the time-domain form of the Maxwell equation (1-18) for the frequency-
dependent medium. The 3;1 are to be obtained from Equation 2-26, which can
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be converted into a differential equation, if desired, by differentiating

jt with respect to t.

+> .
The fact that Jn js a vector means that Equation 2-26 must be

sy 2 o .
solved for each non-vanishing component of E. In a stratified medium, the |

parameters O, €., and the a, could have different values for different

0,
directions.
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CHAPTER 3
SOURCE REGION ENVIRONMENTS

3.1 INTRODUCTION

A complete discussion of EMP environments is beyond the scope of
this report. Theoretical discussions are given in References 1-2 to 1-4, and.
many detailed computer-based calculations have been made. Access to much of
the available information is controlled by such U.S. Government agencies as
the Defense Nuclear Agency and the Air Force Weapons Laboratory. The

Government normally provides EMP environment specifications for systems it

SpONSOTS.

For the purposes of this report, it will be necessary to know only
the general features of the EMP environment, such as the order of magnitude
of rise times, amplitudes, and decay times, and approximate relations between
Compton current, air conductivity, and the fields. These will be presented
in this chapter. Predictions of coupling to actual systems should use

environments supplied by the sponsoring agency.

While it should not be assumed that the enviromments hypothesized
in this chapter are precisely correct for any particular real case, they are
representative, in crude approximation, of those that might be observed at a
point on or near the ground surface at a distance of 500 meters from a 1
megaton explosion at the ground surface or within a few tens of meters above

the surface.



3.2 THE GAMMA FLUX

Figure 3-1 shows a gamma flux as a function of time, which will be
used as an example in later sections of this report. The quantity graphed
is actually the dose rate dellvered to air, and the relation between dose

rate and the actual flux FY of gamma energy 1s

y-MeV, _, 13 -  rads
EC=9 =2 x 107 D ()

m sec

F

Y (3-1)

The average energy of the gammas is about 2 MeV pér photon,- although the

total spectrum covers the range from a fraction of 1 MeV to many MeV.

The time indicated in Figure 3-1 is actually retarded time, i.e.,

the time origin is set when gammas first begin to arrive at the observer's
position. The time for gammas to travel 500 meters is 1.67 microseconds,

Since the speed of light is ‘300 m/us.

In a crude approximation, the gamma flux is collimated in the
radial direction from the burst point (the point of the nuclear explosion).
In the case assumed here, the flux is approximately horiiontal. Due to
scattering and finite source size, the actual angular distribution of the

gammas covers several tens of degrees around the radial direction.

Figure 3-1 1nd1cates what sources are responsible for various
parts of the gamma fiux. The prompt gammas are emitted by the nuclear

device itself. Air inelastic gammas are made in inelastic collisions of

energetic neutrons, emitted by the deV1ce, with the nuclei of air atoms.

Ground capture gammas are produced when neutrons are captured in the ground

near the burst point. Air capture gammas are produced later when neutrons

are captured in the air. Fission product gammas are emitted over long times

by the nuclear fragments. resulting from fission of uranium or plutonium.
Of these sources, only the prompt gammas have effect1Ve1y a point source;

the others originate 1n volumes w1th dlmen51ons of the order of a few

~
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hundred meters. Figure 3-1 has been drawn as if each of the sources, except
the prompt and fission product gammas, were a decaying exponential. Note
that the doses from each of the sources are about equal, since the sources

with lower dose rates last longer in time.

The rise of the prompt gamma flux has been chosen exponential

in time, i.e.,

D= At , ; (3-2)

where A 1s a constant and o« has been taken as

o= 2x 108 sect . (3-3)

The exponential form is crudely representative, and is convenient for cal-
culations. The value of o chosen is in the correct range, but should not

be taken as either an upper or a lower bound on actual values.

3.3 - THE COMPTON CURRENT

Gamma rays traveling through matter collide occasionally with atomic

electrons, knocking the electron generally forward and scattering the photon.

The mean free path of the gammas in air for these Compton scattering collisions

is a few hundred meters. The recoil electrons, which have initial energies
of about 1 MeV, move forward an average of a few meters before stopping.
Thus a steady flux of gammas will produce a steady flux F of recoil

electrons, in the same direction, of about 1 percent of the gamma flux. The

relation

electrons) Y-MeV _
Fe (—————) ~ 0.006FY(——---——2 ) s ) (3-4)

2
m sec m sec

holds approximately in air (and in other media of low atomic number, such as

soil) over the gamma energy range of interest here. From Equations 3-4 and

- 3-1, and the charge of an electron, one can deduce an approximate relation

for the Compton current density J5 (the source of EMP),

32
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Js(ﬂPi) ~2 % 1070 b(ﬂ?) . (3-5)

2 sec
m

The lifetime of a recoil electron (before stopping) is about 10F8 second
in real time, and about 10_9 second in retarded time (the electron moves

forward at about 0.9 of the speed of light). Thus the steady-state relation

9 second are small

(3-5) is valid when the changes in D in periods of 10
compared with D. This condition is fairly well satisfied by the dose rate
in Figure 3-1. The Compton current density graphed in Figure 3-2 is obtained

from Equation 3-5.
3.4 THE AIR CONDUCTIVITY

Each Compton recoil electron, in slowing ddwn,rproduces about
3 x 104 pairs of secondary electrons and positive ions, which make the air
electrically conducting. The-rate of production of ionization is directly

proportional to the dose rate,

S(lonspalrs) ~ 2 X 1015 ﬁ(ﬁiif) ) : (3-6)
m secC

The free electrons, because of their small mass, respond more quickly than
ions to applied electric fields, and are the dominant contributors to the
air conductivity at early times. However, the electrons gradually attach -
themselves to 02 molecules, forming the negative ion 0;. The rate a

of attachment per electron is about

aalx 108sec”? s (3-7)

in sea-level air. Thus the density Ne of free electrons satisfies the

equation

e _ _ ' _
S - aN_ . (3-8)
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If the dose rate rises exponentially, as in Equation 3-2, the solution is

electrons\ _ S _ , 4 15 6
Ne( . )_a+a~2 10" 22— . (3-9)
On the other hand, if the dose rate changes little in periods of 10—8
second,
s . 7 -
Ne "'Z'“'z x 10" D . (3-10)

This equation is obtained from (3-9) by setting o = 0.

In the presence of an electric field E, the free electrons drift: .

through the air at an average speed v which is roughly proportional to E,
> >

v E . . (3-11)

The electron mobility H, is of the order of magnitude

m ,volt
]Je ~ 0. ;é_c_/ m > (3"12)

in sea-level air. Actually, He depends significantly on E, because of
Joule heating of the electrons, and a better expression, over the range
5

3x 105 <E <3 % 10°, is

E* ' 4
By 0.254/% , E¥=3x10 V/m . (3-13)

The electrical conductivity o is the ratio of the conduction
current density Jc to E. From the equations above and the electron

charge " e, the electronic conductivity can be deduced as

o =Neu =0.8% 10"4 ——2——3’§:-mho/m . (3-14)
e e e ) a+aVYE

After the peak of the dose rate, & should be set equal to zero here.
At late times, the air conductivity is dominated by positive and

negative ions, because they disappear more slowly than electrons. The

equation governing the positive ion density N, is
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+ -
s =S - BNN_ . (3-15)

Here N_ is the density of negative ioms (05 etc.), and b is the mutual
neutralization coefficient for positive and negative ions. The value of b
is

12

b a2 x 10732 m°/sec . (3-16)

At late times, most of ‘the electrons that have been produced are attached
to 02, so that N_ = N_. The solution of Equation 3-15 is such that the
two terms on the right-hand side nearly balance, and 9N, /0t is small

compared with either of these terms, SO that

N ~N_ =~ Vs/b . : (3-17)

The mobility of the ions is about

— -4 m--V '
My ~2.5%x 10 ° oo/ - (3-18)

The ion conductivity can then be deduced as

o, m 2N eu; ~ 2.5 X 10'9\/5 mho/m . : (3-19)

Comparison of this result with Equation 3-14 with o« =0, E = E*, shows

that o, and o, are equal when D R=107 rads/sec.

The electronic and ionic conductivities and the total conductivity
are’ graphed in Figufé 3-3. For the electronic conductivity, E has been set
equal to E*, so that the result is indicative rather than precise,

especially at early times when E will be larger than E*.
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3.5 SCALING WITH DISTANCE

The gamma flux of Figure 3-1 is crudely representative for an
observer at 500 meters from a 1 megaton burst near the ground surface. For

other vields # and distances r, the-gamma flux scales roughly as

e-r/k

2
T

D ~ (3-20)
Here A is the effective mean free path of the gammas in air; a representative

value in sea-level air is

A = 300 meters . . (3-21)

According to Section 3.3, the Compton current density has the same
scaling as D. The scaling of the air conductivity is less simple; Ge
scales as b, while Gi scales as V D. At early times, O, is dominant at

most distances of interest in this report.
3.6 THE RADIAL E FOR SPHERICAL SYMMETRY

The Compton current JS and the air conductivity O are approxi-
mately independent of angle about the burst point. The presence of the
ground destroys complete spherical symmetry, of course. However, for
observers above the ground, e.g., at powér line heights, the effect of the
ground on the fields will not occur immediately, but will be delayed by the
finite speed of light and, more importantly, by the diffusion time of fields
through the conducting air between ground and elevated observer. It is _
therefore useful to examine the solution of Maxwell's Equations 1-17 and 1-18
for the case of ;adial js and spherical symmetry in JS and o. Note

that € = 1 in the air.

The fields E and B start from zero. Integrating Equation 1-18

over a small time interval will give, by integration of js’ a radial and
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spherically symmetric E. The curl of such én E vanishes, so that
integration of Equation 1-17 leaves B = 0. Thus the VU x B term in
Equation 1-18 remains equal to zero, and E remains radial and spherically
symmetrical. The vector signs may be dropped and Equation 1-18 becomes

= - Z'OJS - ZOOE . (3-22)

w|
ot | M

1
c

Note that this equation contains no spatial derivatives: E is determined

at each point by the local JS and O.

At sufficiently early times JS and o are small and E will be

small, and OE will-be negligible compared with JS. In this time frame

E =~ cZO stdt . (3_2;)

1f Js rises as exp(ot), E will also, and

Erx-——J . - (3-24)

In this time frame, it can be said that 'Js is charging up the capacitance

of space (cZ0 = 1/60).

Eventually o©E will become comparable with Js’ if the dose rate
is large enough. In this case the 3E/dt term can be neglected in Equation
3-22, giving the approximate solution

J

s :
E = - ik Es . (3-25)

This equation defines the saturated field ES, which is such that conduction

current cancels Compton current. Since JS and © are both proportional

to D (at early times), they tend to rise and fall together, so that E is

almost constant after saturation is reached. Thus 9E/d9t 1is indeed small.
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The value of ES can be determined From Equations 3-5, 3-14, and

3-25. The result comes out directly as

fE

4fa + o 3
as 2 =
ES 2.5 x 10 ( 3 ) E*

10

With the value of E* given in Equation 3-13; this result becomes

, ,
E (!) ~ 2 x 1042 %) . (3-26)
s\m 108

Thus, if saturation occurs during the exponential rise in the sample gamma

flux with @ = 2 X 108, the peak E will be
~ 5
E, 1.8 x 107 V/m . . (3-27)
However, after the peak in the gamma flux a % 0, and

B, ~ 2 X 10% v/m . . (3-28)

At late times, when the ion conductivity is dominant, E5 falls roughly as
‘Jgi However, by this time the effect of the ground asymmetry will usually
be felt. Figure 3-4 shows E(t) for the sample case, neglecting the ground
effect altogether. Note that the peak E occurs before the peaks in D and
J-

The question as to whether or when E Treaches the saturated value
can be answered by comparing the capacitively-limited field of Equation 3-23

or 3-24 with ES. Thus saturation will occur during the exponential rise if

cZO J5
|—J_ | =€_= |-,
o S S (o]
or if
-3
g 2:a/c20 ~ 2 %X 10 © mho/m , (3-29)

in the example. Figure 3-3 shows that this occurs well before the peak 0.

Saturation is much easier to reach after the peak of the gamma flux.
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The diffusion time of ground-induced fields to elevated observers

will be discussed in Section 5.9,
3.7 FIELDS GENERATED BY AIR-GROUND ASYMMETRY

The radiél E of Section-3.6 is generated everywhere in the air
in the beginning. However, the ground, being usually (but not always) a
better conductor than the air, shorts out the radial E applied to it. A
current flows in the ground, and this current induces 2 horizontal magnetic
field, in the direction“perpehdicular to the applied radial E (i.e., in the
azimuiﬁélndirectiOn around the burst point),.and horizontal and vertical '
electric fields. The induced horizontal E-field approximatély cancels the
applied radial E at the ground surface. In the usual system of spherical
polar coordinates with T measured from the burst point, 9 measured from
the vertical, and ¢ .the azimuthal angle, the field components present are
Eps Eg,
generation, through the conducting air and soil.

and B,. The induced fiel&érpropagate away from their point of

A detailed exposition of the ground-induced fields is possible (see
‘References 1-2 to 1-4) but lengthy, and will not be given here. Qualitative
understanding can be had by recognizing three phases. The wave phase occurs
at early times when the air conductivity is negligible or small. In this
phase the ground-induced fields propagate through the air rather freely,
but with some attenuation due to the small conductivity. Because the
radial E applied to the ground appears to move outward with the speed of
light (the speed of the gamma flux), the ground induced fields radiate chiefly
outward in a small angular zone (in 8) just above the ground. The fields
are predominantly Ee and B¢, and they have the relation Ee ~ cB
appropriate for a vertically polarized transverse wave propagating along the
ground. Er is small at the grouqd, but rises to the radial E of Section
3.6 at the upper edge of the small angular zone. For a gamma flux rising

as exp(at), E, and B¢ rise first as exp(at), then as exp(a't) where

6
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a' 1is a small fraction of «, and then as exp(at/2), the differences being
due to the effects of air conductivity between the burst point and the
observer. The last time dependence is the most important, since it goes with

the largest field amplitudes.

The wave phase ends and the diffusion phase begins when 0 reaches

the value indicated in Equation 3-29. This is the time when the radial E
saturates (without ground effects) and also the time when the conduction
current exceeds the displacement current. In the diffusion phase the term
8E/cdt can be dropped from the Maxwell Equation 1-18. The two Equations 1-17
and 1-18 then define a diffusion problem like that in the well-known skin
effect, as will be discussed in Section 3.9. True wave propagation ceases,
due to conductivity. B¢ continues to increase as exp(ot/2) and Ee
decreases as exp(-ot/2). Er is limited, at the ground surface, by the
finite ground conductivity, and is nowhere greater than ‘ES. The ground-
induced fields diffuse up into the air until they can go no further, i.e.,

until the skin depth in the air is comparable with the radius r from the

burst.

When the diffusion is complete, the quasistatic phase begins. In

this phase, the deposition of charge by the Compton current is balanced by
removal of charge by the conduction current driven by the static electric

field. The electric field is thus derivable from a potential o,
E=-Vv (VxE=0), | (3-30)

and the conservation of charge, Equation 1-7, becomes |
V- @, -0 =0. | (3-31)

- - - - 3 - +
With 35 and o given, this equation determines ¢, from which E can be
computed. The magnetic field is then determined by the static form of

Equation 1-18,
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7 x B =2 (J +of) . (3-32)
c s
The fields in the quasistatic phase are not exactly static, of course, but
the changes are so slow that the time derivative terms in Maxwell's equations
are small compared with other terms. The correct fields at each time are
near the static solution for the instantaneous 35 and o. The approximate

solution of Equations 3-31 and 3-32 will be discussed in Section 3.12.

One additional point must be made regarding the diffusion phase.
At positions_sufficiently close to the burst, the peak air conductivity g,
exceeds the ground conductivity Og - "Since soil conductivities are usually
not much greater than about 10"2 mho/m, this is true in the case of Figure
3-3. This condition modifies the diffusion problem to some extent. When
g, > Og, Er ] ES right down to the ground surface. In addition, the
Compton current in the top layer of the ground (the top half meter or so)

becomes an important source of fields, as will be discussed in Section 3-11.

Figure 3-5 shows the fields in the air just above the ground as
functions of time. These fields are consistent with the sources in the
example discussed in this chapter. Although they have not been obtained in.
detailed calculations, they will suffice for our development of source-region

coupling theory.

In the remaining sections of this chapter, somewhat more detailed
discussions of the phases are given. In reading these sections, it will be
useful to refer to Figure 3-5 for illustration of the features deduced or
stated.
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3.8 THE WAVE PHASE

At early times the effect of the air conductivity is either
negligible or small. At these times the ground-induced fields are well
represented by outgoing spherical waves. While both outgoing and ingoing
waves are generated by the Compton current (in the presence of the ground
asymmetry), the fact that the Compton current moves outward with the speed
of light, maintaining approximate phase with outgoing EM waves, causes
the outgoing waves to be built up to amplitudes much largér than those of
the ingoing waves. The effect of the air conductivity is to attenuate the
outgoing waves to some degree. In the wave phase, the air conductivity is
generally small compared with the ground conductivity, and in first order
the ground may be regarded as a perfect conductor. The finiteness of the
ground conductivity leads to some.additional attenuation of 'the outgoing

waves,

- - .
The relation between E and B and the attenuation of the out-
going waves can be understood by considering plane waves in a conducting

medium. On the assumption that E and B have the forms
’ . > -
BB = )8l k) (3-33)

where EO’EO are constants'denoting amplitﬁde and polarization, Equations

1-17 and 1-18 become, for freely propagating waves (Js=0),

> > >
wBy =k X E _ (3-34)
& o jzE. =-ckxB (3-35)
o - J20Eg = - ck x By .
= N . . > ->
Crossing k into (3-35) and using (3-34) to eliminate k x E0 leads to:
W Ew . * _ 7 > >
¢ Co - 208 = - k x (kX))
= - kK&-B) + ®-0F, . (3-36)
S 46
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The initial condition (1-3) becomes, for the present case,

¥ -B.=0
B, = 0.

(It is necessary here to use the initial condition since the assumed fields

are oscillatory at all times, rather than starting from zero.) Therefore

Z.0
> T 2 . o ;
kK -k = k2(1- ), (3-37)
o v

where k0 is defined as the propagation constant in the absence of conductivity,

k.= Ve

0 (3-38)

Q|E

Equation 3-37 indicates that for non-vanishing o, k will be complex, with
real and imaginary parts ir and ii’

k=% + jk.
r

i (3-39)

As will be seen in Section 3.10, Equation 3-37 does not require that the
directions of ir and fi be the same. If they are arbitrarily chosen

to be the same, so that
K = nk , (3-40)

+ . ; . :
where n is a real unit vector and k is a complex number, then Equation

3-37 allows ; to be arbitrary but determines Kk,

k = ko. 1-j—. (3-41)

When the magnitude of the imaginary term in the radical is small comparéd

with unity, this solution is approximately
; ZOG
2YeE

In the air, € = 1, and the attenuation length £ is independent of frequency;

(3-42)

k k:ko -
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L= 2/200 . {air) (3-43)
- - +
The directions of EO’Eb and 1 are mutually orthogonal, with EO X ﬁo
e

in the direction of n. From Equation 3-34 it follows that the complex
amplitudes of EO and EO are related by

_ZOU .
cB. =~ VYe (1-j ~——) E0 ; (3-44)
Z-Vt-:ko

Since the imaginary term here has been assumed to be small compared with

unity, the magnitudes of E0 and B are related approximately by

0
Bl ~ = [8,1 ,
0 ve ' 0 _ (3-45)
asclBol in air .

In the earliest part of the wave phase, ¢ is negligible every-
where: In this case, the fields will rise as %t if the Compton current

Js does; hence the name o wave phase for this regime. The ground-induced

fields are Ee and B¢ in the spherical coordinates indicated in Figure
3-6, and these fields are produced by the shorting out of E at the

T
ground surface.

The expdnential rise of the fields ceases when the attenuation
becomes important anywhere. Since o is largest very near the nuclear
device, attenuation first becomes important at r = Ty» the radius of the
device itself. The transition occurs when the attenuation length ¢
becomes less than ro, i.e., when
2

0 25— (3-46)

o(r
0%o
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1

Figure 3-6. Cartesian and spherical coordinates. The X5y
plane is the air-ground interface.

This condition is reached very early in the rise, and it is difficult to

detect the o wave phase at appreciable distances from the explosion.

. ’ Let an observer be located at radius r >> ro. If r 1is not

too large, attenuation will eventually become important at this distance.

At most distances of interest, the dominant variation of o with distance

e—r/A

(at constant retarded time) comes from the factor in Equation 3-20.

The time of A-saturation at the observer is defined as that when £

becomes less than A, i.e., when

o(r) = —2-k:2 X 10_5 mho/m at r . (3-47)
Zol

The condition (3-46) is also called A-saturation at Ty Between the
retarded. times at which the conditions (3-46) and (3-47) are reached, the

1
fields at r rise roughly as e t, where a' is a small fraction of a.

After A-saturation at the observer, the fields E9 and B¢

eat/z’ provided Js is still rising as eat. This dependence

rise as
continues until o reaches the value indicated by Equation 3-29, which is

called a-saturation, and is the condition that conduction current exceed

. displacement current.
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The end of the wave phase occurs, for a given observer, at the
time of o-saturation at his location. During the entire wave phase, the
and B,. These fields are confined

6 ¢

chiefly to a layer of air just above the ground, with thickness & of the

relation (3-45) holds between E

order of a few meters. At the onset of ¢-saturation
§ ~c/o , (3-48)
and the fields are

cB¢ & Ee. & - ES . ' (3-49)

Here ES is the saturated field defined in Section 3.6.
3.9 THE DIFFUSION PHASE

The diffusion phase begins when the air conductivity reaches the value
-given by Equation 3-29, and in it the displacement current is negligible in the
air. The dominant fields are Er and B¢. Er is near the saturated field
Es except in a layer just above the ground, and B¢ js appreciable only in
this layer. In this thin layer it is convenient to use the Cartesian coordin-
ates indicated in Figure 3-6. For an observer located bn or near the y axis,
the y-direction is approximately the same as the r-direction and the x-direction
is approximately the same as the ~p-direction. The distance above the ground

is z. Maxwell's Equations 1-17 and 1-18 become, for this case

__9__1T -
ot ~ 3z ’ (3-50)
anb_
ZOO'Er = - ZOJr -~ C P {3-51)

Substituting Er from the second equation into the first gives

3B J 9B ‘
ng _3_(_r) s+ & 91 ¢ (3-52)

"oz \o
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This is a type of diffusion equation for the magnetic field. The first

term on the right-hand side is the source, for without it B¢ = 0 would

be a solution. Both Jr and © are approximately independent of 2z in
the air, so the source exists only at the ground surface, where o changes
from air to ground, and in the top 10 to 30 cm of the ground, where Jr
falls rapidly due to attenuation of the gamma flux in the ground. If the
ground conductivity is large compared with the air conductivity, most of the

source occurs at the ground surface.

The total magnetic flux &% per radial meter,
G = d[‘B¢dz 5 (3-53)

produced by the source can be found by integrating Equétion 3-52 over z.

Since B and 3B¢/az vanish deep'in the air and ground and Jr/o vanishes 7

¢
deep in the ground, e -
J
oF _'r _ .
it (7;) .= " Eg . (3-54)
air ‘
Thus
t
F(t) = g;, -fEsdt : (3-55)
t
s

where 3§ is the flux at the time t of the beginning of the diffusion
phase (c~saturation). (Note that B¢‘ and &% are negative, i.e., B¢ Tuns

clockwise around the burst point.)

