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Abstract

The Mie series for the field scattered by a perfectly conducting sphere has been
evaluated and plotted for complex values of wavenumber in order to explore the near-
field shadowing properties of objects in a lossy dielectric or in a conducting medium.
The existence of near field shadows appears to be controlled by the product of the
magnitude of the wavenumber and the structure size. The shadows produced in a lossy
dielectric were spatially smoother than those produced in dielectric with the same
magnitude wavenumber. For conducting media with skin depths smaller than the radius
of the sphere by a factor of three or more, shadows were produced.



Introduction

The diffraction of electromagnetic waves past various obstacles has been intensely
studied over the last century. Many trends can be observed from the results of these
analyses that provide a working understanding of the process. One of these trends
relates to the shadowing properties of conductiﬁg objects. The issue of whether an
‘object in vacuum produces a shadow or not depends upon its size with respect to a
wavelength. Larger objects produce shadows whereas smaller objects do not. This
trend is immediately transferable to the situation of an object embedded in an ideal
dielectric. The shadowing property of the diffraction process is independent of the
absolute speed of light; in a pure dielectric only the relation between wavelength and the
object size is important.

At this point, the question that is the central concern of this short paper arises,
namely, what are the shadowing properties of perfectly conducting objects embfadded in
media that are not pure dielectrics? In several geophysical and biosensing situations,
diffraction phenomena must. be considered for objects embedded in conducting media
and their shadowing properties are important to understand. In a lossy medium the field
decays exponentially with penetration depth. The concern of the paper has been losses
over and above this baseline decay rate caused by the presence of conducting objects
embedded within it.

As an initial consideration of this question, it can be notedsthat a conducting
medium is matherhatically equivalent to a medium with a complex dielectric constant. In
the limit of @ good conductor the dielectric constant has a value that is essentially pure
imaginary. If an a priori attempt is made to anticipate the shadowing behavior based
upon the value of the dielectric constant, the question of what parameter is most
relevant arises. There are at least three obvious choices aﬁd two would suggest
different results from the third for the case of a medium that is a good conductor.

For a fixed object size one conjecture is that the shadowing properties are
dependent upon the magnitude of the complex wavenumber. One might arrive at this



guess based upon dimensional arguments alone. Another conjecture is that the

shadowing properties are dependent upon the value of the real part of the wavenumber.
This dependence might be anticipated if it were the case that shadowing is an
interference phenomenon and that the interference between waves is dependent upon
wave phase shift as controlled by the real part of the wavenumber. A third conjecture is
that the real part of the dielectric constant (assumed to be esseniially zero for a good
conductor) is the important parameter for controlling shadowing because this value
~ controls the magnitude of the component of the current that is in phase-quadrature with
the electric field. If this were the case then the important parameter is the real part of
the wavenumber squared. For the case of the lossless dielectric all three conjectures are
consistent with known results. However, in lossy dielectrics there is a difference that
becomes pronounced in the case where the dielectric is essentially a good conductor.-
The former two conjectures both suggest the result that objects larger than a skin depth
produce shadows whereas the latter suggests that ratio with the skin depth is largely
unimportant and that shadowing might not occur in good conductors with negligible
dielectric constants.

Armed with these considerations the results from classical analyses are considered
to address the shadowing issue. In particular the diffractive properties of a sphere are
addressed. The sphere is chosen because its scattering behavior has been extensively
studied. While asymptotic formulations such as GTD are appllcable to the shadowing
issue we have chosen not to deal with applying these technsques for complex
wavenumbers and instead have opted for a numerical field calculation using the ‘exact’
Mie series. The availability of functions that are readily accessible for numerical
computation of the scattered field is, thus, another motivating factor for the choice of a
sphere. '



Formulation -- Mie Series Approach

Much work has been performed in the past by others on the diffractive properties of
the perfectly conducting sphere. The diffraction of a harmonic plane wave by a sphere
is treated in various textbooks including Stratton (1941), King and Wu, (1959),
Harrington, (1961), Jackson (1961), Panofsky and Phillips (1962), Jones (1964), Van
" Bladel, (1964) and Bowman, et al., (1969). In thé series of interaction notes, Baum
(1971), presents an excellent discussion of the singularity expansion method to the
sphere problem. While the treatment is universally discussed in terms of real-valued
wavenumbers, it is also applicable for complex values of k and is, thus, pertinent to the
diffraction problem in a conducting medium. Following Harrington (1961) the scattered
field for a sphere of radius ‘a’ can be written in terms of the potentials, A and F; as:
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In these relations, A; and F; are the scattered radial components of the TM to r and TE

to r field potentials. The scattered electric, E’, and magnetic, H®, field components may



be expressed in terms of these potentials as . .
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As suggested by the variables standard spherical coordinates, r,0,9, are assumed. The
incident plane wave approaches the sphere from the —z axis (6=180°). It has an
" electric field with magnitude E 4 pointed in the x-direction (i.). Its spatial dependence is