In the air the source term vanishes and o is (roughly) independént

of z. Thus Equation 3-52 becomes

¢ ¢ ¢ , (3-56)
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This equation governs the diffusion of B¢ up into the air. The solution
is qualitatively different during the exponential rise and after the peak
of the gamma flux. During the rise, let us try the assumption that -
Bt
B, ~e , , 3-57
o ( )
where [ 1is a constant to be determined. Equation 3-56 then determines
the z-dependence, 4
-z/8 :
B, ~e¢ , 3-58
o ( )
where the skin depth & 1is
— .
6 = c ‘= - (3_.59)
\12008 \J uOOB
Since O increases as eat, § decreases during the rise as e—at/Z. The
amplitude. of B¢ can_be estimated from & and the total flux
BS~ F , or B, ~45. (3-60)
¢ o
Since ES is constant during the exponential rise of the gamma flux,
Equation 3-55 indicates that (-)& increases only linearly with time, or Q

slowly compared with the exponential increase of 1/6. Thus approximately

B, ~ eat/z . . (3-61)
¢
Comparison with Equation 3-57 shows that
o . 2¢ _ 2 _
Brs § ~ 2,00 - T (3-62)

Note that in writing Equation 3-60, we neglected the flux in the
ground. This is permissible if the skin depth in the ground is small compared
with that in the air (so that the ground contains little flux), or if the

- ground conductivity is large compared with the air conductivity. The case

in which this condition does not hold will be discussed in Section 3.11.
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After the peak in the gamma flux, 0 falls and the skin depth

increases. Note that Equation 3-56 can be brought to simpler appearance

by changing the time variable to T defined by

t
_ cdt _ cdt
dT = 7o =+ T-= 7o (3-63)
0 0
t
P
where tp is the time of the peak. Equation 3-56 then becomes
9, %8,
T ——— . ' (3-64)
aT 522

Solutions of this equation can be found as functions of the similarity
variable 2z/VT. Thus the skin depth is

1/2
8~ VT = (f%%) ) (3-65)

t 0
p

The amplitude of B¢ can again be estimated from Equations 3-55 and 3-60.

Figure 3-4 shows that Es’ after falling about one decade from its
peak, is then almost constant for several decades in time. During most of
this interval, Equation 3-55 becomes

F(t) ~ - Est . ' (3-66)

Figure 3-3 shows that, to a crude approximation, 0 can be written over the
same ‘time interval as

t
o(t) =g —tR

> & ' (3-67)

where the subscript p indicates peak values. With this approximation, the
skin depth becomes
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2 1/2
§ = | —=—) . . (3-68)

22 0 t
Opp

From Equation 3-60, the estimate of B¢ is

22,0t 1/2
5 ~E (__P_P.) (3-69)
¢ S c
Thus B, is roughly constant in time in the diffusion phase after the peak

L

of the gamma flux.

As stated before, Er tends to be small at the ground surface and
rises to ES at heights of a few skin depths. If the ground conductivity
o is not very large compared with the air conductivity o, then Er at

the surface is given approximately by

Yo
a E_ .- (3-70)

r VE;'+ Qﬁi; 5

This formulae comes from considering the impedances of air and soil within
one skin depth from the surface. The return conduction current that would
flow in one skin depth in the air, if the ground were not present, is shared

with one skin depth in the ground.

The field Ey would be small in the diffusion phase if it were
not for the effect of the magnetic field B¢ on the Compton current. The
Compton electrons are turned upwards, away from the ground by the magnetic
force on them:. For B¢ greater than about 10-3 Weber/m2 = 10 gauss, the
resulting Je is comparable with Jr. A roughly static field EB then

arises, of sufficient magnitude to drive a conduction current cancelling

J Thus E, is comparable with Eg, provided B¢ is as large as indicated

0’ %]
above.
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3.10 FIELDS IN THE GROUND AT EARLY TIMES

) Cables and other components of systems are often buried at depths
of one to a few meters in the ground. It is therefore important to see how
fields propagate in the ground. - The assumption of oscillatory fields of
the form (3-33) leads to Equation 3-37, which can also be written as

¥ . P =Wwjew . ‘ -
k-k-c(c ;zoc). (3-71)

The factor in parentheses here is -jn, where n is the relative admittance
of the soil defined in Chapter 2. Figure 2-5 shows that at the higher
) frequencies of interest, neither the Teal or imaginary part of n is

negligible.

The fields in the ground can be related to the magnetic field B¢
) . at the surface, discussed in previous sections. Over distances of only
several meters, B¢ at the surface can be regarded as ﬁ function only of
t - %1 i.e., except for time delay, B¢ is the same at different r. Thus
the radial phase velocity of all Fourier components of B¢ is ¢, so that

) the component with frequency w has radial wave number

kr = w/c - | (3-72)

Since f has the two components kr and kz, and since kr in the ground

) must match that of B, at the surface, Equation 3-71 determines kz as

¢
: Zodc
(e-1) - 3 o . ' : (3-73)

) Thus kz is complex, so that the waves attenuate as they propagate downward
in the ground.

tk_ =
rA

ale

The fact that kz is complex while kr is real means that the
) real and imaginary parts of & do not have the same direction. The

. dispersion relation (3-71) does not force real and imaginary parts to be

P ———— " — ian



parallel, i.e., phase planes and amplitude planes need not be parallel.
Equation 3-71 determines one Cartesian component of kX if the other

components are specified.

The real and imaginary parts of kz are plotted as the points in
Figure 3-7 as a function of w for o6ur standard soil, for which the relative
admittance was graphed in Figure 2-5. Messier (Reference 3-1) noticed that
a remarkably good fit to soil propagation constants is obtained by the
simple formula

sk = Ve, - L2+ V-jzoco <. (3-74)

Z =4

The curves in Figure 3-6 represent the real and imaginary parts of this
formula, which obviousiy has the same limits for low and high w as

Equation 3-73. The values of €_ and 9 used in the fit are

€ =6.5 , 0.=8x10"°

- 0 mho/m . (3-75)

Note that GO has the same value as in Table 2-1, whereas €_ has been
-1

adjusted slightly to give a better fit over the range 103 fw=< 109 sec

If the magnetic field B¢(t) at the ground surface is rgpresented
by its Fourier transform Baﬂn), then B¢ in the ground at depth z (taken
positive) is obtained by propagating each frequency component with its kz’

o«

B¢(z,t) = E%F.]ﬁBaGn)exp[j(wt—kzz)]dw . {(3-76)

-0

If Messier's approximation for kz is used, this equation can be written as

0

B¢(z,t) = 5%— Ba(w)exp[jwt' - v Jszldw , (3-77)

-0

where

5€ -
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t' =t ~T S T. = Ve -1 z/c , (3-78)
and

, .
, Z 20,2 /e - (3-79)

11t

T

The appearance of t' in the integral has the result that the onset of the
field at depth z is delayed by the time Tl after onset at z = 0. T1
is the time for the highest frequencies to propagate a distance z in the
vertical direction. (The actual phase propagation direction is not vertical,
but is in the direction corresponding to the components kr’ kzr.)

- The radical in the exponential in Equation 3-77 gives a diffusive
spreading in time, in addition to the delay. This can be seen if Ba(t)
is taken as an impulse function at t = 0, for which Baﬂu) = 1. Evaluation

of the integral then gives

- 7 \3/2
4 ( 2) (-T,/4t") (3-80)
B (z,t) = — exp(-T . -
¢ var, ‘4t 2
2
It can be seen that the time integral of this function is unity, independent
of Tz. A graph of T2B¢ is presented in Figure 3-8. Since T2 n-zz,

the impulse function at z = 0 is broadened into a longer and lower pulse

with increasing z. For our standard soil

T, = 1.01 x 10'8 2%sec . (3-81)

Thus at 1 meter depth, the impulse response is a pulse of approximately 10_8
second duration. For arbitrary- Bo(t), the response at depth z can be

obtained by folding Bo(t) with the impulse response.
It is also instructive to examine the z-dependence of the impulse

response (3-80) for fixed t. For this purpose it is convenient to define

a skin depth

58 .-




[ R | 1 1 .
o S R N DR A I )
N 1’ !;i }I 11 1 .
il i ity I [N P LR
—d : T N i i 7
— z!%‘;l E il ‘:' | -vf
+2 I [ i
S H IR i i i : ' .
N I T T 1 H v} L I
~— 0 l; L ' v LA A
& i i ; vt
© : - : i N
[aN] i | j : ; :
| ol 3 - | 1 = v i) $
T HEERRRN [ | T A ;
> R : = = —
i RN { 1 (WD ;;! T
Y R e A T RS mm B
DU AR I il i I ! T T
COURAN TP 0 T I N T A O I M A T ——— —H]
N 1 ; [ i1 T[] ] I 7
0 0.5 1.0 1.5 2.0 2.5

Figure 3-8. Magnetic field as a function of time for impulse
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8(t) = Z4°t , (3-82)
000 ‘

and the maximum depth reachable by waves in the ground in time t

zm(t)'= ct/Ve_ - 1. (3-83)

With these definitions,-Equation 3-80 can be written as

L an 2
1 z/6 (z/8)
B,(z,t) = exp[— ——] . _ (3-84)
¢ Ve (1-2)%2 -2
Tl'l

m
This formula contains two characteristic lengths, and so is not graphable as
a single curve. The two lengths & and z ~are equal when

4(e_-1) 8

€t = ———=7.3m , or t a2.43 x 10"° sec . (3-85)
20% -

For'Ehaller t, i;’< 6, and for larger t, z > 8. The numerical values here
are from Equation 3-75 for Messier's fit. Figure 3-9 shows tB¢(z,t) for

z = %—G, 8§, and 26, corresponding to t = 0.61, 2.43, and 9.72 X 10-8
second. Also shown is the limiting case for- z, > 6. In this presentation
evidence of propagation, as contrasted with d1ffu51on, practically disappears

by the time z > 28.

If instead of B¢, E at the surface (or E ) is specified as
Era(t) or E Gu) the same formulae can be used to obtaln E {or E )
at depth. Thus these fields are also broadened in time and decreased in

amplitude with increasing depth.

The determlnatlon of B¢, and E at the surface must be
accomplished by solving Maxwell's equatlons in the air and ground
simultaneously. The analysis of this section does not avoid that work,
but only explains the relation of the fields in the ground to those at the

surface. - The analytical method developed here could be used to determine
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the ground fields if the ground conductivity were always large compared
with the air conductivity. In this case, Ba(t) could be determined by
solving Maxwell's equations in the air over perfectly conducting ground.
Next, B¢ could be found in the ground by the methods of this section,
and Er and Ez determined from B¢. It is more convenient to obtain

the fields by use of the finite-difference codes LEMP-SUBL.
3.1 EFFECT OF COMPTON CURRENT IN THE GROUND

The attenuation length of the gamma rays in soil is about

Ag ~0.2m. . (3-86)

The relation of this length to that in air, Equation 3-21, is determined

by the density of soil, about 2 gm/cms, as compared with that of air, about
1.23 x 10_3 gm/cms. It is clear that any gammas observed in the. ground at
appreciable distances from the burst must have traveled mostly»through-the

air and entered the ground only near the point of observation. If the

~ burst were on a flat surface and there were no air scattering, the prompt

gamma flux would drop to zero at the air-ground interface. Gammas scattered
in the air can enter the ground, but arrive with a time delay corresponding
to their longer path. Since the prompt pulse is only a few times 10_8

second in width, scattered paths that are longer by more than about 10 meters
than the direct path do not contribute to the prompt pulse at distance.

Only gammas scattered through small angles can contribute, and the number

of these is only about 5 percent of the unscattered gammas during the

- prompt pulse. Thus for a burst on a flat surface, the gamma flux drops by

a factor of about 20 at the air-ground interface and decays further to

‘negligible values in depths of the order of 10 cm. Since the ratio of Compton

current density to gamma flux is approximately independent of material and
density (see Equation 3-4), the total Compton current in the ground is equal
to that in only about 10/20 = 0.5 cm of air above the surface. The Compton
current in the ground is negligible during the prompt pulse for a burst on

a flat surface.
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If the burst is above the surface, or if the surface is curved and
is exposed to line of sight from the burst at the observer, unscattered
gammas can enter the ground. If the angle between the line of sight and e
the surface tangent is ¥, as in Figure 3-10, then the Compton current .
density in the ground attenuates with depth approximately as
- _ > - ' A l /d
JS = JsOe 5 (3-87)
4.
where
d = lgsinw = 0.2 sin m . (3-88)
Here jéo is the Compton current density in the air-ground interface. The ®
current density is (approximately) continuous across the interface, but
decays in the ground in a depth d.
The Compton current in the ground is important when the air . .
. conductivity exceeds the ground conduéiiﬁify:m'A%:&Iéiaﬁéég'bf-iﬁtereéf;'this
happens only during the prompt pulse. In this case, the electric field in
the air is limited by
_ o
Line of Sight From Burst
z
}
2 e
| y Surface
.
!
I
X J L

Figure 3-10. Geometry and coordinates for ground field
analysis.
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5 (3-89)
~ 2% 107 V/m .
In the ground, if E reached the value Js/Ug, it would be larger than that
in the air. The field in the ground does not generally reach this value,
because the return conduction current flows over a thickness of one skin

depth & of soil, and & is usually larger than d.

The fields produced in the ground can be calculated exactly for
a gamma flux rising as exp(at), as- is done in Reference 3-2, under the
assumptibn that g, >> Ug so that the air can be regarded as a perfect

‘conductor. The results of that calculation are summarized Briefly here.

The relative admittance n@x)(m_l) " has been defined in Section

2.2, and Figure 2-5 shows n(a) for our standard soil. The actual

= (& A : ' -
§ = fom 0.4 m . | (3-90)

The numerical value here is for the example presented in this chapter.

If the conduction current returned on the same paths followed by

the Compton current, the electric field in the ground would be

Z
-> 0+
ED- 3, . - (3-91)
Instead of this relation, Reference 3-2 shows that the maximum horizontal

component Ey in the ground is

Z 2
S—) 4 -
Eym s Jsoy Z (3-92)
where Jsoy is the y component of the Compton current density at the surface.

This value is reached at depth =~ d in the ground; Ey = 0 at the surface in
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this model (large air conductivity) because the field produced in the

air was neglected. (One could add Es(air).) The factor dz/d2 in

Equation 3-92 comes from two sources. One factor d/§ comes from the

fact that the return current flows over depth & whiile the Compton current

flows over depth d < §. The other factor comes from the proximity of

the Compton current to the highly conducting air. By using Equation 3-89

to relate Ey to the saturated field ES in the air and Equations 3-88

and 3-90, Equation 3-92 can be written

Eym R:Esaazo %-Ag sinZWCosw R ) \  (3-93)
n:SSinzwcoswES (example) ‘

In the example, the peak U, was used from Figure 3-3. The maximum value of
sinzwcosw is about 0.36, at Y = 63°,

The maximum value of EZ in the ground occurs just below the

surface, and is

ZO Zooa .

siny , )

'j N - (3-94)

~ 1951nlpEs (example)

The magnetic field Bx(=-B¢) is reversed from the usual direction

near the surface, because most of the Compton current in the ground returns

as conduction current in the air. The value of Bx at the surface is

Z
~_0_ - -
on ~ dszO uOAgJ5051nwcosw s )
(3-95)
N - 5 x lopssinwcosw Weber/m2 (example) J
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In the example the peak current density was used from Figure 3-2. This result
may be compared with the field produced by the air current at the ground

surface,

B ~-u.8J = - U

C
x0a Ho®alsyo ™ - ¥g Z,0.0 Jeacosy }

-3 2 s (3-96)
& 2.2 X 10 “cosy Weber/m (example) .
The field Bx decays in depth d in the ground, and changes sign again

due to return conduction current flowing below the Compton current.

When the air conductivity falls below the ground conductivity,
after the peak, Ga soon becomes larger than 6g, and the ground current

and fields are again dominated by sources in the air.

Two cautions should be noted regarding the results of this section.
First, the peak EZ estimated in Equation 3-94 is in a rangé that might
lead to breakdown in the soil. Second, the peak dose rate in the example
is sufficiently high that it might increase the conductivity of the top
layer of the ground. Not much can be said with certainty about the
probability of occurrence of either of these effects; experiments with
relevant soil samples are needed. Both effects could be expected to result
in a decrease in the fields at greater depths in the'ground, but relying on

this expectation might be risky.

Attention was first called to the importance of the ground

Compton currents by R, R. Schaefer and W. R. Graham.

3.12 THE QUASISTATIC PHASE

N

As stated in Section 3.7, the quasistatic phase begins when the
skin depth in the air becomes as large as allowed by the spherical geometry,

i.c., when § exceeds the distance r from the burst point,
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e
§ > r. (3-97)
The approximation (3-67) for o(t) is representative if the time origin is
suitably chosen, as in Figure 3-3. In that case (our usual example) "'}
-8
Up = 0.5 mho/m , tp ~6 X 10 ~ sec . (3-98)
Equation 3-68 then gives the skin depth
6 .
§ ~3.6 x10° ¢t (example) . (3-99)
With 1 =~ 500 meters, the quasistatic phase begins at
-4 : . :
t=1.4x10 sec . (3-100) ¢

Figure 3-3 shows that ion conductivity is beginning to be significant at
/
this time. Over most of the quasistatic phase, ion conductivity is

dominant.

It was shown in Reference l-é that a fair approximation to the
solution of the governing Equation 3-31 for the quasistatic phase is obtained
by taking thé,potential function ‘¢ to be a function of & alone. Thus
the_predominant electric field is Ee; the electric field lines are approxi- L
mately circular about the burst point as center. The fields ES and B¢
can be deduced from this model and the conservation of charge, Equation

3-31. If we assume Er << Ee, this equation becomes (on writing the

divergence operator in spherical coordinates) q
1 3 . 1 9 2
7sind 9 SinboEy = -V - J_ = . ST I - (3-101)
T

Since O 1is approximately independent of 6 and since the distance scaling
of Js is approximately that in Equation 3-20, this equation can be written

J
o] J . __S
rsind do SinfEy = 5=,




e

or
J

g%-sineﬁe'= {-7§-sine . (3-102)
Integrating on © gives

J
sinBEe = %-?g»(l-cose) .

so that

‘T Js l-cos6 _r Js )
foTXT i AT Mg (3-10%)

In order for the fields to be static, we must have V X E = 0, which implies

1 _a PETI - - -— 8 s cccencewama or wm mi o=
= 37 TEg —AO or Eg ~ 1/t . (3-104)

Comparison of this result with Equation 3-103 shows that we must have

o

5 1
=~ 7 (3-105)
r .
If the conductivity were moétly electronic JS/G would be independent of
r. However, when the conductivity-is ionic, 0o ~ VJ;, and the condition

3-105 becomes

e-r/ZA

T

re-r/zl

1
~— , or 7 constant .
T :

This relationship is not accurately valid, but one may compute the following

numbers:
x = r/A=0.5, 1, 2, 4, 5,

xe ™2 = 0.39, 0.61, 0.74, 0.54, 0.41 .

[t can be said that the relation is valid to +30 percent over the range from
r = 0.5A to 5A. In much of the quasistatic phase, the hard gammas from
air capture are strong contributors, for which the effective A (including

build up) is about 400 meters. -Thus the model is justified over the range
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r = 0.2 to 2 km. Hardening of the gamma spectrum with distance make the
relation 3-104 more accurately satisfied, since A increases with distance.

Thus Equation 3-103 gives reasonably good values for Ee over the range

indicated.

Photographs of large yield nuclear explosions show lightning-like
discharges developing in the time frame from 10_3 to 3 x 10_2 second
(Reference 3-3). The discharges rose from sharp objects (antennas) on the
ground, and followed quite closely the 8-direction. The inference that they
were driven by the quasistatic electric field is hard to resist. The
growth rate of the discharges contains information on the magnitude of

the electric field, but analysis of the data is not complete at this writing.

The magnetic field can be found from Equation 3-32. The r-component
of this equation is '

Z

L ]
'i_s—i_nFESll’leBtp—ch. (3 105)

This equation has the same form as Equation 3-103, and the same integration

procedure leads to

29 6
B¢ = 7;-sztan 3 (7? = uo) . (3-107)

The time dependence of Ee and B¢ can be deduced from Equations
3-103 and 3-107. Ee is independent of time until the conductivity becomes
ionic, then falls as jﬁi;. B¢ falls as Js throughout the entire
quasistatic phase.

The radial field E. at the ground can be found from the condition
that the entire Compton current passing out through the hemisphere at radius
T must return in the ground. The radial dependence of Er is complicated

by a rather complex current flow pattern in the ground, and the time dependence
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if affected by the fact that diffusion persists longer in the ground than

in the air. Once diffusion is completed, the time dependence of Er at

the ground is the same as that of J . Diffusion takes about 3.5 x 1073

second at r = 500 meters.
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CHAPTER 4
COUPLING TO SHORT BURIED CABLES

4.1 INTRODUCTION

Ground-~based systems hardened to blast often have electrical
conductors buried at depths of one to a few meters in the ground for
mechanical protection. Burial also affords some protection from EMP, but
by no means total protection since the fields penetrate to these depths
without strong attenuation, especially in the lower frequency components.
It is useful to distinguish two categories of buried cables. The category
considered in this chapter includes cables shorter than a few hundred meters,
j.e., one gamma-ray absorption length in air. For such cables the EMP
fields may be assumed to have roughly constant amplitude along the length
of the cable. The phase is not constant, for in general the EMP will sweep
over the cable with a speed determined by the angle X between the cable
run and the radial direction from the nuclear burst. (See Figure 4-1.)

The phase speed v 1is

Burst Point

I~

Cable Track on Surface

Air
Ground

D = Burial Depth

Figure 4-1. Geometry of burst and cable run.
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v = c/cosy , COSX = COSY COSX, - (4-1)

In case the burst is above the surface, the angle x 1is made up from two
angles, the elevation angle Xe of the burst point as seen from the cable,
and the azimuthal angle Xa in the ground plane. The horizontal EMP
electric field E at the wire, under the assumptions of constant amplitude
and constant phgse speed, has the form

Ey, = Eh(t - ;) , (4-2)

where z is the distance along the wire (not the vertical coordinate). The
field component of interest is that parallel to the cable, which is related

to the horizontal field Epr in the projected radial direction from the

burst by

h = cosxaEpr . (4-3)

E
The cable is most Stfongly driven when Xa = 0, and since the location of the

burst will not usually be predictable, this case should be assumed.

1f Eh is Fourier analyzed in terms of waves of the form

explj (wt-kz)], then Equation 4-2 leads to the result that % is determined

by w, .

k = $-= cosy - (4-4)

o|E

The fact that v = c¢ means that the EMP sweeps over the cables
faster than free signals can propagate along it. Since also € of the soil
is considerably greater than unity, the EMP sweep speed is considerably
greater than the free signal speed. In particular, signals arising from
effects at the cable ends arrive at most points along the cable with
significant delay after the EMP arrives. It is therefore useful to calculate
first the response of the cable ignoring end effects, i.e., as if the cable

were infinitely long. This problem is taken up in Section 4.2.

A



The other category of cables includes those that are so long that
the EMP environment cannot be assumed to have constant amplitude over the

length of the cable. This category is discussed in Chapter §.

Some of the buried cables of interest will be of multi-wire type.
However, these will generally have an outer conducting sheath to shield the
wires from EMP, lightning or other electrical interference. The conducting
sheath will generally be covered by an insulating sheath for protection 9
against corrosion of the (metallic) conducting sheath. In this chapter, only
the insulator and the outermost conductor will be considered. Transfer
coupling from the outer conductor to internal wires, if any, is a separable
problem, at least approximately. The cable geometry is defined by Figure ' @
4-2. The conductor is drawn as a hollow cylindrical shell of thickness d,
but it could be a solid cylindér. The electrical conductivity of the

conductor is generally much larger, by a factor of the order of 1010, than

that_of the soil._ Thus the conductor has the same resistance per unit
length as a cylinder of soil with radius qf the order'lo4 to 105 times larger

than ars, depending on the thickness d. The relative permittivity of the

r
t ,
Conductor \ 4 T az 4 e
a T
) d % ¥ e ,

Insulator, é
€1° 9 _ :
Soil > €55 0, lgﬂ

Figure 4-2. Definition of cable parameters and
cylindrical parameters.
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insulator is a little larger than unity, €, 2 being typical. The
conductivity of the insulator, typically very small compared with that of
soil, may be enhanced by the gamma radiation penetrating to the burial

depth. The peak gamma induced conductivity may be as high as 10_6 mho/m,

-and is time dependent (proportional to the dose rate). The analysis of

this chapter will treat 01 as constant, but will estimate the importance
of gamma-induced conductivity. The soil parameters g, and 02 will be

treated as independent of time but frequency dependent.

The presence of the air, with its time-varying conductivity, affects
the'coupling to the cable. The analysis here will first assume that the
s0il extends to infinity in ‘alil directions, and then show how the presence

of the air can be taken into account in an approximate way. In addition,

. the wire initially will be assumed to have perfect conductivity.

4.2 PERFECTLY CONDUCTING WIRE IN INFINITE SOIL

EMP environments are calculated without wires present. Let the
Fourier component of the environmental electric field parallel to the wire

axis, at the position of the axis, with frequency w be

Ehﬁu) = Eo(m)exp[jﬂut-kz)] . (4-5)

Here k 1is specified by Equation 4-4. The total parallel electric field
must vanish at the wire surface. A current I flows in the wire, such that the
additional fields produced by I have a parallel electric field canceling

the applied EMP field.

The EMP electric field has components both parallel and Perpendicular
to the wire axis. The perpendicular component causes the wire to polarize,
with positive charge appearing on one side and equal negative éharge on the
Opposite side. The currents involved in this polarization are small when
the wire diameter is small compared with the wavelengths in the EMP, a




condition which is generally well satisfied. Further, these currents do not
flow along the wire, so are of no consequence for equipment connected

to the wire. The EMP field of importance is the component of the electric
field parallel to the wire axis, and the variation of this field around the
circumference of the wire is negligible.

The usual cylindrical coordinates r, 8, z, right handed in that
order and indicated in Figure 4~2, are convenient for the problem at hand.
The field components associated with the wire current are E r? Ez and Be,
and they are all independent of 0. Maxwell's Equations 1- 17 and 1-18

become, for fields with t and 2 dependence given by Equation 4-5,

i i d
JwBg = JKE_ + 5 E (4-6)
nE. = jkeBy , (4-7)
_c 2 , ]
nE, = 7 57 FBg > (4-8)

where n(w) is the relative admittance introduced in Section 2.2. Equation

4-7 can be used to express Er in terms of Be,

E :-JE:_B

T n o (4-9)

Use of this result in Equation 4-6 allows expression of Be in terms of

E .
z
n 1l aEz , .
B =~ ¢ 2% ¢ (4-10)
} K.

where K is defined by

2 = jwn 2

K'w) = - ( e k™) . (4-11)

From the definition of n, Equation 2-2, this becomes
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2 1/2

k™) . (4-12)

A
|

= [__(____ jz2,0) -

[ (e-cos x)(—D - JZyo —Jl/z (4-13)

i

In the second line k has been evaluated by Equation 4-4. The choice of
sign of the square root here will always be taken such that K would be
real and positive if o vanished. Thus the imaginary part of «k is

negative for w > 0.

Using Equation 4-10 in Equation 4-8 gives a differential equation,
for E ,
Z

aE
d z _ - 2 - C e e e e
ar ¥ B3r T " KE, ) A4-14)

M=

The solutions of this equation are Bessel functions of order zero, J (Kr),
Y (Kr) - (See Reference 4-1. ) The value of x is different in 1nsu1ator

and soil. Let « apply to the insulator, « to the soil. In the soil,

1 2
the field EZ produced by the wire current should approach zero at large

r. This requires the combination of J0 and Y

0:

E, = AlJy(k,r) - J¥y,r)] = At (k1) (4-15)
where A is an arbitrary constant. Equation 4-10 then gives By in the
soil,

i : _ A
Be = ——;—[J (x r) - JYl(Kzr)} = EE;—HI(KZr) . (4-16)

In the insulator, the solution contains two arbitrary constants B and
C:

Ez = BJO(KIr) + CYO(Klr) s (4-17)
i
Be = EEI—[BJI(Klr) + CYI(Klr)] . (4-18)
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The constants A, B and C are determined by the requirements that EZ
cancel the applied field EO at r = a; and that EZ and By both be

continuous at 1 = a2.

If the two continuity conditions are written out first, they can

be solved for the ratios B/A and C/A, with the results:

B _ HOYl - GHlY0 c__ HOJ1 - GHlJ0 (4-19)
A W > A W
In these expressions, HO and H1 are evaluated at Koy, and JO’ Yo, J1
and Y1 are evaluated at Kyy- The factor G is
Kon, _
6=t z (4-20)
2™

and W 1is the Wronskian

2

-W = JOYI - JiYO = - Ika - (4-21)
172
The condition that Ez cancel E0 at r = a  can be written as
E
6_B C -
sl ulaly JO(Klal) *a YO(Klal) . | (4-22)

Since B/A and C/A are known, this equation determines A, and Equation

4-19 then determines B and C, which completes the solution.

The total current in the wire is related to the value of B

. 3]
at T = a, by Equation 1-19, which becomes
2ma,n
I _ 1118 c
A Zo; [A Jy(a) + 4 Y1('<131)] - (4-23)
The impedance Zw of the wire is defined as
Zwﬁu) = Eoﬁu)/I[m) ohms/meter . (4-24)

By use of the result obtained above, Zw can be found to be
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- * - *
ZK, [ (Hyd -CH I )YS ~ (HyY, GHlYO)Jo] a.25)

= — _ Y* - *
w o Zmagn, [=(HT -GH I )Y+ (HY -GH Y ) T3

Here H0 and H1 are evaluated at K2a2; JO’ Jl’ YO and Yl at Klaz;

and the asterisks indicate evaluation at Kya;, not complex conjugation.

The functions HO and H1 are defined in Equations 4-15 and 4-16.

4.3 SMALL RADIUS APPROXIMATION FOR NIREVIMPEDANCE

The exact expression for the wire impedance, Equation 4-25, is
difficult to deal with, although it can be evaluated numerically. Reference
4-1 gives quite accurate polynomial approximations for the various Bessel
functions useful for numerical work. However, it is fortunate that the
arguments of all of the Bessel functions are small in cases of interest in

this report. The largest argument is Kydy- For w = 109, € ~10, 0 = 0.04

(see Figures 2-2 and 2-3), Equation 4-13 gives |K2| ~ 11 m Y. If the

radius a, = 0.01 m, then [kja,| ~0.11. For w = 10%, |¢,a,| ~0.013, and
for smaller w, the argument is even smaller. Thus it is reasonable to expect
that the small-argument expansions of the Bessel functions may yield a suf-

ficiently accurate evaluation of Zw. These expansions are

xz 4 X x3 S
Jox) =1 - 5+ 0x) , J;(x) =3~ T 0(x7) ,
(4-26)
2
= 2 g XX X X 4 - .2 X YX X 3
Yo(x) = ﬁ-ln 5 (1 ——Za + 7 + 0(x) , Yl(x) = -t n > > + 0(x7)
where 7Y 1is the Euler-Mascheroni constant,
Yy =1.781 ... . . (4-27)

By using these expansions and taking care to collect all of the terms of

lowest order, Equation 4-25 can bg reduced to
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¢
2 2
Z K - K a
Zw(m) ~ % [- 2 (&n Kza - JZI) ) Hl— fn -a_z] ' (4-28)
L Yo%, 1 1
This formula holds for any w, real or complex, provided |w] ‘;
is not so large that the arguments of the Bessel functions are no longer
small. We shall test the accuracy of the formula in the Laplace domain
rather than the Fourier domain, i.e., for exponentially rising applied
fields of the form «
Eh(a) = Eo(a)exp[at - kz1 . (4-29)
The assumption of constant amplitude and phase speed, Equation 4-2, now
implies ¢«
= _0_0o 7 -
k = v - @ osX - (4-30)
Comparison of Equations .4-29 and.4-30. with Equations 4-5 and 4-4 respectively . «
shows that the formulae can be written in the Laplace domain by making the
replacements
(‘b - - ja >
4-31) '
k -+ - jk . ¢
Then the media parameters become
a
n==2z0(@ + =¢e(a), : (4-32)
0 [ ‘
= - (Egl - Tc'z) = - . (4-33)
Thus the replacement
<> - %, | L (3-34) «

should also be made in the formulae. Equations 4-12 and 4-13 become
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1/2
K = [%—(e %-+ zoo) - Yz] , (4-35)
- [(e-coszx)(gaz + 20 %11/2 . (4-36)

The exact formula for Zw’ Equation 4-25, could now be rewritten in terms
of the modified Bessel functions (Bessel functions of imaginary argument),
but we shall leave it as it stands. It is convenient, however, to evaluate
the small radius approximation in terms of the Laplace domain parameters.
Making the replacements indicated above in Equation 4-28 leads to the totally
real result _
Zg Eg ' 2 ‘Ef %2
Zw{a) 2 E[H_ n — + — ¢n —] . (4-37)
2 YK, a 1

To test the accuracy of the small radius approximation, we have
numerically evaluated both Equations 4-25 and 4-37 for the following cable
and soil parameters:

a

1 0.5cm , a,=1.0cm

N
e}
o
“

P
[}
—
-

(4-38)

g,=2 , 0, =0

—
-
m
I
=
o
Q
[}

0.01 mho/m .

The computed results are shown in Table 4-1. The accuracy is quite adequate

up to the highest frequencies of interest.

Table 4-1. Comparison of exact formula and small radius approxi--
mation for Zw(a), for perfectly conducting wire.

o Exact Approximation  Error  Skin Depth

108 sec™!  89.21 ohms/m  89.17 ohms/m  0.04 % 0.74 m
3x108 2139 212.6 0.2 0.31
10° 506.7 498.8 1.6 0.16
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For practical application of our results, note that an EMP field
that rises with o = 108 sec”! toa peak of about 10° V/m would drive a
current of about 103 A in this wire at the peak of the EMP. The current
will continue to rise after the peak, for the impedance is mostly inductive,
as will be seen in later sections of this report. Note that wire resistance

1s negligible compared with the computed impedance, at these frequencies.

In use of the Laplace domain results, it should be noted that
0(¢) and €{a) in Equation 4-32 are not the same as O(w) and e(w),
unless O and o are independent of frequency. Equation 2-21 gives
n(ax) directly for universal soils, and Figure 2-5 gives n(a) for our

standard soil (10 percent water content).

It should also be noted that the proximity of the conducting air
to the cable has not yet been included in the analysis. The effect of the
éir Eioximity is not large for '&”2?108 sech1 and burial depths of 1 meter
or more. After the peak, the air proximity will have a larger effect,
enhancing the current during that period in which the air conductivity is

larger than the ground admittance n/Zo-

The quantities 2/yk, in Equation 4-28 and 2/YE& in Equation
4-37 are the skin depths in the soil; they give a measure of the depth of
penetration of the wire-induced fields into the soil. The skin depth is

complex in Fourier domain, in which case its magnitude indicates the depth

of penetration. It is real in the Laplace domain, and values are given
in Table 4-1.
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4.4 THE TRANSFER FACTORS

In addition to the wire current, it is useful to be able to predict
the radial fields Er in the insulator and the voltage across the insulator.
Formulae for these quantities can be obtained from Equations 4-9 and the

fact that, when the small-argument approximation of the Bessel functions
is valid,

5 ZOI

By ~ 2mre (4-39)

This is the static approximation, Equation 1-19, and is valid near the

wire. The result for Er is, in the Fourier domain,

v T 2w Z B ) 2 TWEW) (4-40)

. Zim Z. Bp(@) = T(@)E, () . (4-41)

The name transfer factor will be used for the factors T multiplying E

0
in these equations. They are dimensionless. According to Equations 4-4 and

4-30 for the sweeping EMP, they are
Z

T(w) = J@/c)cosy (“’gggc’s Z—O , (4-42)
w
-z
. - (a/c)cosx “0 _
T() = Zren - Z (4-43)

In an insulating material, o = 0, both of these formulae simplify to

T =S2X 0 | (4-44)
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In all of the expressions for T, the appropriate n, Zw and € 1is to be

used, i.e., nw) or n(@), etc.

Table 4-2 gives the values of T for the example (4-38) and for
peints r in the insulator just outside r = al(Tl), and in the soil just
outside r = az(Tz}. It is seen that Er will be much larger than the
applied EO, and that the transfer factors are larger at lower frequency.

Indeed, the radial fields are in the breakdown range.

The voltage V across the insulator is obtained by integrating

T from al to a2. Thus
V=TE,, (4-45)
where
' YA a
— — . _ cos¥ -_9_ _2_ ) -
Tv T 2me Zw 2n a : (4-46)

The dimensions of Tv are meters. Tv is also given in Table 4-2 for

the same example.

The field transfer factor T is smaller for wires of larger radius,
as indicated by Equations 4-42 to 4-44. Zw decreases as the radius

increases, but only logarithmicly.

Table 4-2. Transfer factors for the example (4-38).

o T.l T2 Tv

107 sec” 67.2 3.2  0.233 meters

3 x 108 28.2 2.1 0.098

10 11.8 1.1 0.041
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4.5 R, L EQUIVALENT CIRCUIT OF THE WIRE IMPEDANCE

During the rise of the EMP, the Laplace domain form of the wire
impedance can be used directly to calculate the wire current and radial
electric field. After the peak in the EMP, this simple procedure is not
applicable. Fourier transform techniques are applicable: transform the
applied fielq to the ®w domain, use Zw(w) to calculate I(w), and invert
to find I(t). While this procedure is straightforward, it is time
consuming, and the analyst tends to lose contact with the numbers and
confidence in the results. This occurs especially since the whole process
is usuaily left in the hands of computational technicians, who may have

little feel for electromagnetics.

An alternative approach is to continue to use analytical techniques
to construct a simplé, approximate method that can be applied directly in
the time domain. In this section an R,L c¢ircuit will be devised, which

has the same impedance Zw, to good accuracy, as the actual wire.

At low frequencies the impedance Zw’ calculated for a perfectly
conducting wire, becomes so small that the finite resistance of the wire is
not negligible. We therefore add to Zw the resistance RwO (ohms/meter)
of the outer conductor of the cable. RWO may depend on frequency, as it
will if the thickness d of the outer conductor is more than a skin depth
in it. Most commonly this will not be the case at those low frequencies
for which RwO
as independent of frequency, and take it to be the d.c. resistance of the

is significant compared with Zw' We shall treat RwO

outer conductor. _

A convenient equivalent circuit would have the form shown in
Figure 4-3, for then the current in each branch could be computed separately
and the total cable current obtained by adding the branch currents. Since
the admittance of the network is most easily written, it is desired to make-

the fit to the wire admittance Yw’
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Figure 4-3. Equivalent R,L circuit to fit cable -
impedance. :
o
m
1y 1 .
Rz, W™ 2 v el (4-47)
w0 w n=1 n n

This equation can also be written

m
Y @~y —F (4-48)
W Bl s Jw/Bn
where
®

g, = /R, B =R/L . (4-49)
The fit can be made by first choosing arbitrarily a set of Bn's, spaced
one decade apart, say. The g, are then determined by requiring Equation
4-48 to hold exactly at a2 set of w's, e.g., W= Bl’ Bz, 83, ...Bm, which gives o .
a set of m linear equations to solve for the m quuntities g,

The fit can be made either in the Laplace or Fourier domain. In

the Laplace domain, both sides of Equation 4-48 are real. In the Fourier
domain, one can fit,_say, the imaginary (inductive) part of Ywﬁn). The
real (resistive) part should then fit automatically, since both sides of
Equation 4-48 are analytic functions. The fit will not be exact, of course,

at frequencies between the fit points.
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Lavery (Reference 4-2) used this technique to fit the admittance

of a cable with parameters

n

a; 0.5 cm , a, =1.0 cm » d=0.05¢em , cosX =1, )

2
-3 ‘ (4-50)
€ = 2, o, = o , RwO = 1.129 x 10 © ohm/m ,
imbedded in our standard soil. The Sn chosen were
f3n=5><101+n , n=1to7 . (4-51)

The real and imaginary parts of Yw(m) and of the fit are graphed in
Figure 4-4 for 102 Sw < 109 sec’l. It is seen that the fit.is quite
accurate, except for the real part at w = 108. This discrepancy -could be
;emoved by adding higher .Bn's, but we shall not depend on the fit at these
high frequencies. The values of g Rn and 'Ln for the fit are given in
Table 4-3. In this table, an entry a(b)' means- a X 10b. The zero

frequency conductance G, and the infinite frequency inductance L_ of

0
the network are

Table 4-3. Fit parameters for the example (4-50) in
standard soil.

n gn(m/ohm) Rn(ohm/m) Ln(henry/m)

1 8.439(2) 1.185(-3) 2.370(-6)
2 2.137(1) 4.679(-2) 9.359(-6)
3 1.306(0)-  7.657(-1) 1.531(-5)

4 1.972(-1) 5.071(0) 1.014(-5)
5  2.684(-2)  3.726(1) 7.452(-6)
6 5.002(;3) 1.999(2)  3.998(-6)
7 1.258(-3)  7.949(2) 1.590(-6)
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Figure 4-4.

Real and imaginary parts Yar and Yy, of cable admittance
as a function of w. The curves are computed from the
definition of Y, Equation 4-47, with 7, given by Equation
4-28. The points are computed from the R,L circuit fit. The
fit was made to Y,; at the points w = 1002, n = 1 g 7.
The R,L model values for Ywp qare also very close to the
true values, except at o > {08. This discrepancy could be
removed by adding R,L branches with higher rates Bn‘
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R

v AT 6

G, = é;gn = 8.668 x 10° mho-m ~ 1/R -, l

0

(4-52)

L = (z:gnﬁn)-l - 5.862 x 107/ henry/m .f

n
The admittance in the Laplace domain is
m gn
Y@ Y T - (4-53)
" n=1 1= OL/Bn

Figure 4-5 compares Yw(a) with the fit for the example (4-50).

The current in the nth branch of the network can be computed by

solving the differential equation

dIﬁ
Ln at * RnIn - EO(t) ?
or - - —-
dIn
Tt * Paln = EnPaBo(®)- (4-54)
The solution of this equation is
t
-B_(t-t,) -B_t B t'
_ n 0’ n n : . _
In(t) = e In(to) + gane d[.e E0(§ )dt . (4-58)
to

This solution allows for an arbitrary initial current In(to) at the
starting time tg,, in case it is convenient to approximate Eo(t) by
different. analytical forms in different time periods. For example, a
somewhat crude but useful approximation to the early-time part of the

horizontal electric field (see Figure 4-6) is

ot
(]

1-E'Oct) Em

(4-56)

for t<0: }

Ee ¥t for t>0.
m
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Admittance Yy(a) of cable as a function of o. The curve
is. computed from the definition of Yo with Z, given by
Equation 4-37. The points are computed from the R,L circuit
fit to Y ;(w). The discrepancy between the curve and the
points at o > 108 could be removed by adding R,L branches
with higher rates Bn'
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Here Em is the maximum value, achieved at t = 0. If E is chosen
somewhat larger than the actual peak field, the form (4- 56) will bound the

actual field, and the computed current will therefore bound the actual
current.

For the form (4-56), the current for t < 0 can be calculated
directly from Yw(aJ, )

I(t) = Yw(a)Emeat for t <0 . (4-57)

For this purpose, either the original Y (a) or the fit to it may be used.

At t =0 = 0, there is already a current f10w1ng in the wire, and the
part of this current flowing in the nth branch is

EnFm
In(O) = T—_'_‘TBH . (4-58)

From Equation 4-55, the nth"éurrent for t > 0 is easily calculated to be

-B t g B E -8 t

I =e "I (0)+ g e Ve Ty | (4-59)

n
The apparent singularity in the second term here if Y should approach
Bn actually does not occur, as the exponentials also cancel in the limit
Y + Bn. Summing In(t) over n gives the result, for t > 0,

-8Bt
gBe M

I(t) = (0’-+Y)Em2 (CHHBI;(Y B ) +Y ("Y)E e e . (4-60)

Here Y (-Y) is Y (@) evaluated at a = -y.

The form .(4-56) has a discontinuity in slope at its peak, which
gives it more high-frequency content than the true EMP. A function with
a d15cont1nu1ty in slope has a Fourier transform which falls off no faster

than l/m at large w, whereas the transform of the true EMP
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(which has all derivatives continuous) falls off faster than any finite power
of w. The form can be improved easily by adding other exponentials. For

example, the form

Em(Zeat-ezat) , t<o0,

_ 20 -yt Y -2at)
B Em(Za-Y © 2a-y © » 870,

E_(t)
0 } (4-61)

has maximum value Em at t =0 and zero slope there, as is easily verified.
This function is graphed in Figure 4-6 for the case Y = a/2. The function
has discontinuous second derivative, and its Fourier transform falls as l/w3
at large . It is possible, with the rise and decay rates « and Y

fixed in the first exponentials on each line, to vary the constants in the
last two exponentials and the coefficients of all terms in such a way that
continuity is maintained through the fourth derivative. If the Nth derivative

shows the first discontinuity, the Fourier transform falls as l/wN+1

“asymptotically. The algebra determining the coefficients becomes quite

complicated for the very smooth forms. Use of the simple forms bounds the

high-frequency content.

'ifhé'curf;ﬁf for the form (4-61) can be written down by applying
Equations 4-57 and 4-59 to each of the exponential terms. In this way,
all but the final summing of the terms‘can be done analytically. Alternatively,
the differential Equation 4-54 or the integral in Equation 4-55 can be solved
or evaluated numerically. Either approach gives a fast and quite accurate

way of calculating the cable current.

Note that the transfer factor for the insulating layer, Equation
4-44, displays no frequency dependence except in the factor Z . Therefore,

on including the d.c. wire re51stance, it is possible to wrlte
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- e
Z
- 0COSX EO
T 2mre R+ Z
w0 w
Zocosx ¢
= W I, (1nsu1ator) (4-62) :
and the last line here holds in either frequency or time domains. Calcula-
tion of I therefore imediately yields Er in the insulator. 0’-»
Unfortunately, this is not true for Er in the soil. At lower o
frequencies, where n is approximately constant,
E_ ~-S0SX 191 (soil, near wire) (4-63) .
r 2mro, ¢ 9t ’
At high frequencies where ¢ rather than o dominates n and € does
not vary strongly with frequency, Equation 4-62 applies approximately in the . _
s0il near the wire. — ¢
4.6 THE TIME-VARYING INDUCTANCE MODEL
The method developed in Section 4.5, while transparent and accurate, L
still requires a considerable amount of calculation. A simpler method is
desirable, even if it is less accurate. Such a method exists for the type
of applied fields found in EMP environments.
The expression (4-28) for Zw can be simplified by making some
approximations. Equation 4-11 shows that, if the k2 term is dropped
2 :
_kK_ W - QZ:-i
n ~ ] c . (4 64) :-';

Now, the k2 term contributes the term-coszx in Equation 4-13. In the

. 2 .
5011, cos™x 1is no more than about 10 percent of £, where € > 10. 1In the

- insulator, dropping coszx makes a bigger percentage change. The logarithm

f factor £n(a2/al) is usually much smaller than the logarithm for the soil




e LA aa et

term, so that the insulator term is not very important. However, if o is
negligible in the insulator, k°/n 1is still simple, and can be retained.

The approximate form of Zw is

jwZ 2 a
z, ~ 50 [zn(.—-z—-—) . (1 - Elil)zn a_z] : (4-65)
W c jve,a, 1 1
(Note that &n(-j) = -jw/2.) This expression gives an impedance which is

too large, but not by more than about 10 percent.

If the logarithm in Equation 4-65 were independent of frequency
and real, it would represent the impedance of a pure inductance. If K,
is written in terms of its magnitude and phase,

<, = lk,[e7T? (4-66)

H

it is clear from Equation 4-13 that ¢ varies between zero and w/4;
¢ approaches zero when the dielectric term is dominant and approaches
/4 when the conductivity term is dominant. On separating real and

imaginary parts, Zw becomes

jwz 2 a lo|z
_ 0 2 _ cosx 2 0 (E__ ) (4-67
W 27Wc [En Y|K2|a2 * (1 g, ) &n al] " ome \z ¢ - (4-67)

The absolute value on the factor w in the real term is demanded, for
negative w, by the reality condition, Z;(m) = Zw(-m), and can also of course
be derived from the properties of the Bessel functions by carrying through
the analysis for negdtive w. The second term is resistive and leads to
energy dissipation. If the soil is a good dielectric, ¢ - 0, and the
energy is radiated away. If the soil is a good conductor, ¢ -+ m/4, and

the energy is dissipated in Joule heating of the soil.
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The magnitude of the resistive term is generally fairly small
compared with the first or inductive term. The first logarithm is typically
between 3 and 12 in cases of interest, whereas (g—- $) ranges between
m/2 and w/4. Dropping the Tesistive term should increase the calculated
current and provide an upper bound. We shall drop it, and compare calculated

results with those obtained from the more accurate equivalent circuit method.

In terms of the inductance L of the wire,

Zw = jwL , (4-68)
and
Z : 2 a
0 2 cos ) 2|
L = ———-[én ( ) + (1 - —————) n —-] . (4-69)
2me Y|K2|a2 El al
Note that
- , .
E#%—= —g—= 2 X 10-7 Henry/meter . ‘ (4-70)

The inductance depends on |K2|, but only quite slowly because of the
. logarithm. Thus an approximate fit to IKZI would be adequate. According
to Equation 4-64,

o) =2 In,] (4-71)
A good fit to ‘V]nzl is given by
©
\/Inzl A \/eoo = \/2000 . (4-72)

For our standard soil, the exact evaluation of ‘q[nzl and this approximation
yield the results:

© =10°  10° 105 105 107 108 10°
exact =1.76 1.77 1.79 1.82 2.04 2.90 5.94 (4-73)
approximate = 1.74  1.75 1.78 1.87 2.1% 3.03 5.82
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The approximation is within 5 percent of the exact result over the entire

range. Therefore, a good fit to 2/YIK2I is

5= 2 1.12

o~

YlKZ‘ %-(V E_+ Y Zoooc/w)

(4-74)

The quantity & defined hére is the skin depth in the soil for the present

cylindrical probliem. In terms of ¢, the inductance is

Z 2 a
L = —Jl-[zn s, (1 - €05 X) ¢n —Z] . (4-75)
2ne a2 61 al

Because of the logarithm, the inductance changes only slowly with

frequency. For the example (4-50), Equation 4-75 gives the results:

w=10"  10% 10° 10 107 108 10° sec”?

(2]
[}

353 111 34.5. 10.4 2.86 0.641 0.105 meters (4—76)

e
i}

2.16 1.93 1.70 1.46 1.20 0.90 0.54 pH/m.

The relation between the applied Eoﬁn) and the current I(w),

including now the wire resistance RwO’ can be written

JwL@)I@)] = Ey(w) - R T . ‘ (4-77)

The exceedingly slow variation of L{w) suggests that it might be a
reasonably good approximation to regard L(w) as constant in inverting this
equation to the time domain. It would appear appropriate to use the value
of L for that range of w which gives the dominant contribution to the
integral of Eoﬂn)exp(jwt) over w, i.e., to the inverse Fourier transform
of Equation 4-77. Since the exponential here oscillates rapidly with w

when wt >> 1, the appropriate range of w 1is
w=1l/t, (4-78)

unless Eo(w) varies rapidly with w. The latter possibility depends on
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the choice of the time origin. The EMP EO(t) varies rapidly with t
initially, and then more and more slowly at later and later times. If the
time origin is chosen at that time when Eo(t) is changing most rapidly,
then Eo(w) will not vary rapidly with w. For example, the form (4-56)

for Eo(t) has the Fourier transform

- - ety ' -
00 " B s e (4:79)

However, if the time origin were shifted to time tO’ then EOGD) would
acquire a multiplicative factor exp(-jwto). Thus, rapid variation is
avoided by choosing the time origin as stated. We agree to make this

choice, and use Equation 4-78 (otherwise we would choose w =~ 1/(t—t0)).

The suggested approximate time domain equation is therefore
d -
dr [LOIE)] = Ey(t) - R 1, ~ (4-80)

where L(t) is given by Equation 4-75 with § evaluated from Equation

4-74 and 4-78, i.e.,

§ ~ —L:12ct : (4-81)

E + V Zoooct

This prescription would have difficulty if used at t = 0. However, the
EMP has a finite rise time tr, which for the exponential rise model is

t. ~ 1/a. Thus in using Equation 4-81, t should be set equal to

t = tr = ;/a if t < tr , (4-82)

and -the time origin should be chosen so that t = tr when the rise rate
begins to fall significantly below «. Obviously, this prescription is
somewhat imprecise at early times. Note, however that quite accurate
evaluation of the current during the rise of the applied field can be had
by using the form (4-56) or, better, the form (4-61) and the Laplace domain

impedance. For the latter form, the current is
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2 ot 1

- _ 2ot -
I(t) = Em (Zw(a) e ZN(Za) e ) for t <0 . (4-83)

Lavery (Reference 4-2) has tested the approximate equations against
the equivalent circuit model of Section 4.5 for the applied field
Eo(t) =0 for t <0 1
" (4-84)

£ (e-Yt_e—at)

for t >0,
a

for which the equivalent circuit equations can be solved analytically. The
cable example (4-50) was used, with a = 108 sec-l. In Equation 4-81, t
was set equal to the larger of t and 10‘8 seconds. Equation 4-80 was
integrated numerically for several values of <Yy as indicated in Figure 4-7,

which compares the currents computed by the two methods. The comparison

'shows that the varying inductance approximation is quite good.

Although Equation 4-80 was integrated numerically in this example
to show how good the approximation is, the current can obviously be esfimated
by crude integration of the equation over blocks of time in each of which
Eo(ﬁj and L(t) are regarded as constant. Note that the decay time L/RwO

is of the order milliseconds.

Qur choice of putting L(t) inside the time derivative in Equation
4-80 instead of outside was somewhat arbitrary, mathematically. The choice
made gives better agreement with the accurately calculated currents for
;ﬁe shorter driving pulses. If L were put outside, the current would not
decrease immediately after the short pulse, but would decay only on the time
scale L/Rwo B 10"3 second. Putting L under the time derivative gives back
some of the dissipation associated with the real part of Yw(w), through the
term IdL/dt. Since dL/dt is positive this term has the effect of a

resistance.
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Figure 4-7. Comparison of currents calculated from R,L equivalent circuit
(curves) and from time-varying inductance model (points),
for the applied field of Equation 4-84. The values of Y are
indicated. .
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4.7 FREELY PROPAGATING SOLUTIONS

The analysis ihus far has considered only the particular solution
of Maxwell's equations, or that part driven by the applied field. The
equations also allow freely propagating solutions, and these are needed to
satisfy conditions at the end of the cable. The freely propagating solutions

~ exp{j (wt-kz)) occur for w and k such that
Z =0, (4-85)
so that a current I can exist without an applied field. Thus k is no

longer determined by Equation 4-4, but for each w is chosen to make Zw

vanish.

Zw is given by Equation 4-28, and Equation 4-11 gives

2 2
K e k -
- N =17 + n °’ (4'86)

nlE

for arbitrary k and w. Ignoring the dependence of the logarithm on

k (through Kz) allows solution of Equation 4-85 for kz; with the result

En(G/az) + Rn(azlal)

ki=-32-mn n, — (4-87)

fn(a,/a;) + ﬁ;-ln(5/az)f

where the skin depth & for propagation is complex,
§ = 2/vjx, . . (4-88)

Since K, and & depend on k2 ~ (see Equation 4-12), Equation 4-87 has to

be solved by iteration for accurate results, in general.

For w < 106 sec_.1 and when the conductivity of the insulator
is indeed small (true except in case of high radiation exposure), the first
Step in the iteration gives approximately correct results. The first step
2 6

puts k™ = 0 in the calculation of k. and 6. For w < 10

2 the dielectric

part of 0 can be neglected and
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Ky » vV -JLOO'OOJ/C , (4-89)

S0 that

§~—2Y0 =y vy (4-90)

m
Y Vzocom/c

Here Gm is the magnitude of g, Thus

8 6m s
zn(;—) = 2n(5—) -ig- (4-91)
2 2
The ratio of the n's is
El_n’ngw/c
"2 2%
For the example (4-50) at w = 106, ﬂn(ém/az) 7.3, En(azlal) = 0.693,
and nl/nzusgj/450. The second term-in the denominator of Equation 4-87
can be neglected, with the result

- T
2 En(Gm/al) -iyg

*n(a,/a;) (4-91)

K? = 81(%)

This result verifies that it was proper to neglect k2 in calculating Ky
Since En(Gm/al) is considerably larger than /4, the square root can be

‘calculated approximately, giving the formula for k,

. 2n(6m/a1) R
o+ - J'"/S -
ks ye \/Qn(az/al) G‘ zn(am/al)) ' (4-92)

The imaginary part of k gives the attenuation of the propagating wave.

nle

For large w, the solution for kz, Equation 4-87, should be
iterated by putting this value of k2 back into the formula (Equation 4-86)
for Ky and so .on. For accuracy, the full n should of course be used,

instead of ZOOO. Figure 4-8 shows the real and imaginary parts of k for
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the example (4-50), along with results from the approximate formula Equation
4-92.

In the Laplace domain, one looks for freely propagating solutions
of the form

I ~ exp(at-kz) , (4-93)

where X is again determined for given 0o by requiring that Zw = 0.

For this case, Equation 4-87 becomes

: ¢n(é/a,) + &n(a,/a,)
¥ -2y 2 2 (4-94)
c 1 r|1
ln{gzlal) + - Rn(G/az)
2

The skin depth is

§ = ZIYQE > o (4-95)

and E} is to be found from Equation 4-33 or 4-35. Again, iterative solution

is generally required. The n's in these equations are of course n(a).
Figure 4-8 also shows ¥(a).

As in Section 4.4, Er can be related to the current I  for the

freely propagating solutions. By the same procedure it is found that

ij0
Er(w) = 7N T (w) , (4-96)
Kz 0
- Er(a) = Fn I(a) . (4-97)

The voltage V across the insulator (0 assumed negligible) is found by
integrating these expressions on r. The result is

kZ0 a,
V((I.)) = Z—TTEF/—C R.n(q)l(w) s (4-98)
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a—z—)l(a) : (4-99)

1

0
Zﬂela/c

Ve - Kz n(a

Note that the sign of V depends on the sign of k or %, i.e., it is
different for solutions propagating to right and left. The factors
multiplying I 1in these equations are analogous to the characteristic
impedance ZC of a coaxial transmission line. In the present case, the
outer conductor (the soil} does not have perfect conductivity, and there

are significant electric fields in it out to radii of the order of 8.
4.8 THE END CONDITIONS: OPEN CIRCUIT
The freely propagating solutions are added to the driven solution

to satisfy conditions at the end of the wire. The easiest case to analyze

is that in which the end of the wire is insulated from the soil; i.e., the

. case of open circuit. If the driven and freely propagating currents are
denoted by Id and IP respectively, the end condition is .then that
IP = - Id . (4-100)

The driven current is determined by the applied electric field, and propagating
currents are then fed into the ends to cancel the driven current at those
points. The propagating currents propagate along the wire, modifying the

total current and fields as they go. They eventually reach the opposite

end from their origin. At that time, additional propagating currents are

fed into the ends to cancel the outgoing propagating currents. The

analysis here is the same as in normal transmission line analysis.

This analysiéris not exact. While the propagating solution can
cancel the wire current of the driven solution, it does not cancel the fields
of the latter in detail. The values of k, and therefore of K,, are
different for the driven and propagating solutions for a given frequency.

Hence the radial distribution of fields is not the same. Cancellation of
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the currents means that the Be fields, which are given for both solutions
by Equation 4-39 near the wire (out to about one skin depth), will also
cancel approximately. However, as will be seen shortly, the fields Er are
substantially different for the driven and propagated solutions; and come
nowhere near canceling. It is reasonable to expect an adjustment of the
radial electric field over a regibn of the size of one skin depth near the

end -of the wire.

' Equation 4-9 relates Er to Be. Since B0 is approximately the
same for driven and propagated solutions, given Equation 4-100, out to about
one skin depth, the difference in Er comes from the difference in k. For
the driven solution, kd is given by Equation 4-4. For the propagating
solutions, kp is given by Equation 4-87, or for lower frequencies by the
approximate Equation 4-92. It is seen that kp is typically several times

k,. Thus E 1s several times E ,.
d rp o rd

The adjustment of Er involves propagating solutions with higher
radial modes. The k for these modes is again found by requiring Zw =0,
but this time the exact Equation 4-25 must be used instead of the approximate
Equation 4-28 resulting from the small argument expansion. ‘These solutions
decay rapidly with distance away from the wire end, and carry little current
so that Equation 4-100 remains approximately correct. Their role is,
roughly, to remove Er from the soil and increase Er in the insulator
near the end of the wire. They are important, therefore, in considerations
of insulator breakdown at the wire end. The total solution depends also
on the structure of Jire and insulation at the end. The field across the
insulation can be reduced by connecting the end of the wire to a larger
conducting sphere which is also insulated from the soil. No detailed

solutions were available at the time of writing of this Teport.

The radial field in the insulator is at least as large as the
values indicated by Equations 4-96 or 4-97. With the approximation Equation
- 4-92 for k, these equations become, in the insulator,
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ln(Gm/al) :
I 1-1013
in(a,/a,) b (4-101)

A measure of the importance of the fields in the soil to those in
the insulator is given by the-ratio of the radial voltage drop V = fErdr

in the two regions. On taking By ~ 1/r, Equation 4-9 leads to

Veoil Alﬂl_ﬂn(G/az)
vins n2 Qn(az/al)

(4-102)

This ratio was shown to be small for w < 106 in Section 4.7. It is graphed
as a function of Laplace domain frequency in Figure 4-9 for our usual example,
wh1ch shows that it is always considerably less than unity. It is to be
expected that the increase in Er in the insulator due to adjustment of

fields near the wire end is by a factor 1 + w / ), which is not large.

soil

The phase speed of propagation along the cable 'is (kr is the real
part of k)

v, =2 or & . (4-103)
¢k £
This speed is considerably less than c, as shown by Equation 4-92. ‘The

ratio v¢/c is graphed in Figure 4-8.

The maximum value of the current at the center of the cable will
usually occur, for EMP drive, just before the propagated signals arrive
from the two ends. Attenuation and dispersion of the propagated signals

must be taken into account. An approx1mate way of treating this is developed

in the following section.
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Figure 4-9. Ratio of the radial voltage dfops in the soil
and in the insulator for the propagating solution
in the Laplace domain, as a function of frequency.
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4.9 ATTENUATION AND DISPERSION

The factor exp(-jkz) determines how the signal propagates along
the cable. In order to estimate the effects of attenuation and dispersion,
an analytic approximation to k(w) is needed. Figure 4-8 shows that the

real part kr can be fitted quite well, over a few decades of w about

any point, by a power law. In choosing a fit, care must be taken to maintain

the reality and causality conditions (see Section 2.3). A satisfactory

approximation is

ik = a(jw)P ,. ' (4-104)
where the power p and the factor a are both real constants. For then
the complex conjugate of jk is

[ik@)]* = jk(-w) , (4-105)

and reality is guaranteed. Causality requires that jk be analytic in the
negative imaginary half of the complex w plane. The function 4-104 is
analytic in any region that does not enclose the origin. A cut along the
imaginary axis from w = 0 to w = jo prevents encircling the origin.

The path of integration in any Fourier inversions must then pass below the

origin, as in Figure 4-10a.

'Figure 4-8 shows that the exponent p 1is just slightly less than

unity. Thus q, defined as
qQZ1-p, (4-106)

is a small number, of the order 0.05 to 0.1.

Equation 4-104 can also be written, for w on the positive real

axis,
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Figure 4-10. Cut and integration path in complex
w plane.

k = aj WP = awpexp(—j £g5

awp[cos(%;a - jsin(%;i] (4-107)

~ amp[l -3 %ﬂ] (for q << 1)

This shows the relation of the real and imaginary parts of k. The closer
P is to unity, the smaller is the ratio of ki to kr’ which explains the
shape of the ki curve in Figure 4-8. If we choose to fit the kr curve
in thg_vicinity of some frequency Wy where k_ =

. kO, then the constant a
is

/%% (4-108)

Let an impulse current be injected at t = 0 into the end of the

cable, which is at 2z = 0. The Fourier transform of the impulse function

is unity. The signal at t,z is then
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=00

Iim(t,z) - L J[ expljwt - az(jw)p]dm . (4-109)

The integral here is difficult to evaluate exactly, but it can be estimated
by the method of stationary phase (or saddle point). The argument of the

exponential is stationary when

3 - R
5Go) arg = t - paz(jw) * =0, (4-110)
or at
' 1/q '
o _ (paz -
jw = jw_. ( t ) . (4-111)
This point is on the negative imaginary axis (w = -j X real number), so that

the integration contour can be deformed to pass through it. The value of

the argument at the stationary point is

1/q p/q
N

arg,

(1-q)/q
= t{E%EJI/q[l - %] = - qaz(E%EJ . (4-112)

The second derivative of the argument is

2 2
2 arg = - "ji‘iz arg = - qpaz(jw)~ Y, (4-113)

3w’ 3 (jw)
and evaluation at the stationary point gives

(1+q)/q

argy = - qpaz(EEEJ . (4-114)

In the vicinity of the stationary point, w = W, * Sw

arg ~ arg, + %-argg (6w)2 . (4-115)
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Thus the exponential in Equation 4-109 is real and decaying if the path of

integration passes horizontally (8w real} through the stationary point.
The estimate of Iim is then

(1+q)/2q
n ok [ 2T az
Lim(E-2) ~ 57 \/qpaz (EE—J

, (1-q)/q
exp[-qaz{E%EJ ] . (4-116)

Since (1-q)/q is a large number (=~ 10 to 20), the exponential
here makes I very small until t is large enough to make the argument
of the exponential near unity. For larger t, the factor t_(1+q)2q makes
I decrease rapidly again. Thus the original impulse function is spread
out over a short time about that time that makes fhe argument of the

exponential equal to unity.

The form of Equation 4-116 can be simplified by calling the argu-

ment of the exponential -uz,'i.e.,

(1-q)/2q
u(t,z) = Yqaz (E%ED ) (4-117)
Note then that
(1+q)/2q
du _ 1 1 paz
T qaz(tJ | . (4-118)

Comparison of this expression with Equation 4-116 shows that

I = -
im m

Now, the response 1

by

2
e v -

k1l

(4-119)

st of the cable to a unit step function is related to

im
t

Ist(t’z) =./F Iim(t,z)dt

S0 o
- / 2 f e_uzd (4-120)
= \ Tl'p u .

u(t,z)
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Note that t = « corresponds to u = 0, so that

f 2 - -u2 1
) Ist(m’z) = E'I;'fe du = 'sz . (4-121)
0

Actually, I_, (»,2) should equal unity. The factor 1/Y2p =~ 0.73 is not
far from unity, but our estimate is not entirely accurate. It will be

' shown below that the error comes at late times after most of the pulse has
arrived at the point z. For the present we proceed with the formulae as

they stand.

} : The integral in Equation 4-120 attains half of its final value at
about u = 1/2, and it can be said that the signal arrives at the correspond-
ing time. This time can be evaluated from Equation 4-117, which gives the

arrival time

t, = p(aq)VPar) /P (4-122)

If a is evaluated from the reference values k., and w

0 0’ Equation 4-108,

this result becomes

Vo'a / |
~= = pl4ak,) VP, (4-123)
where Vo is the phase speed at the reference values,
}
Vg = mo/k0 . (4-124)

Equation 4-123 shows that the arrival time increases faster than z/v0 with
increasing 2z; this comes from attenuation of the higher frequencies with

increasing z.

The rate of rise of the signal at the arrival time can be esti-

mated from Equation 4-119:
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: o2 3w -4 [2 a-q/q . -1/4
rise rate = = (- at)e = ™ ta u e
~ (0.62 ggi . (4-125)
a

The rise time tr is the ratio of the final value to the rise rate,

. 9 : -
tr ~ 1.14 p ta . (4-126)

Thus tr is a small fraction of ta'

Equations 4-128 and 4-125 have a very simple and useful interpreta-
tion, from which they could have been foreseen. First, note that no specific
choice of Wy and k0 has been made, except that they go together. Thus
in Equation 4-123, k0 can be set equal to any value of kr (the real part
of k) if Vo is set equal to the phase speed Vo going with kr. The
equation can then be written

- 2 P/ q/p
t, = v¢ (p 4qgrz) . (4-127)

Now,
PP/ (1Pl n e (g <«< 1)

For 0.9 < p < 0.95, 4é-P is quite close to w/2 (within 3 percent). Next,
note that according to Equation 4-107,

NI |

qkr a:ki . (4-128)

Thus Equation 4-127 is equivalent to

t == (k,2)VP (4-129)
a v i
9
The interpretation is now clear: find that w5, from Figure 4-8 for
example, for which
ki(ml)z =1 ; (4-130)
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s e =

the arrival time is then

ta = z/v¢(w1) . (4-131)

The interpretation of the rise rate, Equation 4-125 is equally

simple. The value of kr for the case (4-130) is

kr(wl) 2ki/nq

2/Tqz . (4-132)

The frequency going with kr(wl) is

£
1
<
p
1

1= Vekr = 2v¢/nqz

2

. (4-133)
Tqt

Now 2/m = 0.64, quite close to the factor 0.62Yp in Equation 4-125. Thus
the rise rate of the signal at z is equal to that frequency w, for

which the attenuation is e I.

These results hold for a step function input current. Figure 4-7
shows that short EM phlses produce step-like currents, but with finite rise
rates. The rise rate at z cannot be faster than that at the input. Long
EM pulses produce ramp-like currents. The response of the cable to a ramp
is the time integral of the step-function response. The arrival time for a
ramp is essentially the same as for a step function. The rise time of the
step corresponds to the time for the ramp to acquire its final slope.

The failure of I_  to reach unity, Equation 4-121, comes from
the fact that the expansion of the argument, Equation 4-115, is not accurate
at late times. For t > 0, the integral in Equation 4-109 can be evaluated
by folding the contour of integration about the cut as in Figure 4-10b.

The result is
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- p
Iim(t,z) = %—J{; stecos(qn)azs sin[sin(qn]azsp]ds . (4-134)

0

For large t, most of the contribution to this integral comes from small

P

s, so that the functions of s® can be replaced by the first terms in

their power series expansions. Thus for large t,
o~ l _St 2 p
Iim(t,z) ~ er sin{qq)azs‘ds
0

~ qaz(p!)/tP*l (¢ 1arge) . (4-135)

This result shows that the impulse response falls to zero somewhat more
slowly at late times than was indicated by Equation 4-116. This explains
why the time integral of Equation 4-116 did not quite reach unity. The
behavior of Ist is sketched in Figure 4-11. The current rises rap;dly
at t near ta’ but not quite to unity. The final rise to unity takes

few t 's.
a fe a's

st

Figure 4-11. Shape of the step function response.
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CHAPTER 5
COUPLING TO LONG BURIED CABLES; AN EXAMPLE

5.1 INTRODUCTION

In this chapter the theory of Chapter 4 will be extended to buried
wires that are long enough that the amplitude of the EMP changes appreciably
over the length of the wire. In most of this chapter, attention is given
to a pérticular example, namely that of a buried power line which terminates
at a buried facility. In order to maximize the coupling, the nuclear burst
is assumed to occur directly on the power line, at a distance of 1 kilometer

from the facility. Tﬂé"geometry is sketched in Figure 5-1.

The air in the fireball is very hot, with tempefatures in the range
1 to 10 eV, and is therefore thermally ionized. The electrical conductivity in
the fireball is in excess of 104 mho/meter. The fireball is a very good
conductor compared with the soil and with the air outside the fireball. The

radius R of the fireball increases with time as

R(meters) ~ 1300 ¢2/5y1/5 (5-1)

where t 1is the time in seconds and Y is the yield in megatons. This

1/3 second,

formula is valid for t < 0.1Y
Buried power lines typically have a central 'hot" wire surrounded
by insulation, then wrapped with several return conductors which are
approximately at ground potential. Often a partially conducting plastic
sheath protects the return wires from corrosion by the soil. We shall assume

that the return wires are in electrical contact with the soil, and take the
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e
Fireball
a Air .?
Ground
\ N
Power Line f
racility ,
q.
Figure 5-1. Geometry of burst, power line and facility. -
resistance of the return wires to be

p ~ 0.3 milliohm/meter . (5-2) q

The integral of the radial EMP electric field in the ground between
the fireball and the facility would be of the order of 1 to 10 megavolts, if

the power line were not present. After a period of inductive limitation of
current in the wire, this voltage appears partly between the wire and the
fireball at one end, and partly between the wire and the facility at the
other end. It is likely that these voltages are large enough to drive arcs
between the wire and the fireball and between the wire and the facility q
walls., It is assumed here that the latter are reinforced concreté, and

have a iow impedance to distant ground. The fireball, which 1is in contact

‘with the soil, also has a low impedance to distant ground. The current in

the wire is limited, after the inductive phase, by these two impedances. It ‘f
is likely also that the soil will break down in the vicinity of the wire

along its length, reducing to some extent the voltage and current delivered

to the facility.

" The question as to whether ground shock destroys the power line is
immaterial. There is no shock wave outside the fireball (at the times of
- interest here), so the powér line must be intact at the fireball radius. If the

power line is opened at some point underneath the fireball, the arc can still

.étrike near its edge.

T
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5.2 THE DRIVING ELECTRIC FIELD

Figure 5-2 shows a crude representation of the time and radius
dependence of the radial electric field in the ground within a few meters of

the surface. The times T 1labeling the curves are retarded times,

T=t -

O|H

(5-3)

Actual calculated fields do not fall precisely exponentially with distance,
but the representation shown is not a bad one. The fields given are most
appropriate for a few megaton explosion over soil of conductivity (at low
frequency)

~ 109 :
O ~ 10 © mho/meter. (5-4)
The ends of the curves are placed at the fireball radius obtained from

Equation 5-1 with Y = 3 MT, -

The behavior of the field can be understood from the theory pre-
sented in Chapter 3. At early times the air conductivity is larger than the
soil conductivity, and the radial electric field is approximafely equal to
the saturated field JS/U(air), which varies little with distance out to 1
kilometer. At late times, in the quasistatic phase, the Compton current
passing outwards through the hemisphere of radius r in the air returns as
conduction current through the hemisphere of radius r in the ground, so
that

o o T/A, 2
E. &~ - Js/o0 e /7 . (5-5)

This formula indicates that Er should fall by about a factor of 10 between
r = 300 and 600 meters (A & 300 meters), in agreement with the curve at

T = 10-2 second. At intermediate times, the curves can be understood by
assuming that the Compton current within one skin depth in the air returns

as conduction current within one skin depth in the ground.
L}
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The fields of Figure 5-2 are represented analyticaly by the formula
r, -Br '
E (r;t) = &(t - e . (5-6)

Here & is a function only of retarded time. The parameter B is not
independent of time, because the slope of the curves in Figure 5-2 varies.
From the slopes we obtain the following table:

t = 107° 107° 107* 1073 1072 sec ]

. -1 ; (5-7)

0.007 0.0012 0.0034 0.0054 0.0079 m

It is seen that B changes only slowly with time.

If B 1is regarded as 1ndependent of time, then the Fourier expansion

of E (r,t) contains terms of the form

eJ(wt-kz)

. ’ z. . o (5-8)

where
-_ — - 1 —
k = < iB . ' (5-9)

Note that the horizontal coordinate (along the power line) is now called

z, in order not to confuse it with the cylindrical coordinate Tt of Chapter 4.
5.3 THE WIRE IMPEDANCE

The impedance of the power line to driving fields of the type of
Equatlon 5-8 is given by Equat1on 4-28. The absence of an insulating layer

in the present case can be accounted for by putting a; = a,. The impedance
Zw is then
Z Kz 2 j v
Z,@ =~ 5 [~ 22 (en -9 (5-10)
N2 Y22, '
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The quantity k., is given by Equation 4-11, which with Equation 5-9 becomes

2
2 Ny, 2
Wl T, (5-11)

where the relative soil admittance is

. e
N, =20 +3 —. (5-12)

In deriving the time-varying inductance model in Section 4.6, we
showed that the second (kz) term on the right in Equation 5-11, with B = 0,
was small compared with the first term and could be neglected. This approxi-
mation must now be reexamined. Writing out Equation 5-11 gives

2 m2 W 2
- Ky = - :5 (e-1) + j E—(Zoo-ZB) - B” . (5-13)

The contributions of the k2 term are evident., First, there is the term
-1 in the factor € - 1, which can be neglected as in Section 4.6. Second,

there is the term -2B in the factor Z.0 - 28. Now Z.0 #~ 0.377 while

0 0
2B < 0.016; thus 28 can also be neglected. Finally, there is the term
-82, This term is negligible if
2 w
< 2
B c Z00 ?

or, since ZO/c = Hy» if

1 1 ) .
> —= ~ ) -14
g > i o skin depth (5-14)

Thus fhe time-varying inductance model is still valid if the distance of dif-
fusion of fields along the wire is small compared with the distance 1/8
in which the amplitude of the driving field varies appreciably. In the time

domain, the inductance model is valid for times

t <2 ~10% sec in present example . (5-15)
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In order to find an approxlmate evaluation of 2Z W’ it is necessary
to evaluate both the factor « /n and the logarithm in Equation 5-10.

For the log term, the var1at1on of which is not sensitive, we take

2 s
T a

Yikyla, 23 (5-16)

F)

where & 1is given by Equations 4-74 or 4-81 if Equation 5-15 is satisfied, and

H.0
l'rle for t > —BOT . (5-17)

§ =

For the factor: Kg/nz, note that the neglection, in Equation 5-13, of -1
compared with € and of -28 compared with ZOG is equivalent to writing

Equation 5-11 as

2 dwny,

_KZN -B

or -

2
K 2 2 -
2 .. W B . W B

- N — - R ) = = {(5-18)
n2 C n2 c ZOU

The second form here recognizes the dominance of ZOG over ew/c at late

times when the B2 term is significant.

With these results and with the inclusion of the resistance Rw0

of the wire, the impedance of the wire can be written

Zw(m) = jwL +—Rw0 - RB , (5-19)
where
H
L= T3 ln(——) Henry/meter » (5-20)
T
and
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BZ

RB = 50 Rn(‘ﬁ) ohm/meFer . (5-21)

%2

As in Section 4.6, the time domain equation for the wire current I is

£ [LOTO] = E(t) - [Rg-Rg(e)]T . (5-22)

Note that the resistance RB represents a negative resistance, which
accounts for the increase in current at a given z due to larger driving
field at smaller z. The e-folding time of the current due to this negative

resistance 1is

.o
L 0

T =—=—. (5-23)
RB B2

. . . ' -4 -
For the example considered in this chapter, T ®# 10 = second at t = 10 4 second.
Thus diffusion along the wire accounts for most of the increase in current

after .t = 1074 second.

The solution of Equation 5-22 can be written in terms of integrals.
Let

t
R, - R
g(t) = d/- £ 2 d[.[u 5 - ———Jdt' : (5-24)
0

Then Equation 5-22 can be written as
d t
=l Oy 1000] - o) |

and the solution of this equation is

t
g(t) '
I(t) = "LT)_fe“g(t )E(t')dt' . (5-25)
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5.4 DIFFUSION ALONG THE WIRE

The physical origin of the term RBI is made clearer by writing

RB 2
RBI =1 LI = — LI . (5-26)
Now it was assumed in Equation 5-6 that the dependence of the driving field
on z and t is &(t - z/c)e_Bz, and it was shown above that the dependence
of & on =z produces negligible effects when, as in the case of interest
here, the wire is in electrical contact with the soil. Thus the essential
dependence of E on =z is e-BZ, and I will have the same dependence,

apart from end effects which are considered below. Therefore,
2. B (5-27)
oz ? '

so that Equation 5-22 is equivalent to

[LI] =E - R T+ —-l—i? [LI] . (5-28)

3
ot w0 uoo 3z

This diffusion equation shows explicitly that the magnetic flux LI per
unit length of wire diffuses along the wire, and is valid for any dependence

of E on 1z, not just exponentials.

Equation 5-28 can be derived directly from Maxwell's equations for
the present case. These are, in the cylindrical coordinates of Figure 4-2,
3B JoE oE

8 __"z "r _
ot = or 9z °’ (5-29)

oB

- 5 (5-30)
r

Ho9E, 5
3 _
o By . (5-31)

]
H|=

uOUEz
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In the last two equations the displacement current has been neglected, a
good approximation in most soils except at the highest frequencies or

very early times. Using Equation 5-30 in Equation 5-29 gives

% = °E, + L ?_EQ (5-32)
ot or uoo z2 '

Let the fields indicated here be those due to the current in the wire, not
including the incident fields applied to the wire. Then B6 and EZ vanish
at sufficiently large r. Integrating Equation 5-32 over r from the radius

a, of the wire to large T yields

2
E?i = - E_(a,) + —l —--32¢ (5-33)
at z "2 MO az2

where ¢ 1is the magnetic flux per unit length of wire. If the wire were
perfectly conducting, then Ez(az) = - E (the applied field); for resistive

wire,

E,(a,)) = - E+R I . (5-34)

The flux ¢ is estimated by assuming that B, is the field of the current

8
I out to the skin depth &,

)
u H
_ .0 dr _ 0
¢ = o I T

)

Rn(——JI
(5-35)

LI

When Equations 5-34 and 5-35 are used in Equation 5-33, the result is Equation
5-28. This derivation.does not give the formula for 8, which comes only
from the complete solution of the equations developed in previous sections.

The complete solution also makes clearer the effects of approximations made.
5.5 TERMINATION CONDITIONS

In order to determlne 2 solutlon of Equation 5-28 for a wire of

finite length, an addltlonal equatlon is needed at-each end of the wire. This

124 - -

AR LA AT T Ep A o L




equation can be obtained by integrating Equation 5-30 over r from a, to

6. The result is

__ % _ 3
]JOO'V Sl Pl 32 [LI] , (5-36)
where
)
V = J{Erdr , (5-37)
r

is the voltage between the end of the wire and distant ground associated with
the current I in the wire; i.e., V does not include the incident electric

field. Usually, V is related to I by a simple impedance, which at all

but the earliest times is well approximated by a resistance. If the facility
in Figure 5-1 is approximated as a conducting sphere of radius ac, its

resistance to distant ground is

l’ dr ,, 1 . 6> a

4ﬂr o Zﬁan

(5-38)

£)

The factor 2 here comes from the fact that the facility is located near the

surface of the semi-infinite soil medium. The resistance of the fireball to

distant ground is that of a disc of radius A

(5-39)

R, = . (6>>afb).
If the load resistance is designated by RL (= Rf or be), then the relation

between V and I is

V=IR , (5-40)

where I 'is the current flowing out of the wire into the soil. Combining

this equation with Equation 5-36 yields the termination condition

3 .
3z (L1 = - wpoRyT

I
re—
F
=
ot
~
(73}
F-
[
et



In terms of ¢, the differential Equation 5-28 and the end con-

5.6 METHOD OF SOLUTION OF THE EQUATIONS ,
The flux function has been defined (by Equation 5-35) as iélb
¢(z,t) = L(t)I(z,1) . (5-42) -
Here L 1is given by Equation 5-20, with &(t) given by Equation 4-81 or é
Equation 5-17; the t in &(t) is really the retarded time, or time -?
after the arrival of the driving field at the position =z. The difference }_.
between using real time or retarded time in the rest of the equations was f B
shown in Section 5.3 to be negligible. We therefore think of t as retarded % f
time in the remainder of this chapter. %.
i

ST
ey

dition 5-41 are

R 2
— 00 —w0 1 9%¢ i
F=E-—7T]¢+ ——, (5-43) B
ot L uoo 8z2 3
gQ_= -z (t)d at right-hand end , , é
z r I 3
s (5-44) '%‘
=+ L, (t)d at left-hand end . ?
Here the factors ¢ are defined by 3
ZFORL
g(t) = ——=— (5-45)
in (a—)
2
with the appropriate load resistance RL at each end. The positive direction

of E and I is to the right.

These equations can be solved quite readily by finite-difference
methods. However, approximate solutions can also be found analytically,

and these are useful for providing understanding and checks on the finite-

e e e e v imm ¢ e tmemmateme it dweeme fmmer 0 —_—

difference results.”

Iomtme s ahe - mmmaa® b e e ks R AR T e b . = e L
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The first step in the analytical solution is to eliminate the

term Rw0¢/L by defining

gt} = _[I(t—dt' s (5-46)
and letting

$=e ¢ - (5-47)
Then Equation 5-43 becomes

2
3 g,(vy ., 9%
1 1 1 771
—— = e E + — , (5-48)
at MO 3ZZ

Equations 5-44 are left unchanged except that ¢ 1is replaced by ¢1.

A general method of solving Equation 5-48, subject to the end
conditions is: first, find a particular solution of Equation 5-48 ignoring
the end conditions; second, find solutions to the homogeneous equation obtained
by setting E = 0, again ignoring the end conditions; third, choose a linear

combination of the particular and homogeneous solutions which satisfies the

- end conditions.

If

- &t)e B | (5-49)

then a particular solution of Equation 5-48 can be found by assuming

¢, (z,t) = <I>2('c)e'BZ . : (5-50)

vSubstitutiOn of this form leads to

d¢, g, (t) g% :
= &(t) + B ¢2 . : (5-51)
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Strictly speaking, this procedure 1s valid only 17
ever, Equation 5-51 is approximately correct if

which we assume. Then if gz(t) is defined by

f & (t ) gpr | | (5-52)

the solution of Equation 5-51 is

g, (t) ' ]
b, (t) = e 2 -j~exp[gl(t ) - gyt ZACAD L (5-53)
0 .

This completes the particular solution of Equatic? 7,-48.

5.7 HOMOGENEQUS SOLUTIONS

In finding solutions of the homogeneous form of Equation 5-48,

convenient to redefine the space variable as
y = \’uocz . : (5-54)

Then the equation becomes simply

2

P _3Y , (5-55)
ot ay2

where we have designated the homogeneous solution by ¥ in order to

distinguish it-from the particular solution ¢,- A very simple solution

of Equation 5-55 is

. Stet Vsy . _ (5-56)

where s is an arbitrary positive constant. This would be a useful
homogeneous solution to add to the particular solutlon ¢1 if ¢,

jncreased exponentially with time. Equation 5-53 indicates that ¢ and

¢, will increase approximatély exponentially with time at late times.
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At each end of the wire, we should choose that solution that
decays with increasing distance into the wire. Thus at the ends of the

. . . S .
wire for the solution going as e t, we have the relation between 1 and

op/oz.

oY .
5 " \’suoc Y at right-hand end ,
—\fsuoo Y at left-hand end .

It will turn out that only the relation between ¥ and 23¥/9z at the end

(5-57)

of the wire is needed to calculate the total current at the end of the wire,

at those times before diffusion can occur over the entire length of the wire.

At early times, Equation 5-53 indicates that ¢2 will vary more
like a power of the time than exponentially. Hence it would be useful to

find homogeneous solutions Y such that

W(t,y=0) = t" , (5-58)

where n 1is a positive constant. Such solutions are conveniently found
by Laplace transform of the time variable in Equation 5-55. It is easily
shown that the general solution, appropriate to the right-hand end

of the wire, in the Laplace domain is

W(s,y) = £(s)e VSV, (5-59)

where f(s) is an arbitrary function of the Laplace variable s. This
function is fixed by Equation 5-58. At y = 0, f(s) must be the Laplace

n
transform of t,

(o]

£(s) = f t"e " Stqt = ni/s™L . (5-60)
0

The Laplace transform of 23y/3y can be found by taking the derivative of
Equation 5-59. At y = 0,
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Js £(s) = ni/s™H 2 (5-61)

W(s,y)
dy y=0

Comparing Equations 5-60 and 5-61 makes it clear that in the time domain

Bw(t,Y)) - nt nl/z (5-62)
9y y=0 (n - %95

Thus the relation between ¥ and oy¥/dz at the right-hand end, for power

law time dependence, is

RV TR (5-63)

(I‘l. - 5)!

At the left-hand end, a minus sign should be inserted in this equation.
Figure 5-3 contains a graph of the ratio of factorials that occurs in

Equation 5-63.

- The time dependence of ¢2, Equation $-53, will rarely be purely
exponential or purely power ldw. However, the relation between ¥ and

9Y/3z 1is not very sensitive to the precise form of the time dependence.

For example, the exponential. function St is tangent to varying power

laws at varying times. Since
eS(E40) & oSt(russty (5-64)

“and
(t+8t)" =~ £ (1 % 8t) , (5-65)

it is clear that at time t the exponential is tangent to a power law with

n=st or s=mn/t. (5-66)

If in the end relation 5-57 for exponentials we make the replacement s = n/t,

we obtain the approximate power law result
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%—‘ii = Vny o/t b (5-67)

The crosses plotted in Figure 5-3 are Jn, which is to be compared with the
ratio of factorials of Equation 5-63. It is seen that treating the
exponential case by power law fits at various times leads to only a small

errorw.

We shall write the relation between ¥ and dy/9z as

l.gi.= * A(t) , (5-68)

Y oz

where the plus sign is for the right-hand ‘end, the minus sign is for the

left. The formulae for A are

A= suoo for ¢2 ~ e ,
(5-69)

LN

— oM \Uo/t for 4, ~t
Ho %

(n - %J!

]

Note that 1/A is approximately the distance diffused along the wire.

5.8 SOLUTION OF THE TERMINATION CONDITION
FOR EARLY TIMES

At times sufficiently early that the diffusion distance 1/A is
small compared with the length of the wire the contribution of wl’ the
homogeneous solution associated with the left-hand end, to the flux at the
right-hand end is small and vice versa for wr. The solution of the termina-
tion condition Equation 5-45 is then relatively simple. Having evaluated
Equation 5-53 for the particular solution ¢2(t) at the right-hand end, we
find the power n(t) appropriate for each value of t. Let wr(t) be
the value of the right-hand homogeneous solution, including an arbitrary
constant multiplier which is absorbed into wr' We then consider the total

solution
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g e

¢T = ¢2 + w . (5-70)
The z-derivative of ¢ at the right-hand end is

3¢T

S5z ° ¢é + ¢; s ) : (5-71)

where, from Equation 5-50,

¢2 = - B¢2 > (5_72)
and, from Equation 5-68,

lf)I'_ =AY ' - (5-73)

The termination condition 5-44 then becomes

- Bo, + A = - ¢ [0,40 ] . (5-74)

This eﬂuation can be solved for wr,'with the result
(B —Cr)
LV el AP (5-75)
T
The flux ¢T is then, from Equation 5-70,

¢p = (i?jﬁzg:) ¢, (right-hand end) , (5-76)

and the current into the termination is
-g, (t) , _
LT, (5-77)

At the left-hand end, A+ -A and Cr -+ -CE’ so that

op = (f;j;z%z) ¢, (left-hand end)‘. (5-78)

It would appear from Equation 5-78 that ¢T could change sign

at times when A becomes less than B, or when the diffusion distance 1/A
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exceeds the decay length 1/f of the driving electric field. No change
of sign occurs because A approaches B at these times. Equations 5-53

and 5-52 show that

82 ® .
6, ~ exp(—-——-uoc t) , (5-79)
when th/uoc >> 1, or when the diffusion distance‘thuoc >> 1/8. Thus
. at these times d)z is approximately exponential in t with s ® Bz/uoo, )
and from Equation 5-69, '
AR . _ (5-80)
The factor A-B in Equation 5-78 becomes small as ¢2 becomes large ®
(exponentially), and the result for ¢T is not clear,
In order to resolve the uncertainty, it is necessary to examine
Equation 5-78 more carefully in the Laplace domain, since ¢, 1is not exactly . °
“exponential in time. In the Laplace domain, the -equation '
\’ ]‘1005 - B ‘
= 5-81
¢r(5) N 9,(s) , (5-81)
0 L e
is correct provided ¢2(s) is properly evaluated. This can be achieved
from the Laplace transform of Equation 5-51, which is
2
i, 8 e
s¢, = F(s) + o ¢, » (5-82)
~where F(s) —is the Laplace transform of the function
g1 (M gry . (5-83) e

F(t) = e
The solution of Equation 5-82 is
HyO

$,(s) = ———5 F(s) , ’ (5-84)
: uocs - B . .

and Equation 5-81 becomes
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M40
¢r(s) = F(s) . (5-85)

g HOS + CEJ(VPOOS + B)

Note that the factor‘\/uocs - B, which tended to zero in the previous

analysis, has canceled out of the equatiomn.

The inversion of Equation 5-85 to the time domain can be done
approximately for those times at which the diffusion distance is larger
than 1/8, where Equation 5-78 is insufficient. At these times \/uocs
 can be neglected compared with f. In practical cases ;R is comparable
to B or larger, so that.*Vuoosr can also be neglected compared with Tpe
Then

MO
o (s) = F(s) ,
T CIB

which leads immediately to

Koo g, (t)
(t) ~ —é"(t)e . (5-86)
LoB

The current at the left-hand end is

~ S(t)/BR, (5-87)

where RL is the load resistance at the left-hand end. According to Equation
5-49, &(t)/B 1is the integral of the electric field along the wire, or total
voltage. Most of the voltage drop occurs near the left-hand end. The current
is approximately equal to the voltage drop divided by the load resistance

in the time frame assumed in this paragraph.

At the right-hand end, Equation 5-76 contains no such ‘cancellations.
This equation is correct until diffusion from the left-hand end can reach the

right-hand end,
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5.9 QUASISTATIC SOLUTION AT LATE TIMES

At late times the end effects generated at each end can diffuse
to the other end, and this interaction of the end effects must be taken
into account. To do this we return to the general equations for ¢,
Equations 5-43 and 5-44, and go to the limit in which diffusion is rapid
compared with the time t. Since E varies more and more slowly as time
increases, the term .9¢/9t in Equation 5-43 becomes small compared with other
terms, and can be neglected in first order. This procedure yields the
static solution appropriate to the E and L at each time. We therefore
need to solve the equation

2
90 2 - HgoE , (5-88)

322

o

where the quantity vy is defined by

Y= VUOORWO/L

1/2
i (chRwo)

ol

(5-89)

We again use the form of Equation 5-49 for E, and choose the origin of the

z coordinate to be at the left-hand end of the wire. Let d be the distance
. from the fireball edge to the facility, or length of wire exposed to the
field E.

The general solution of Equation 5-88 is

HO0&
_ "0 -Bz
¢”2_'_2['e +C

e V: 4 e+Yz] , (5-90)
B™ - v '

1 2

where C1 and C2 are arbitrary constants which can be chosen to satisfy

the end conditions, Equation 5-44. These end conditions are




B - yCl + YCZ = ;2[—1 + C1 + C2] s

(5-91)
e Fd _ Ye_YdC1 + YeYdC2 = - cr[-edBd + Cle'Yd + CzeYd].
These equations can be solved for C1 and CZ’ with the results
¢, = [&p#B) e - g, ;e ™)/,
C, = [ @ -8 - +my e/, (5-92)

D = (g (e - (g, e .

When C1 and C2 have been evaluated, the flux ¢ Vcan be calculated from
Equation.5~90, as a function of z. The fluxes ¢£ and ¢r at the left

and right-hand ends can be evaluated directly, with the results

H O&
0=z [EN M - M « 20, (5299
=Y
o -Bd
v o&e : - ,
6, = 1§;i7;;r[-(s+y)(cz+Y)eYd + (BN (5N v 2v(z, 48P/ L (5-0)

Note that the brackets in these equations transform into each other when
Ly and Cr are interchanged and B 1is replaced by. -B, as is required by

symmetry.

The expressions derived above are fairly complicated and the
results are not easy to visualize. However, considerable simplification

occurs for a case that is of practical importance. This case is
Bd>>1,Yd<<llY<<C2:Cr" (5-95)

Bd

When these conditions hold, terms containing a factor e~ can be dropped

and the approximation




+
e VP~ t yz (5-96)

can be made. Then ¢(z) can be shown to be

U O& (1+B8x,) (d+x_-z)
~ 0 -Bz 2 T
¢0(2) ¥ —— [—e t (5-97)
B 2 T
where we have defined the "extrapolationrlengths”
X, = /g, 5 x =1/T_ . (5-98)

The boundary conditions (5-44) are equivalent to the statement that if ¢

is extrapolated with constant slope to a distance l/cr or 1/C£ beyond
the ends of the wire, the extrapolated ¢ must vanish. Equation 5-97
satisfies this extrapolation condition approximately. At z =d + X, ¢
vanishes in the approximation that e Bd 45 negligible. At z = -x,, the
extrapolated value of e_Bz is 1 + sz, so that the bracket vanishes
exactly.w A sketch of the geometrical relation of the exponential and linear
terms-;ﬁ the brackegdisrshoﬁn in Figure 5-4, along with the shape‘df $(z).

The value of the current at the right-hand end is

1(d) = &) ~_ 2108 (L+Bxp) %, .8 . __aiifﬁEL— (5-99)
L _len(éia d + Xg * X BRL B(d+x2+xr)
2

where RL is the termination resistance of the right-hand end. Note again

that &/8 1is the total voltage applied along the wire.

5.10 APPLICATION OF FORMULAE TO EXAMPLE
The approximate theory developed above is applied in this section

to the example defined in this chapter. The parameters of this example are,

in summary:
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~ Linear Term

Figure 5-4. Sketch showing relation of exponential and
linear terms in Equation 5-97, extrapolation
lengths and flux ¢(z).

wire resistance = R . = 0.3 ohms/km;
w0 N\
ground conductivity = ¢ = 0g = 10‘3 mho/m ; '
— ground permittivity = € = 10 ;
radius of wire = a, = 0.0l m ; >(5—100)

resistance, facility to distant ground = Rf = 10 ohms;

distance froim burst point to facility. = 1000 m;
driving electric field given by Figdre 5-2 .

From these input parameters the derived parameters calculated at the indicated
times are listed in the Table 5-101. In this table, B8 is calculated from
the slope of the curves in Figure 5-2. The skin depth 61 comes from
Equation 4-81, which takes into account approximately the frequency variation
of ¢ and € for typical soils. Equation 5-17 determines 62. The smaller
of 61 and 62 is used in Equation 5-20 to determine the inductance L.

The resistance be between the fireball and distant ground comes from
Equation 5-39, with the fireball radius 2 read off Figure 5-2. The
logarithmic derivatives Ty and cr come from Equation 5-45, and the

extrapolation lengths X, and x . come from Equation 5-98.
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e

t, sec 107° 1072 1077 107" 1072
10° 8, m L 0.7 1.2 3.4 5.4 7.9 \
§,, m 24.3 91.3 307 990 3150 e
6, m 1600 9353 329 207 142
lﬂn(glJ 7.80 9.12 10.33  9.94 9.56

2 . .
L, uli/m 1.56 1.82 2.07 1.99 1.91 >(s-101) N
Rey,» Ohms 20 10 6.3 2.5 1.0
10° Cg,nfl 16.1 6.9 3.83 1.58 0.66 C
10° ¢, nt 8.1 6.9 6.1 6.3 6.6
Xy, m 62 145 261 633 1520 )
X_, M- 124 145 - 164 158 152

The next step is to calculate the exponential arguments gl(t) and

gz(t), defined by Equations 5-46 and 5-52. It is clear from Equations 5-47,

e
5-48 and 5-53 that these arguments need to be calculated accurately only when
they are not small compared with unity.. If we take L = 2.0 X 10—6yH/m, a
value appropriate to the period 107% to 1072 second, Equation 5-46 gives
gl(t) ~ 150 t , ) e
3 " (5-102) '
~(0,1Sat t=10", 1.5at t = 10 sec .
T'Equation 5-102 is therefore an adequate approximation up to 10-2 sec. From
Equation 5-52 it can be seen that gz(t) reaches the value unity

approximately when

2

00’

ko]

=1 or t= uOO/B2 =1.25 x 10_9/82 . (5-103)

=
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With 6 read from the Table 5-101, trial and error leads to t =~ 10°
seccond as the time when g, nears unity. A simple formula representing

3 - - -3
8" within 20 percent in the time interval from 4 x 10 > to 107 second is

2~ 103\T,
from which the result follows,
3/2

t
1074

(5-104)

&,

In order to calculate the early-time current at the right-hand end
of the wire, ¢2(t) must next be evaluated from Equation 5-53. The & in
that equation is to be read from Figure 5-2 at 1 kilometer from the burst
point. The points read off are graphed in Figure 5-5 and a smooth curve is
drawn through them. This curve is then multlplled by exp(g -gz), and the
result” is graphed, and integrated numerlcally, yielding the integral
curve shown. Finally this curve is multiplied by exp(gz) to yield ¢ (t).
All of these operatlons can be done graphically and with the aid of a pocket

calculator in a half hour or so.

The next step is to apply the end condition, Equation 5-76, to

obtain To determine the logarithmic derivative A, we use the power

...
law approIimation in Equation 5-69. From the slope of ¢2 in Figure 5-5,
the values of the power n are determined; A is then calculated from
Figure 5-3 and Equation 5-69. Next, the factor (A+B)/(A+Cr) is evaluated
and ¢f‘ is determined from Equation 5-76. Finally, the current 1 is
calculated from Equation 5-77. The numbers obtained in these operations

are:

141




! Pl ? T
o : !
' L : ;
107 et e —
RN —
—
SHIE T
10% e
- { & V/m H
t i ‘\‘ \\
| ! \\
2 ! N
10 o
Q(91 92)3
!
10! L
=1 _-J-1 f 114 -- o= = - -1- - l ]
_ o 917
e 7
///
e /
0 LK s
10 = )
/7
'/
L T
- r(g;-g,}
- prd So 19254t
- - 7 Vs
L~
)
//
-2
10 ]
107 107 1074 1073

t (second)

Figure 5-5. Quantities in the early time solution.
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t, sec 1070 1073 107 3 x 1074 \

n. 0.65 0.65 1.0 3.0

n!'/(n-1/2)! 0.96 0.96 1.12 1.8

A, nt 0.034 0.0107 0.0040 0.0037 >(5-105)
(A+B)/(A+C ) 0.82 0.68 0.73 0.81

¢ps V - sec/m  0.016 0.062 0.27 3.04

I, Amps 1.02 x 10* 3.4 x 10*  1.30 x 10° 1.43 x 105/

The early-time current computed here is graphed in Figure 5-6. It
begins to rise exponentially, due to diffusion along the wire, at about 10—4

second, as expected.

The late-time, or quasistatic approximation for the current is
given by Equation 5-99. Tn that equation, & is the electric field at the
fireball end of the wire, and d 1is the distance from the fireball edge to
the facility, which is read from Figure 5-2. All of the other parameters

in Equation 5-99 have been calculated above. The numbers are:

t, sec 1074 1073 1072
& V/m 1.7 x 10% 8.8 x 10° 6.5 x 10°
(5-106)
d, m 960 900 745
I, Amps 1.97 x 10° 7.9 x 10% 5.6 x 10°

This quasistatié current is also graphed in Figure 5-6, where it
is seen that the quasistatic current is less than the early-time (inductively
limited) current after t = 1.3 x 10-4 seconds, at about the same time
that the early-time current becomes exponential. This result may seem
surprising. The time to go into the exponential phase is the time to dif-

fuse a distance 1/B = 300 meters (at 1074 second), and this time is
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t ~ u00/82 ~ 107 second . (5-107)

The time to diffuse a distance d is

¢~ uoodz ~ 1073 second , (5-108)

so that one might have expected the quasistatic phase to start only at 10-3
second. However, because the driving field is much larger at the left-hand
end, only a small part of the left-hand end effect needs to diffuse to the

right-hand end to make a noticeable effect there.

The actual current is estimated by joining—the early-time and
quasistatic currents smoothly, as indicated by the dashed curve in Figure .
5-6. Note, however, that in the decade between 10~ % and 103 second,
where the peak current occurs, the quasistatic approximation has not been
shown to be reliable. A better treatment of the diffusion of the. left-hand

end effect is needed.- .-Such a-treatment could be devised.

Note that the energy delivered into the assumed 10-ohm load at the
facility is of the order of 108 Joules. This explains the extensive
electrical damage that occurred in bunkers that had long wires going into

them in the early days of nuclear testing.
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CHAPTER 6
COUPLING TO OVERHEAD LINES

6.1 INTRODUCTION

Ground-based systems often employ overhead lines for power instead
of buried lines as they are substantially cheaper to build than buried
lines. These lines are not intended to operate after an attack, as they are
relatively easily damaged by air blast. However, their presence can result in
large EMP signals which are generated along their length and transmitted
to equipment which does have a post-attack survivability requirement.
Overhead- power lines-often consist of ‘a set of several wires carrying power
and a neutral wire elevated above the rest which is periodically grounded
for protection against lightning—for simplicity in this section we will
discuss coupling to a single line located at a height of 10 meters above

the ground.

Two features complicate the theory of coupling to overhead lines

compared to buried lines.

1. The conductivity of the medium surrounding the wire varies

as a function of both time and distance from the burst.

2. The boundaries of the wire and the ground-air interface do
not fit as coordinate surfaces in a system where the Helmholtz

equation
2+k%)6 = 0 , (6-1)

is separable. The Laplace equation in the two transverse
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dimensions (where the z axis is parallel to the wire)

2 2

(_32 s 2 2)¢ =0, | (6-2)
9x dy

is separable in bipolar coordinates and we will exploit

this feature in deriving transmission line equations suitable

for late-time calculations.

The discussion of current on the overhead line system breaks
naturally into two physical regimes—the first of these encompasses early
times when the skin depth in the air is less than the height of the wire over
the ground. In this regime we can calculate the electromagnetic fields
about the wire in cylindrical coordinates centered on the wire axis and
ignore the effects of the ground. This regime is further subdivided into
two phases depending on whether the displacement current is greater than
the conduction current ifi the #iF¥ or vice-versa. In analogy to the discus-
sion of surface-burst EMP, we will call the first of these the wave phase
and the second the early diffusion phase. In the second regime, which we
will call the late-diffusion phase, the skin depth in the air is larger than
the height of the line and it is possible to derive a set of transmission line
equations for the current on the overhead line. These three phases will

be treated in separate sections of this chapter.
6.2 WAVE PHASE

- In this section we derive the current on the overhead wire at early
times when the displacement current is much greater than the conduction
current in the air. Neglecting the field dependence of the air conductivity,
we can separate the electromagnetic fields into incident and scattered
parts. For example the electric field parallel to the wire, oriented for

convenience along the z axis, is
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total 1 cattered o
, = ch + Ei . {6-3)

The incident field is calculated without including the presence of the wire
(but including the effect of the air-ground interface). The scattered field
obeys homogenous Maxwell's equations (without the Compton current). The
effect of the wire is incorporated by setting the sum of the scattered and
incident electric fields (the total field) equal to zero at the surface of
the wire. We will only be concerned with the response of the wire to that
portion of the incident electric field parallel to the wire axis; the
portion which lies in the plane perpendicular to the wire axis results in

a polarization of the wire across its width which is inconsequential for
system survivability. We will also ignore the variation in the parallel
component of the incident electric field across the wire as the width of
the wire is much smaller than the spatial variation of this field. 1In the

wave phase, where

a

T >> 2,0, (6-4)
Equations 1-17 and 1-18 for the scattered field around the wire are
3B +
T VXE, - . (6-5)
-5
1 3E _ >
ca VB (6-6)

The component of the incident electric field parallel to the wire at a height
10 meters above the ground varies at early times as
inc

E

a{t-zcosy/c)
Z >

= costo(z)g (6-7)

where X 1is the angle between the radial from the burst and the cable, as
shown in Figure 4-1. Eo(z) varies slowly as a function of distance along
the line—the variation results from attenuation of gammas and the 1/1'2

decrease from a point source. If we assume that the scattered fields have

the same variation in z and t and ignore the slow variation of EO in
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z, Maxwell's equations become

QCcos) aEz
GBB = c Er T or (6-8)
2 E = acosyB 6-9
S 05XPg (6-9)
o3 _c 2
¢t Trar e (6-10)

Eliminating Er "and Be we arrive at the following equation for Ez

oE

azsinzx 1 9 z
2 E,=ror ¥ or (6-11)

for which the solution vanishing at large r is

~ rosiny » -
Ez KO( c ) ’ (6-12)
where KO is a modified (hyperbolic). Bessel function of the second kind.
Since E. = - E-™¢ at r=a
z z

E = - gin¢ Ko(rasTnx/c) (6-13)

Z z Ko(a051nx/c)
As K, behaves for large argument as

Ko(E) > \/2”'—5 et ' (6-14)

we associate the distance

- § = asiny - (6-15)

with a skin depth about the wire. The magnetic field can be obtained from

JE
. 2 - z
asin )(39— + ?
. K, (rasiny/c)
.o . inc 1
= * g SInXE, K, (aasiny/c) (6-16)
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The current on the wire is given by

1=2" g (a) . (6-17)

For the usual case where

a<< § , (6-18)

we can use the small argument limits of the Bessel functions

Ko(8) ~ - 2n % , Y = 1.781 , (6-19)

K (£) = (6-20)

1 £

S0
Einc
27 1 z

I = e Sinzx . (_2_c___) (6-21)

Yaasiny

This equation is similar to the equation governing the rise in

current in an inductor where

dI _ _inc
Lar=E (6-22)
with
U
0 .2 2c
L= o sin X in (m) (6-23)

. . . . . 2
The only unusual term in the equation for the inductance is the sin“y

which is do to the buildup of propagating waves near the wire.

We now return to the examination of our assumption that the
electromagnetic fields near the wire have the same spatial and temporal
variation as the local incident electric field. This assumption will be

invalid when x is sufficiently small that the variation of Eo(z) becomes
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important and currents at a given position are strongly influenced by the
stronger electric fields nearer the source. Consider the geometry of
Figure 6-1. The time difference of arrival between currents generated at
the observer location 0 and currents generated at C and propagating to

0 1is
At = %? (1-cosy) , (6-24)

so that when the conductivity is small and there is little attenuation of

propagating fields near the wire, we can ignore the variation of E0 in z
as long as
oE
a 1 0 :
= (1- >> S -
- (1-cosx) -85 ° (6-25)

0
everywhere along the line. When the burst is sufficiently close to the line
that either this condition or the condition that the skin depth is smaller
than the height of the line

A
Burst
B
A) C 0
o ) T
L..__V__J
Az

Figure 6-1. Geometry used in calculation of limits of.
validity of Equation'6-21.
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—_— X '2
Fsiny < h , (6-26)
is violated, the situation becomes substantially more complicated. The .

case of a short wire high above the ground with the burst located on the
wire axis is calculated in Reference 6-1; for a long wire with the burst

near the wire.axis, the presence of the finite ground conductivity becomes

important and this case has not been calculated. e
6.3 EARLY DIFFUSION PHASE
At most locations close to thé burst, the rising conductivity will ¢

cause the conduction current to rise above the displacement current. In

this section, we will calculate the wire current when

a

Z.0 > —, (6-27)
0" e n Q4

following therderivation of Reference 6-2. The current on the wire generated

during this phase should simply be added to the current on the wire at the

end of the wave phase as long as the skin depth is smaller than the wave

'phase skin depth (Equation 6-15). Ignoring the displacement current, and Q

assuming that the fields vary only as a function of retarded time from the

burst

t' =t - zcosy/c . (6-28)
i,
Maxwell's equations become '

JE oE
d _cosy T z '

ot! By = c at' T Br ¢ (6-29)
3B, L

ZOQEr = €COSX Tk (6~30)

zoE. =S .2 1 (6-31)

0"z roar "6’ .
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which can be combined into a single equation for Bg

9 B . oS X Be _ € 9
ot' \ B Z.oc at') ~ Z,0 dr

0

M=

% rBy - (6-32)

Dropping the second term in parenthesis on the left-hand side of (6-32) by

virtue of (6-27), using the fact that c/Z0

hand side we obtain

1/110 and expanding the right-

9 B9 . l_E)Be ) EE.— 5 BBe (6-33)
2 "ror T2 M
r , T
Changing to the scaled variables
R =r/a, (6-34)
tl
_ 1 dt"
i T = =i fo(t”) 2 (6-35)
Ho? £
0
where t6 is the time at the end of the wave phase, we have
328 38, B, 9B
29 ¥ “IR‘ aRe -5 - —are ’ (6-36)
oR R
subject to the boundary conditions.
9 - = t ] -
R (B[ = F(0) = wgao(e)Ey, (21, (6-37)
lim 'Be =0 .
R + (6-38)

We first determine the Green's function G(R,T-T') which is the magnetic

field resulting from an impulse in F at T

T'. Since Equation 6-36

possesses translational invariance in T, we exploit this fact by writing

G as a Fourier transform.
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oo

G(R,T) = fG(R,w)eindw , A (6-39)

-0

and the impulse function can be written

[~

§(T) = Z—ITr-fei‘”Tdm . (6-40)

-0

The equation for G(R,w) is

2
é—g+§-g—g—(—%+iw)G=0, (6-41)
aR R
which has the solution
G(R,w) = G, ()T, ( YIuR) + G, (WK, (VIuR) , (6-42)

where Il and Kl are modified Bessel functions of the first and second

kinds. In the Fourier domain, the boundary conditions on G imply

| : - 1

Gl (u))IO(Vlu)) - Gz(w)KO(V iw) = - — , (6-43)
lin G, ()T, (VIwR) + Gzcw)x'l(v_‘ima) =0, (6-44)
R+ w

The asymptotic limits of the Bessel functions for large arguments are

Z

1,(2) ~ larg z| < 5, (6-45)
' 2rz
T -2 3
X () 55 e larg z] < 2%, (6-46)
so if we choose the argument of Viw so that
arg(Vie) = -% w< 0, (6-47)
arg(Vie) = +% w>0 , (6-48)
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(which will keep the integrand on the same sheet when we transform back to

T) G1 must vanish and

G, (w) = L ) (6-49)

2m Viw Ko (Vi)

.

Transforming back to the T domain

G(R,T) = _1_ ” dw eimT M (6-50)
’ 2" | vig Ko (VD)
-0

The integration can be transformed into one over positive real values by
deforming the contour in the complex ® plane as shown in Figure 6-2. The
integrand has no singularities except a branch point at the origin from
which we may run the branch cut along the + iw axis. As the integrand
vanishes exponentially for T > 0, R > 1 at large positive imaginary w,

we may -ignore the contribution from the axis C2 and C6' Near the origin,

the integrand behaves as

—
€

.L\\\\\\\\\\\\\\\\\\Q\\.,

T

Figure 6-2. Integration path for Green's function.
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ein 1
I ~ 3 , (6-51)
1R 2n (y m)

so that we may ignore the contribution from C4, and the Green's function

is now

iwt KI(‘FEB]U

1 dw :
G(R,T) = —— , 6-52
)T Vi K_(Vie) (6-52)
C,+Cq 0

. i . .
setting w = pe © this can be written

R b i U kil e
Fan KoAVE) K (-iVP)

Expressing the modified Bessel functions in terms of Hankel functions of real

arguments, this is equal to

AL iV ovm w1 v

~ Further simplification is possible if we look at R = 1 which will give us

the magnetic field at the surface of the wire. Using the Wronskian

1 @@ - iP @@ e - - 8 (6-55)
we obtain |
2 mdp e P
6(1,1) = = [48 . : (6-56)
©on P el )

Setting x = Y p and expressing the Hankel functions in terms of ordinary
. Bessel functions
n

-TX

G(1,7) =i2f9;-‘- — (6-57)
m ITX) + Yo )
0
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which is suitable for machine computation. It 1is found that a fit to G(1,R)

which is accurate to within 2 percent for all T 1s

0.425 + \)-l— T<1.3,
T

G(1,t) =
(6-58)
G(1,T) = . nt f 5.16 > 1.3,
2n°T + 5.64%nT + 10.23
The magnetic field is, in terms of G,
T
Be(R,T) =‘]-G(R,T-T')F(T')dT' , {(6-59)
To
so that the current on the wire, obtained from
2ma
I ==—B,(a,t") , (6-60)
H e
0 ,
is given by
T
= 2 - ' t
I = 27ma ~I-G(l,'r ') {1 )Einc{T Ydr' . (6-61)
T

0

We have made a comparison between this accurate calculation and two
simplified time-dependent inductance models where we merely set

L) 3 - ), | (6-62)

for the first model and.
3 LeyI(t) = E._ (1) (6-63)
9t inc ’

as the second model. The second model is analogous to that used in Chapter 4
(Equation 4-80) and Chapter 5 (Equation 5-33) in that, in the absence of Einc’
the current on the wire falls as the magnetic flux ¢ diffuses radially away
from the wire. (This effect is absent in the first model.) The simple,
approximate forms of the air conductivity and the incident electric field used

in the comparison are
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®
a=1<cm,
s at
EinC = 1.57 x 10 —-_F V/]Tl 7
1 + e '
eat
o =1.57 Bt mho/m
1 + e
where ®
a =2 x 10% sec™t |
B =2.4x 10% sec! |
5 ¢

so that the peak electric field is 10” volts/m and the peak conductivity is

1 mho/m. The inductance used in the comparison is

L"H—gﬂ.n —-—1 /a | t <t (66'4)
T 2w Vuoc(t)a 7 pk ? -

t

L = o= fn .l de -+ 1 5t (6-65)
uoo(t)a uoo(t Joa P
. pk .
pk e

where tpk is the time at which the conductivity peaks. The term inside the

logarithm for t < tpk is the ratio of the skin depth in the air to the

wire radius for an exponentially rising conductivity. Inside the logarithm

for_ t > tpk is the square of the ratio of the skin depth to the wire radius
as- defined by the substitution (6~35) which gave rise to the dimensionless

T in the Green's function. The second term in this logarithm ensures
continuity of L at tpk' The comparison shown in Figure 6-3 emphasizes

the importance of including the reduction in the current due to the diffusion of
magnetic flux away from the wire. (We have terminated the curves in Figure

6-3 when the skin depth equals 10 meters.)
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= 3

Equation 12
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Figure 6-3. Comparison between Green's function and
simple models for early diffusion phase.
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At late times when the skin depth becomes larger than the wave
phase skin depth the wave phase current contribution to the total current
should be decreased according to

I (o) = 1°

wave wave ’ (6-66)

where Igave is the current at the end of the wave phase and L0 is the

inductance calculated with the wave phase skin depth.
6.4 LATE DIFFUSION PHASE

In this section we will develop a model for the late-time portion of
the diffusion phase when the skin depth in the air is greater than the height
of the overhead line. Where the last two sections of this chapter have dealt
with local phenomena where the current on the line was only a function of the
time histories of the incident electric field and conductivity at that point,
the éurrent on tﬁé line at a given point in the late diffusion phase involves
the time histories of the conductivity and incident field at other locationé
on the line. We will assume a perfectly conducting ground in this section—
the effects of finite ground conductivity on low-frequency signals on overhead
lines was first investigated by J. R. Carson in 1926 and is reviewed in Sunde's
text (Reference 6-3). The features of his theory which are relevant to us are
the two modifications to the inductance of an overhead line which result from
finite soil conductivity—the first of these is that the inductance is increased
by the skin depth in the ground. This modification is less than a factor of
two change because the ratio of the line radius to twice the height is less
than the ratio of twice the height to the skin depth. (The reason we use
twice the height will be apparent shortly.) The second modification is that
there is a series resistance which results from the diffusion of energy into
the ground. At a time of 10_4 seconds, this series resistance is less than
10_3 ohms/m and falls as 1/t at later times. With this value, the series

resistance of the line is usually much less than the termination resistance

.Tepresented by'facilities.(as in Chapter 5) if the burst to facility distance

160




is less than a few kilometers. If it is not, numerical solutions of the

transmission line equations with the effects of finite ground conductivity

may be performed.

The transmission line equations are derived by evaluating two

sets of integrals of Maxwell's equations. Applying Stoke's theorem to (1-17)
for the scattered fields, we obtain

-
+ _ 3B
fE « ds = —f da -a-i:- s 7 (6-67)

where ‘¢~ds is the path enclosing the surface a.

If we apply this to the path shown in Figure 6-4 and designate

‘/1Eds = V(z+6z/2) , ’ (6-68)
szds = -E_ 6z, (6-69)
G - )
2
3 ®s ]
i -
— 4 J
Y
6z

Figure 6-4. Integration path for derivation of
first transmission Tine equation.
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./;Eds = - y¥(z-8z/2) ,

f_ﬁd— s
- da = LOI z ,

is the voltage between the line and ground and this defines the

(6-70)

(6-71)

so that V
inductance LO. J;Eds is zero as the scattered field vanishes at the

surface of the ground. As &z approaches zero

. , Vv
V(z+62/2) - V(z-62/2) P 82 > (6-72)
and we obtain the transmission line equation
aI  av _
Yo 3t * 9z = Binc - (6-73)

The second transmission line equation is derived by applying Stokes' theorem

to (1-18), neglecting the displacement current

> >
ZOU[E-da=cfds-B.

-

(6-74)

Using the path shown in Figure 6-5, we have

Integration path for the derivation of

Figure 6-5.
. second transmission line equation.
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= [ 8- ds = - 1(2+62/2) , (6-75)
0
—Z‘—:—f'ﬁ ©ds = 1(z-62/2) , (6-76)
0

2

N
quE - da = 6zGV , (6-77)

where we have used (1-19) in (6-75) and (6-76) and (6-77) defines G. These
and (6-74) provide the second transmission line equation

.%% = - GV . (6-78)
If the skin depth in the air and the scale length over which variations in
I and V occur along z are much larger than the height of the wire then

. the derivatives with respect to x and y are much larger than those with

respect to z and ct and we may make use of two-dimensional electrostatic
and magnetostatic models to determine LO and G. The electric field is

defined as the gradient of a scalar potential

E=-V$, (6-79)
(when the air conductivity is uniform in the plane perpendicular to the z
axis) and the magnetic field as the curl of the 2z component of a vector

potential.
B=VxA ' (6-80)

The requirements that E tangential to conductors and B perpendicular to

conductors vanish are set if ¢ and Az are constant on each conducting

surface. In the air

V2 =P =0

(6-81)

where the Laplacians are in the two dimensions perpendicular to z. These
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e
conditions can be met for a wire of radius a located a height h above a
ground plane by using bipolar coordinates (sce Figure 6-6) (Reference 6-4).
The transformation to bipolar coordinates is given by ‘f‘
_ h'sinh§
X % CoshE ¥ cosB ° (6-82)
_ h'sinb _
Y = CoshE + cos® ’ (6-853) .._{
and Laplace's equation becomes
3% . 9% _ (coshircos®)? (2% _ 3%\ _
zt 27 2 7t 210 (6-84) ]
9x Ay h! 3& 36 / :
The line & =0 is x =0, £ = EO is a circle centered at
X = h = h' coth & y =0, (6-85)
0
_ o @
with radius
a = h' csch EO . (6-86)
The solution to our electrostatics problem is ‘f
¢ =CE,
(6-87)
Az = CZE .
L
From (6-71) and (6-68)
Lol = €38 »
(6-88)
V = clgo . e

The normal derivative of ¢ on EO is
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Figure 6-6. Coordinate system used for calculation of
inductance and conductance terms in trans-
mission 1ine equations.

coshg0 + cosH

99 _
oan -~ h' Cl > (6-89)
and the normal derivative of A, 1is the same with 'Cl replaced by C,.
GV can be found by integrating this around the wire
2m
GV = - 3¢ ch'dbf
- an coshg, + cosf
0 (6-90)
= + 21rch1 ,
so that
G = 2ma
gO
(6-91)
- 2o
cosh_l(h/a}
A similar development of L0 Yields
L = EQ. h'l(h/ 6-92
0 = o5 ©OS /a) . (6-92)
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If h/a is large, we can use

cosh~l(h/a]~'""nﬁ“r——i‘ """ T (6-93)

The two transmission line equations may be combined to obtaip

Lo 9t T 3z G 5z Eine - (6-94)

We will assume a simple form for the late-time shunt conductance, that it is

separable in space and time and decreases exponentially in distance

= f(t)e ** | (6-95)

and we will examine an infinite line running from - tg 4o in z.

To determine the Green's function for the current on the line, we

examine the current which results from an incident electric field of the

form

Eine = 8(z-20)8(t-t) , . | (6-96)
or

Ly£(t) at - % ¥ ¥ £(t)6(z-20)6(t-t,) . (6-97)

This equation may be simplified by the substitution
t

dt!’
- Jtss (6-98)

)|
t+
ja W
ﬁ
W
~

(6-99)

(6-100)




Equation 6-97 becomes

0% 9 oz 39 _
L 37 € -3y 6(z—zO)G(T-r0) R (6-101)

0 3T
which is invariant under translations in T, so that a frequency domain
technique such as a Laplace transform is a useful technique. The Laplace

transform of Equation 6-101 is

3 3
(SLO - e ™% E)g = 8(z-zp) , (6-102)

where g(z,s) is the Laplace transform of %(z,t). The last equation can be

—

reduced to a variation of Bessel's equation by the substitution

y = e %2/2 (6-103)
d
T=-%, (6-104)
and it becomes, for—z # z,
2 4s], —
2 3 d 0o 2
y g -y 55._ 5 y'g = 0. {6-105)
oy o
The solution (in terms of z) of this is, from Reference 6-5,
_ -az/2 2 -az/2
g = Cle Il(a ‘\’sL0 e )
(6-106)
-0z/2 2 -az/2 :
+ C,e Kl(a_ ‘\IsL0 e ) ,

2
where 'Il and K1 are modified Bessel functions. We now need to determine
the values of Cl and C2 to use for z 2 ZO to produce the discontinuity
in the spatial derivative of g and satisfy physical boundary conditions

as z > %o As gz =+ .o the argument of the modified Bessel functions

become large. If ¥ is the argument, the Bessel functions behave as
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I, - o

1 Yor

X
-X
K, * ,/75—-e , (6-108)

for large X so we use the solution that causes small currents for z + - «

(6-107)

2

or

_ —az/2 ., (2 -az/2
g, = Cye kl(a VIL; e ), (6-109)

for z < Z4- As z > + «, the argument of the modified Bessel functions

becomes small, and they behave as

I1 -

N

, | (6-110)

1
K >3 . (6-111)

wvhere X 1is again the argument. At the present point in the derivation, we
have no a priori justification for choosing the combination of C1 and C2
for =z > g Ultimately, we will find that the choice is determined by the
termination resistance at large z. For the present, we set g for z > z

0
equal to

~az/2 2 -az/2
g, = Cpe / I (5Vsi, e / ) , (6-112)
and, after transforming back to the time domain, we will find that this choice
is appropriate for an infinite termination resistance at large =. We will
then determine the modification necessary for finite termination resistances,

wvhich will involve a term proportional to Kl' The solution of Equation 6-102

at z = z; can be determined by making the first derivative of g discontinuous

at that point so that

g, =gl (6-113)




T

d -
-fiil - ing S e 0 (6-114)
dz zZq dz 2, ,

The derivatives of g are easily found with the use of the relations

d

o XL 01 = X100 (6-115)

d .

Iy XK 001 = - xK, () (6-116)
to be

- - VT R (2 VAL o 5/7) (6-117)

dz 17700 ola "o ’

%< e veT e ¥k, (Z V3L e 2/2) | 6-118)

dz 2 0 O\a 0 ' ’ (6-

and the solutions for g, and g which satisfy Equation 6-102 are

Ki (Xg) I; )
_ 2 1) Ty ~az/2 ]
B ONE R Gy) T Lo ¢ 1)

KOOI (%) '
_ [‘I‘" 1 140 -0z/2 _
8¢ SLO Kl(XO)IO(XO) + KO(XO)II(XO) e ’ f6-120)

where

X = é— VsL, e0%/2 ' (6-121)

This can be simplified by using the Wronskian

Ky XI00 + K,001,00 = 1/x (6-122)
and the notation

if z > z, S <

if z < Z4 s 0 < .

so that
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—az>/2

~a(z+2)/2
TN B vy e T LEverge 7).

=2
g=45 ¢
(6-123)
It is possible to find the inverse Laplace transform of this function using

the tabulated pair (Reference 6-6).

¥ Kv(a1/2&_’1/2+bl/2sl/2)I\)(al/zs1/2_1)1/251/2) ’ (6-124)
c+iw

1 St

f > e” f(s)ds
c-iw™
(6-125)
1 _-(a+b)/2t; .a-b
= 7¢ © I\)(Zt)'

The inverse transform of g 1is. substituting back to the time t as the

‘variable,
~a(z+z,)/2 : t
(,g = .1_ e_.__.—o__—'ex - L_O(e_(}_z"-e—.azo) _d_t_'_
a t .., P 2 £(t")
Jr dt o ‘
£(t') 0
o A
t
2L, -a(z+z.)/2 J{
0 0 dt?
(s tO

and the current distribution resulting from an arbitrary incident electric

field is
I(z,t) = fdzofdto (g(z’t;ZO’tO)Einc(ZO’tO) R (6-127)

The Green's function has two interesting limits—if we take the large

argument limit of the Bessel function we obtain
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—a(z+z,)/4 —azj2  %%gf??
1 e g LO (e -
G ~ . exp )- . (6-128)
YL t t
0 fdt' o2 [ at
W EICE .J E@ED
0] 0 -
This reduces to the usual Green's function for diffusion in the limit
z >z,
t - tO .

The second limit results from taking the small argument limit of the Bessel

function and is

-az
L —a(z+z0) L (e-az+e 0)
G ~ —% e exp) > - . (6-129)
a t gev |2 o2 [at
. . f(t') f(r")
0 to

This limit of the Green's function tells us how sources within the source
region at early times produce currents outside the source region at late
times. If Z4 is much smaller than z and f£f(t) is such that

t t

0
dt’ dt’
R G f e (6-130)
tpk tpk

then the exponential factor in Equation 6-129 is small for

0 > 1 (6-131)

or
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t 1/2

f dt! <
' o~
. L,G(z,,t")

pk

|~

(6-132)

The quantity on the left-hand side can be interpreted as the skin depth at

the point z, at the time t and shows that the energy is trapped by the

air conductivity until the skin depth becomes greater than the conductivity

attenuation length 1/a. The time of the peak current can be calculated

directly from Equation 6-129, by setting the derivative equal to zero,
occurs when

and

der Lo(e O+e—az)
Zd{.f(t‘) = 5 . (6-133)
¢ o
0

The voltage on the power line may be determined by

-o(z+z,.}/2 -az
Ve i_gl_z i fll eaz e 0 o). e-az ‘e 0
G 3z o2 F(D) t 7 &XP t

[[ dt? ] f dt!

J JEED

t 0

0
-0(z+z,.)/2

x [e""ZIl - e 0 1, (6-134a)

where the arguments of the Bessel functions are the same as in Equation 6-126.

When we take the small argument limit of the Bessel functions and let z + o,

the term proportional to I. dominates as it is constant in

z while the
other term approaches zero as e %2/2,

The resulting limit for V is

-0z 0
Vo~ Yo 1 e ° exp )- _jlfi______ (6-134b)
2 E(D) t 2 T ,
f dt? azf dt
s T(ET) f(ty
0 t,
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and it shares with the current the property that it is small for
t 1/2

dt’ 1
T <= (6-135)
f L,6(Xg, ©) o
pk

The peak of V occurs when

t t 0 -~az

- 2 L. (e +e )
df dt!' dt' _ 0 : :
H_’ oyl sz(t') = 7 , (6-136)
o o

which will be later than the peak of I for monotonically decreasing f£(t),
as the first term on the left-hand side is negative. The time integral of

Equation 6-134b from to to < may be evaluated directly by substituting

Loe 0 -
X = ———, (6-137)
2 at' '
* f FT)
%
-0z
Lo® ° dt
dx = - T Z £(0) ° (6-138)
2 dt!
¢ ff(t')
to
V= fe'xdx =1, : (6-139)
0
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provided £(t) 1is monotonically decreasing. To summarize the results of

our investigation so far, we have derived the Green's function appropriate

for an infinite line with an infinite termination impedance at z = + o
because the voltage (Equation 6-134b) approaches a constant value as z -+

and the current approaches zero. We have discovered the interesting fact

that the energy is trapped on the line whenever the local skin depth is smaller
than the conductivity attenuation length 1/a. When the skin depth approaches
1/o, the incident electric field appears as a voltage across the line at large

values of 2z with a relatively narrow pulse and a time integral equal to

det = fdzfdt Einc . (6-140) .

If we look at the voltage and current at a large but finite value of z we

find that the ratio between the two is

T =L eye
e (6-141)
= JrG(z',t)dz' .
Z
o
We now want to determine the modifications needed to the Green's function
to represent a finite termination resistance at large z. This may be
determined by examining the response of Equation 6-94 to a step current at
large z. Using the term proportional to C2 in Equation 6-106, the P
solution which results in a step function in time at t, current at z,
and vanishes as z + - ©» at finite s is
. e—mz/ZKl (ém(; e—az/2) :
I(z,s) = P —a20/2 ‘ (6-142) 8

2 —azO/Z ’
e KI(EVSLO e )
where we have used the fact that the Laplace transform of a step function is

1/s. If we look at I for z < 243, We can let Zg >« and expand the

Bessel function in the denominator as

[T wm»\h’-- .ﬁu..m SRR e ey
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P

-az./2 az,. /2
Kl(é Viis e 0 ) »—2_. O, (6-143)
2 \‘sL0
I(z,s) = E\IL—O o2/ 2y (25T e—az/Z) 6-144
A" 3 1\a 0 ’ (6-144)
for which the Laplace inverse is
Loe_az
I(z,t) = exp!- ! . : (6-145)
a2 dat!
ff(t'_'.)
%o
Taking the spatial derivative of I
Ly e %K (2 VeI /2
a_ 20 Ol "~ 0 (6-146)
oz s -0z,/2 2 -az /7, -
e K (SVsTg e )
if we now-again let "2 > + ® so -we take the small argument limit of K,
3L, . EEg-e_OLZK (E:VEET'e‘“z/Z 6-147
9z o ola 0 ) ) (6-147)

The Laplace inverse of this is

oz -0z

L,.e
—— 0 —_—  exp)- O —— A (6-148)
o T f ax
I f(t'
to to

where to is the time of the applied current and the voltage resulting from

the step current is

191
V=-3%352
L Loe"mz )
> exp /- - , (6-149)
2 { de j
o‘fmff(t' * [f(t')
to
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The physical interpretation of the early time response is clarified by
examining the time integral of V(z,t) from O to t. This integral is

simplified by the substitution

L z

X=—F, - (6-150)

-
Oe
¥ tatr
)
9

dx (6-151)

and we obtain

— — ¢ B .

L

0 [dx X
‘/}Ht' =-3 ]ﬁ X e
5

(6-152)

I
1
?|
Tt
=
~
><
o
A
-

where

Xy = — (6-153)

azfit'_

£(t")
%o

and El(xo) is the equnential integral. For small Xo (large z) the limit

of the exponential integral is

E;(Xg) ~ - fnlyxy,) v =1.781, (6-154)

SO
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zf de!

f(t')

o

= - Lofz-zo) + 0.577 Lo/a ,

(6-155)

where z, is defined by the edge of the source region where the skin depth
equals the exponential conductivity scale length
t 1/2 _
dt! _1
J[-L Glz,t) “a (6-156)
0770 :
Lo

The late-time response can also be understood in the same manner—for late

times and f decreasing sufficiently rapidly that

..t ,._.to‘

dt’ dt'
tff(tl) >>tf f(tl) > (6-157)
pk pk

we are looking into a resistance with the value

Lo
R = - % - (6-158)
af(t) f (")
which is
dz0
R=- Lo I (6-159)

and z, is defined by Equation 6-156. To summarize the outer boundary

0

conditions, an observer at z looking back towards the source region sees the

inductance of the line between 2z and zy and a resistance at the edge

of the source region given by Equation 6-158.
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as a power of t, TIf

- -az-f8t
G = Goe

(6-160)
then
t
dt' _ 1 (eBt_eBtO)
f(ty)y ~ GOB
%o
(6-161)
Bt
e
~ -t >t
GOB 0
If we define z = 0 as the point where
R L 6-162)
| TGz, 1) o’ (6-
-00
So that at t =0, z = ¢ is the edge of the source region then
a2
G. = . (6-163)
0 OB

The Green's function has a simple limit when Zy << 0, 1:0 <0, z> 0, t > t0

—a(z+zo)-28t -azO—Btf

a
(g"'L—e

exp;- e , (6-164)
0

which peaks at

Bt = - 0z - &n2 . (6-165)

The voltage associated with @ is, in the same limit

-azO—Bt —azO—Bt _
Ve~ e expi- e , (6-166)
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which peaks at

Bt = - az, , e (6-167)

which is the time that the edge of the source region defined by Equation

6-162 passes The edge of the source region moves in the - z direction

z4-
at a uniform velocity

R (6-168)
and the late-time resistance looking into the source region defined by Equation
6-158 is

BL,
R = - - (6-169)

The second case is where the conductivity decreases as a power of t

6 = Gt , (6-170)

so that

dt' 1 n+l _n+l
ff(t') - g, SR
(6-171)
Pt s
(n+1)GO 0 -
The edge of the source region, defined by

t 1/2
dt 1

-t = =, (6-172)
J LOG(z,t) o
is

2_n+l '
= _ 1 a't _
Z = a &n (W) . (6 173)
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The 1limit of the Green's function for 1z >> 245 t >> tO

within the source region is

(n+1)°L

I A

a3t2n+2

which peaks when

2
v 0%

—a(zo+z) (n+1)GOLOe
€XPy- 2 n+l
at

1
-7 —
(n+1)L G.e O\"*1
00
t = 5
20
The voltage associated with % is
2 %5
v ﬁ'(n+l) LOGO e-azoexp ) (n+1)G0L0e
0L2tn+2 0t2tn+1
which peaks at
1
“OZe el

(n+1)2L0G

e
Marras
(n+2)o

The edge of the source region moves in the - z direction at a decreasing

velocity

_n+1
ot

(zo,to) deep

(6-174)

(6-175)

(6-176)

(6-177)

(6-178)

and, consequently, the resistance represented by the source region is

decreasing

(n+1)L
R=—0 0

ot

The results of this section and Section 6.3 can be summarized in the circuit

model shown in Figure 6-7.

(6-179)

The edge of the source region is defined by the

point z, where the local skin depth equals the conductivity attenuation
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s
RS = VsLO ,
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-
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t
_ 1 R
Is(z’t) L iz,ti'erinc(z’t Jdt' + Iwave(z’t)
T tyies
i

Figure 6-7. Circuit model of source region
power line coupling.
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length. To the left of this point, the current on the line is proportional
to the time integral of the electric field in the diffusion phase (plus the
wave phase current). The external circuit shown is composed of the voltage
source (VS) determined from the Green's function, the resistance (RS) determined
from the solution looking back into the source region, and the external circuit

parameters L VE and RE. L. 1s the line inductance between 2, and the

termination,EVE is the applEed electric field integrated over the same
region and RE is the line termination resistance.

The assumption that the local current deep within the source region
is determined solely by the time integral of the electric field is modified
slightly by the expansion of the fireball. As the fireball grows, it
pushes most of the magnetic field on its powerline ahead of it. The
practical effect of this is small because the magnetic relaxation distance
in the ionized air ahead of the fireball is substantially larger than the

fireball radius.

6.5 APPLICATION OF FORMULAE TO EXAMPLE

In this section we apply the approximate theory of Section 6.4 to
determine the late-time currents at a shelter. The parameters of the example
are the same as that of Section 5.10 except that the line is at a height of
10 meters above the surface of the earth. The small line resistance (0.3
milliohms/m) is ignored. The air conductivity as a function of range at
various times is shown in Figure 6-8. This conductivity was calculated
with gamma fluxes of Chapter 3 scaled up to represent a 3 MT burst--the
_conductivity resulting from device X rays and ionization caused by the
“elastic scattering of neutrons off air nuclei was ignored. The first step

in the calculation was to determine the point where
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t
6[“00}1.( : 7 - al_z ) (6-180)
which is (6-172) with the fact that
LOG(z,t) = uoo(z,t) . (6-181)
To do this we assume that ¢ varies locally as

-n_ -0z
€

g=t , (6-182)

n is evaluated as a function of time from Figure 6-8, and we first assume

o ~ 200 meters L. o(z,t) 1is then evaluated from

azt

o(z,t) = mu—o .

(6-183)
Since o 1is a fuﬁction of distance this formula is iterated until we find
the point where (6-183) is satisfied. One iteration suffices as o is a
weak function of distance, if we use the o from the last time step as the
initial value in (6-183). The velocity of thé edge of the source region is
evaluated from (6-178). After the edge of the source region reaches the
fireball radius, Vs is zero and Rs‘ is the sum of Rs or be and the
10 ohm termination resistance. The time integral of the incident electric
field is evaluated from the curves at the appropriate ranges in Figure
6-9, and |

v = vs[Edt' . (6-184)

VE is the spatial integral of the electric field outside the source region

and VT is the sum of VS and VE. LE is the inductance outside the

source region; we have included the effects of this inductance in the cal-
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culation of the current in an iterative manner. An initial guess at the

shelter current is made by

I1 = Vt/R . ' (6-185)

The resistance associated with LE

L. oI
_E - L (6-186)
1 t

(we have assumed that the overhead line extends sufficiently far into the
fireball to result in a low resistance between the line and the fireball)
is calculated and added to RT and the current is recalculated as IZ' As
the difference between Il and 12 is always less than about 30 percent,
it is not necessary to iterate further. These operations are summarized

in Table 6-1 and the resulting current is plotted in Figure 6-10. The peak

current occurs somewhat earlier and is larger than that shown in Figure 5-6.

This results primarily from the air conductivity being smaller than the
ground conductivity at most ranges so that the large electric fields near

the source are seen at an earlier time.
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CHAPTER 7
COUPLING TO SHORT VERTICAL CONDUCTORS

7.1 INTRODUCTION

Systems that are hardened to source-region EMP from surface or
near-surface nuclear explosions, and to the accompanying blast effects, are
unlikely to use above-ground vertical antennas for mission-critical
functions. However, such antennas and other vertical conductors may be
present as part of non-survivable subsystems that serve peacetime functions.
Examples are communications antennas for maintenance and security operations,
light poles, etc. It is necessary to know what currents will be collected
by such structures under EMP conditions and whether these currents can get

into the parts of the system that are required to survive.

It is likely that such structures will be no more than about 10
meters in height and no more than 0.3 meters in diameter. Thus the incident
vertical electric field can be taken as uniform around the circumference.
Usually, the conductor will be thin to gamma rays, but we shall include
the case in which it is not. The conductor may or may not be grounded at
its base, but since it is not likely to be hardened to EMP, an arc to ground
may form anyway. For the purposes of this chapter we shall assume that the
base of the structure is in electrical contact with soil; the impedance of
this connection is included in the analysis. One would hope that a wire
does not run from the structure into any shielded enclosure containing mission-
critical electronic equipment. The current flowing into such wires could
be calculated, usually as a perturbation, if the specifics of their connection

were known.
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7.2 DRIVING FIELD AND SKIN DEPTHS

We shall use the vertical field E6 graphed in Figure 3-5 as an
example in this chapter. That field is appropriate at the ground-air
surface. We need to discuss how Ey depends on height above the surface.

This discussion uses ideas contained in Sections 3.8 and 3.9.

At the onset of a-saturation at the location of our conductor,

E9 extends into the air to a height (Equation 3-49)

GE ~ c/o = 1.5 meters (example) . : : (7-1)

This is the time when Eqg reaches its peak value. Previous to this time
(in the period of A-saturation) Ee has been rising as eat/2, and GE
has been decreasing. The current in the conductor at ground level cannot

be appreciably affected by the field at heights greater than 2c/a.. Thus,

the driving field is independent of height up to SE.
After the onset of a-saturation, E
determined skin depth Ga in the air. In this (diffusion) phase also, the

conductor current at ground level cannot depend on the field at heights

greater than Gé. Thus again only a modest overestimate is made by regarding

Ee as independent of height up to Ga. Eventually, the incident Ee is
indeed independent of height, at least up to 10 meters.. We shall regard
it as constant in height at all times over that range of heights which can

affect the current at the base.

A composite formula for this height is

Ga = ¢/o when o< eoa , 7
=1/ Vuooa when Eg® < 0 < cp , (7-2)

gt 1/2
= t P n+1
= /(n+1)u00 ﬁ,- 5t a - -Eai;{ﬂ after peak o .

19

for times before the peak of Eg, it is a modest overestimate to assume that

g extends up to the conductivity-




The first line here is appropriate up to the time of the peak in Ee, the
phase in which displacement current exceeds conduction current. The second
line is appropriate from this time up to the time of the peak in o. The
third line is appropriate after o has peaked, and is based on the assump-

tion that O falls as t ". The power n is determined by

n = [EH(UP/O)}/[ﬁn(t/tp)] , (7-3)

vhere 0 = o(t) and o, = o(tp). The value of n varies somewhat with t.

It can be seen that Equation 7-2 provides continuous values of
Ga. For the conductivity of Figure 3-3, the Ga computed from Equation 7-2

is graphed in Figure 7-1. For this case, o = 2 x 10° sec™t.

We see from Figure 7-1 that 6a reaches 10 meters at t = 2 x 10-6
second. As will be seen, the coupling to a conductor of height h depends

on whether- Ga is smaller or greater than h.
7.3 INDUCTIVELY LIMITED CURRENT

The current in the conductor is limited, in varying degrees at various
times, by both inductive and capacitive reactance and by resistance in both
air and ground. We shall first calculate the current based on inductive
limitation alone. This calculation'assumes that h >> 63, that the ground
is perfectly conducting, and that the driving field Ee is independent of

height. The current I in the conductor is determined by the equation
< = E (1) . (7-4)
dt )

The inductance L per unit length is

u

2= 2x 1077y . (7-5)

u0 EEJ henry (
a’ meter * ‘21

L = EE'Rn(l +
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Here a is the radius of the conductor. The argument of the logarithm has
been written so as to cover the possibility that 6a may be less than a.
We shall treat two examples, with a.= 2 cm and 10 cm. The inductance for

these two cases is graphed in Figure 7-1.

Before a-saturation, L is constant and E rises exponentially

ecxt/2

as . In this phase,

I(t) = 2 Eg(t) . | (7-6)

For the two conductors chosen as examples,

oL

> 87 ohms/m , a =2 cm,

(7-7)

55 ohms/m , a = 10 cm .

At the time of a-saturation, Ee reaches its peak value and is no longer
rising exponentially. Use of the peak value of E; from Figure 3-5 would
give an underestimate of the current at this time. Use of the exponentially
extrapolated value of EB’ i.e., Ee = cB¢, will give an ovérestimate. We

choose the latter, setting
Eq(peak) = 2 x 10° V/m .. (7-8)

Thus the currents at this time are

I(o-sat.) = 2.3 x 103 Amp , a = 2 cm ,

(7-9)

3.6 x 105 Amp , a = 10 cm .
_ In Figure 3-5, a~-saturation occurs at 1.8 X 10-8 second. Accord-

ing to Figure 3-3, © continues to rise exponentially (as eat) until about

5% 10_8 second, then changes much more slowly. The increase in o causes

the decrease in inductance shown in Figure 7-1. During this period of

“decreasing inductance it is not correct to keep L inside the time derivative

in Equation 7-4, as we shall now explain.
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The magnetic flux @ circling the conductor is determined by

integrating the Maxwell equation

9

o

(7-10)

Q)
G

t

over r from the radius a of the conductor to large distances. (In this
equation E is the electric field parallel to the conductor and B is the

magnetic field circling the conductor). Integration over r yields

ad 3 _ _

Fr ggl/ﬁBdr = E_-E(a) = Ee s (7-11)
where E_ is the electric field at large distances and E(a) = 0 is the
field at the conductor surface (resistance of conductor neglected). E_ is
the Ee
same as Equation 7-4 if we define the inductance by the Equation ¢ = LI.

of the burst coordinate system. Equation 7-11 would be the

The inductance defined by Equation 7-5 assumes that B ~ I/r out to

r=a+ 6a and then falls rapidly. That. assumption is not correct when the
conductivity increases rapidly with time. In this case, magnetic flux pro-
duced in a given time interval 1/a is frozen in place shortly afterward

by the increasing conductivity. The additional flux. produced in the next
time interval is distributed only over the decreased skin depth given by

the second line of Equation 7-2. Thus the inductance defined using this skin
depth applies only to the increment in current in the next time interval,
and-all previously established current is frozen in, i.e., does not change
appreciably. Therefore, in the time period from a-saturation to the time

5 x 10"8 second when O stops increasing exponentially, Equation 7-4 should
be replaced by

E
=2 . (7-12)

=

In the time period indicated here, the ratio Ee/L does not

change much for either of our example conductors. Average values are
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| _
11 :
Ee/L = 1.5 x 107" Amp/sec , a = 2 ¢m , _
11 (7-13) i
= 2.9 x 107" Amp/sec , a = 10 cm . i
The increase in current in this time period is therefore »“?:.-‘f-""
AI = 4.8 X 10° Amp , a = 2 cn ,
3 (7-14) :
= 9.3 x 10" Amp , 2 = 10 cm . :
.
Equation 7-4 would have given a larger increase in current in this £
time period, since that equation can be written as g
ar _ % 1a L
&1 “Tat- (7-15) ®
During the period after o peaks, in which L increases, this equation ,%
would yield smaller currents than Equation 7-12. Which equation should we _E
use in this time period? We argue as follows. The flux going with the current . .
at the time of a—gituration, Edﬁation 7~-9, is frozen in over radii up to -3
Sa = 1.5 meters and will not diffuse appreciably until t = 2 x 10~/ second -
when & again reaches that value; that part of the current will remain if
constant. We add to this constant current one half of Al, Equation 7-14. .

The other half of AI is associated (we say) with flux distributed only up

" to 6a(min) = 0.09 meters, and this flux diffuses immediately, together with

S e e,
Palp o thor s s ot o1 448 w0

additional flux produced by Ee after t =5 x 10_8 second. For this

part of the current Equation 7-4 is appropriate. Thus the current has

b

two parts, for which, until t = 2 x 10~/ second,

£l
¥
Ilw= constant = 4.7 x 103 Amp , a=2cm, %
3 (7-16)
=8.2x 10" Amp , a = 10 cm , i
énd
4 L1y = E (7-17)
dt 2 0’

where, at t = 5 x 10”8 second,
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I, =% =2.4x10° Anp , a

4.6 x 10° Amp , a = 10 cm . J

2cm,
- I (7-18)

Hand integration of Equation 7-17 in three steps yields for the total current:

t=5%x102 7x10% 1x107 2x 107 sec
I=7.1 8.5 8.4 9.6 KA, a = 2 cm j (7-19)
I=12.8 15.9 14.3 15.3 KA, a = 10 cm

The currents are graphed as a function of time in Figure 7-2,

After t = 2 x 10-7 second, all of. the flux diffuses, and Equation
7-2 is appropriate. Since EG is approximately constant in this period,

that equation yields

LI = (LI); + (t-t,)Eq . (7-20)

where the subscript i indicates evaluation at t = 2 x 10-7 second.
Currents calculated from this equation are used to extend the curves in

5

Figure 7-2 out to 10™> second.

7.4 EFFECT OF GROUND TERMINATION

In considering the effect of a finitely conducting ground termina-
tion of the vertical conductor, it is important to understand that the
current carried by the conductor is exactly equal to the current (conduction
and displacement) removed from the surrounding medium due to the presence
of the conductor. This follows from the fact that the magnetic field at
distances appreciably larger than the skin depth is unaffected by the
presence of the conductor; hence the net change in current over an area

comparable with. ﬂﬁ: must vanish by Stokes' theorem.

The flow of (the change in) current in the ground must therefore

be as sketched in Figures 7-3a and 7-3b for the cases in which the air
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Figure 7-2.

Time (seconds)

Currents at base of conductor. I, inductively 1imited
current; IR, resistively limited current; Ipg, resistively
limited current with perfectly conducting ground; Is,
Compton current collected by aluminum pipe conductor.
Number in parentheses is radius of conductor in cm.
Conductor (2) is 3 m high, conductor (10) is 10 m high.
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conductivity o, is less or greater than the ground conductivity og. This
figure has been drawn for the case in which the conductor extends to a depth
d > Gg into the ground. The resistances in the ground termination are

estimated as

J
_ 1 a
o T mme s e, 628 <), (7-21)
g g
1 ig. '
Rt = ng' R«I'l(l + a) > (53 < 6g < d) . ' (7-22)

At late times, the condition Ga > Gg >d >a is likely to hold. In this

case an estimate of Rt is

_ 1 d d 1 a
R.t = 553;3-[En(£) +1 - 3;4 + §i3;3;'2n 3;-. (7-23)
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In the time period before a-saturation, the conductor current rises

exponentially as eat/Z_ In this period,
§. =cla , 6 =4—2 (7-24)
a * g Mg 0 )

With o = 2 X 108 sec_1 and Ug = 1.6 % 10_3 mho/m (10 percent water soil

at frequency 1.6 x 107 Hz, see Chapter 2) we obtain

§,=1.5m,8 =0.7m. : (7-25)

Equation 7-21 gives

Re

6l ohms , a = 2 cm , l
(7-26)
39 ohms , a = 10 cm . ‘

Now according to Equation 7-7, the inductive reactance of a length da = 1.5

meters of the conductor is 130 and 82 ohms in the two cases. Thus the

““current before a-saturation will be reduced by a factor of about

130, 82
130 + 61 - -0 ¥ g3 439 - (7-27)

in both cases because of the termination resistance.

By t=05x 1078 second, the rise time T (e-folding time) of the

conductor current has increased to about

T®2.6x 107 second . (7-28)

At frequency 1/2mT = 6 X 106 Hz, Chapter 2 gives Gg =1.3x 10'2 mho/m,

8 =,f L -1.3m. ' (7-29)
g \io |

4

and

As described in Section 7.3, the magnetic flux in the air is distributed over
a range of radii (Ga's) from 0.09 to 1.5 meters. The geometric mean gives

Ga = 0.37 meter. Equation 7-22 then gives the termination resistance
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frme

N 39 ohms ,

=
1}

a=2cm,
(7-30)

24 ohms , a = 10 cm .

At Ga = 0.37 meter, the inductance of a length Ga of the conductor is

Léa =0.22uyH , a=2cm,
(7-31)
=0.11 yH , a =10 cm .
The relaxation time of the current into the ground is
LS -8
Tf§-= 0.56 x 10 sec , a=2¢cm,
t (7-32)

0.46 x 10°° sec ,a=10cm .

1
1]

Because this relaxation time is short compared with the rise time T of
the conductor current, most of the conductor current indicated in Figure 7-2
will flow in the air just above the ground rather than in the ground. The

fraction of the current flowing in the ground is about

g é
gg _ (0.013)(1.3) - _
58, * 0,8, | 0.0169 + (0.4)(0.37) - °-10 - (7-33)

Thus the ground termination resistance substantially reduces the current in
the base of the conductor at times in the neighborhood of 5 x 10_8 second.
If the ground surface is covered by a conducting sheet or counter poise,

the current in Figure 7-2 is correct.
7.5 RESISTIVELY LIMITED CURRENT

Section 7.4 has shown that resistance of the ground termination
affects the current at the base of the conductor at quite early times.
As the air conductivity falls (Figure 3-3), resistance in the air will also
limit the current. In this section, we shall ignore inductive effects and

calculate the current as in a static problem. It is helpful to distinguish
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between two phases, according to whether the skin depth 6 in the air is

less or larger than the height h of the conductor,
First Phase: Ga < h.

The vertical electric field Ee is not just a static field; the
curl of E does not vanish at early times since, as shown by Figure 3-5,
B¢ changes rapidly with time before t = 10-7 second. However, that does
not matter for the conductor response, which depends only on the vertical
electric field. JThe same Ee at the position of the (thin) conductor, even
if it were derivable from a potential, would produce the same current in
the conductor. We can therefore, for the convenience of familiarity, think
in terms of a voltage V(z),

z
V(z) = J[Ee(z')dz' s (7-34)
0

where z 1is the distance above the ground surface,

In the diffusion phase (which begins at a-saturation), EB extends
only up to the skin depth Ga above the ground; above that height the
electric field is approximately radial from the burst point. Thus V(z)
has the z-dependence indicated in Figure 7-4a. The maximum ‘voltage Vﬁ

is about

V., ™ Egs, (7-35)

where Eq is the field just above the ground.

If we imagine the conductor to be opened just above the ground, as
in Figure 7-4b, to what voltage will the conductor come? .Remember that
the conductor is in a conducting medium. Because currents in the conductor
are limited by diffusion in this medium, the lower end of the opened

conductor cannot be affected by conditions existing at heights much greater

Y
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conductor.

than Ga. We conclude therefore that the open-circuit voltage of the

conductor is about

— ~Vo ™V /2 RES /2 . (7-36)
If we now reconnect the conductor to its ground end, a current

will flow across the junction. The magnitude of this current will be

I = VO/(Ri+Rt) s (7-37)

where Ri is the "internal"” resistance of the source of Vo and Rt is the
ground termination resistance. Rt has been estimated by Equations 7-21, 22
and 23. An estimate of Ri is

$

1 a
Ri = Waaa' 2]’[(1 + ?) . (7-38)

This is the resistance between a conductor of radius a, length Ga and

distant points in a medium of conductivity 0, -
Second Phase: Ga > h.

In this phase the open-circuit voltage is about
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Vo ® Egh/2 (7-39)

and the reconnected current is
I = VO/(R£+R£) . (7-40)
The internal resistance here is modified by replacing 63 with h, i.e.,

R! = -}

h
i chah EH(EJ ’ (7-41)

and the termination resistance is

Re "mos () , (h>d> 8g) (7-42)
g8
= 1 d d ]_
= *-'—2“_0_ d [ﬂn(g) + 1 - 6_-] + e 6 ‘Q’n( s (h > Gg 7> d)
(7-43)
o1 d T d
- ZNOgd (&n atl- Ei » (Gg >h >d) . ‘ (7-44)

The estimates given here are continuous between the three regimes of Gg.

Let us calculate the resistively 11m1ted current for our two
examples, choosing the heights and depths

h=3m,d=1m for a= 2 cm

(7-45)
=10m,d=1m for 2z = 10 cm .

The skin depth 6 in the air has been graphed in Figures 7-1. For the soil

we take lbg = Q. 01 mho/meter and

5 = 0.7 m? L (7-46)
g MO, ,
where
t' =t -2x108 sec . (7-47)
P : 204..




This estimate of Gg is continuous with the value in the exponential phase

given by Equation 7-25, Gg is also graphed in Figure 7-1.

The first phase, 6a < h, ends at

1t

3.7 x 1077 sec for a = 2 cm ,

t
n

(7-48)

2.0 x 10°% sec for a

1]

10 cm .

1

In this phase VO is given by Equation 7-36 and Ri by Equation 7-38. These
quantities are graphed in Figure 7-5, where they are also extended into the

second phase, da > h, by use of Equations 7-39 and 7-41.

For the termination resistance, we see that 6 is greater than
the assumed d at almost all times of interest, and that 5g > 5 in most
of the first phase {when Ga < h). Since Equations 7-21, 22, 23 do not apply
in this case, we need another estimate of Rt for the case h > Ga, Gg > 63,
Gg > d. This is

1
Rt = ZHU 3 ln( =, (Ga <d) , (7-49)
1 d d
= ZTTUgd [.Q,n(;) + 1 - ‘a—a] > (63 > d) . (7—50)

From Figure 7-1 we see that 8, exceeds d after t = 1.6 X 1077 second.

o Ve Leerlepia o,

Before this time, Equation 7-49 gives R . From this time until t
(Equation 7-48), Rt is given by Equation 7-50. After tl’ Rt is given by

Equation 7-44, Rt is also graphed in Figure 7-5 for the two conductors.

In computing Ri at times before a-saturation in Figure 7-5, we

have replaced o, by €50 in Equations 7-38 and 7-41, since the displace-

0
ment current is larger than the conduction current in that phase. Hence

the current is limited by capacitive reactance rather than by air resistance
in that phase. Note that the capacitive reactance is real for exponentlally

rising field, and is approximately constant.
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Figure 7-5.

Time (second)

Open circuit voltage Vg of two vertical conductors:
(2) 2 cm radius, 3 m high; (10) 10 cm radius, 10 m high.
Source resistance Rj and termination resistance R¢
for the two conductors. :
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The resistively (and capacitvely) limited currents calculated
from Equations 7-37 and 7-40 are graphed in Figure 7-2, for the two conductor
radii and for both perfectly and imperfectly conducting ground. It is seen
that these currents are substantially smaller at all times than the
inductively limited current. For the examples considered, inductive
reactance is small at all times compared with resistance or capacitive

reactance. The correct current I can be estimated from the equation
I =~ IRIL/(IR+IL) , L (7-51)

where IR and IL are the resistively and inductively limited currents.
I 1is only a little less than IR in our examples. The sign of the current

is such that electrons flow down the conductor into the ground.

7.6 COMPTON CURRENT COLLECTION

If the conductor provides appreciable attenuation of the gamma rays,
the Compton current emerging from its back side will be less than that entering
its front side. Thus the conductor collects negative charge due to gamma

attenuation. Gamma attenuation lengths are of the order of 30 grams/cmz.

If the conductor is made of high-atomic-number material, then the
ratio of Compton electron flux to gamma flux coming out of the.conductor is

smaller than the ratio going in, provided the conductor is an electron range

in thickness. Compton electron ranges are of the order of 0.3 grams/cm 'g'
in air and aluminum, but are smaller (due to nuclear scattering) in high Z

materials. Most conductors will be thicker than an electron range. An iron
conductor collects about 30 percent of the Compton current striking it, even

without the gamma attenuation effect.
Let us assume that our 10 cm radius conductor is an aluminum pipe b

(density p = 2.7 gram/cm3) with wall thickness D = 1/4 inch = 0.6 cnm. Its “g="'

average projected thickness in grams/cm® is then
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= mhp = 5.1 gram/cm2 . (7-52)

The fraction of Compton current collected, due to gamma attenuation, is
f =1 -exp(-m/30) = 0.16 . (7-53)

The total Compton current collected in a height of the pipe equal to the
smaller (Ga,h) of Ga and h is

I, = 2£Ja(8,,h) , (7-54)

where Js is the Compton current density, which we take from Figure 3-2.

The current computed from Equation 7-54 is also graphed in Figure 7-2. Note
that it is small compared with the other currents, except for a short period of
time for the resistvely limited currents into imperfectly conducting ground.
Actually, the current IS affects the resistvely limited current. Since

the impedance of the Compton current source is very large, the current into

the ground is given-by -

(7-55)
=1 + 1 ——,
R [ Ri + Rt

where IR is the resistively limited current calculated in Section 7.5 We
see from Figure 7-5 that the ratio Ri/(Ri+Rt) is small (® 0.1) in the

time period in which Is exceeds I Thus the collected Compton current

R
makes little difference for our aluminum conductor. If the pipe were made
of iron, f and IS would be about four times larger than for aluminum,

7.7 NUCLEAR LIGHTNING

It is likely that a discharge would form in the air at the upper end

of the conductors in our examples, and grow upwards. Such discharges were
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observed in several large yield nuclear tests. The theory of this "nuclear
lightning" is currently under development at MRC (by J. Gilbert, R. Gardner,

M. Frese, and C. Longmire). It is believed that the currents in these
discharges reach peak values of several times 104 amperes, much larger

than the resistively limited currents of Figure 7-2 because of the increased
height of the dischargés. These heights were observed to reach several hundred
meters in the millisecond time frame. The authors hope to add a chapter on

nuclear lightning to this report when the theory is firmly established.
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