E™ = Ege™@ i,

where a harmonic time dependence of ¢'™ has been assumed. The radian frequency

o, is assumed to be real. The wavenuniber. k, is complex if the medium is conductive.
The value of k is given, in Harrington’s (1961) notation, through the relation

. ke =-7y

The value of 7 is defined by 7=imu where p is the magnetic permeability of the
medium. The permeability, 1, can be assumed to be that of vacuum (4x x 1077 Henrys

per meter) for the sake of this paper. The value of y is defined as y =iwe + c where g is



the permittivity of the medium (in farads per meter) and where ¢ is the conductivity of
the medium in Siemens (mhos per meter). For a medium that is primarily conductive,

i.e., 6> e, the value of k is

k= (1-i)8

Ve
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where & is the skin depth 8§ = [—] . An upward going wave involves the factor
; WUC

e—dz = e—lz/ﬁ e—zl&

It decays one e-fold in magnitude and shifts phase one radian for every skin depth
propagated.

The radial dependence of the scattered potentials and séattering coefficients are
expressed in terms of the spherical Bessel functions of Schelkunoff, frequently called
Ricatti-Bessel functio}ié, and are denoted with a hat to indicate their association with
standard Bessel functions, i.e.,:
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where B, stands for J,, Y, or H, denoting Bessel, Neumann or Hankel! functions. In
the terms Iin(z) (z) the superscript ‘(2)’ denotes the Hankel function,gf the second kind,
e, HP=7 -i¥,. Primes next to these functions denote first derivatives. The

expressions for the scattered potential also involve the Legendre functions of degree n
and order 1, P,

To address the issue of shadowing for a sphere embedded in a conductor the
series foLr the scattered field has been evaluated and used to determine the total field.
The derivation of the series is for arbitrary values of k. By substituting the values of &
appropriate for a conductor into the series the scattered fields appropriate for the

conducting medium are found. The fields in the near vicinity of the sphere are then

,
——t



plotted.

For large real values of k the series for the scattered fields has been noted to
require many terms for convergence. For some situations the series results from
cancellations of terms with very large magnitude. Asymptotic techniques can be used to
approximate the series in these more difficult situations. For the evaluations performed

“in this paber with |ka |'=20 double precision evaluations were found to be largely

untroubled by numerical errors.

Results -- Currents on the sphere

Previous evaluations of the fields near a sphere have undoubtedly been calculated,
- plotted and perhaps documented in the past, but the author is not familiar with many of
them. The only plots known to the author are those of the current on the sphere itself
. due to King and Wu, (1957) as presented in Van Bladel (1964) (reproduced in Fig. 1 of
this paper) functions related to the current calcutated by Ducmanis and Liepa (1965) and
presented in Bowman et al. (1969); and a plot of the electric field in Bowman et al.
(1969) due to Huang and Kodis (1951). The results presented in these past papers are
for real-valued wavenumbers. / )

For the sake of comparison with the results presented in Van Bladel (1964), the ¢-
~component of the magnetic field on the y =0 (¢ =0) plane has b@;n calculated at the
surface of the sphere. The magnitude of this value, shown in Figure 2, corresponds to
the magnitude of the theta component of the current shown in Fig. 1 (left-hand panel).
The agreement is very good. (There is a slight discrepancy in the relative dependences
at k =1.1 and k£ =3.5 near the 35° value of the abscissa. A check of the original King
and Wu (1957) results leads to the conclusion that this discrepancy is probably due to
the artist's rendering.) Note that in order to plot the results in the same format the
abscissa of Fig. 2 is 180° — 6 where 8 is the spherical polar angle defined in the previous
section.
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Figure 11.11 Current denwity at the surface of a aphere (from R. W, P,
King and T. T. Wu, “The Scattering and Diffraction of Waves,” Harvard
University I'resa, Combridge, Masa., 1960, with permission of the President
and Fellows of Harvard University)

Figure 1. Current on the surface of a perfectly conducting sphere excited by an
incident plane wave (from Van Bladel, 1964).
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Figure 2. Calculated 6-component of ‘the current on the surface of a perfectly

conducting sphere for various real wavenumbers.



The development of a shadowed region as the wavenumber, k increases is
apparent in Figures 1 and 2. For reference, at very small wavenumbers (say £ =.1 or
less) the current on the ¢ =0 plane has a magnitude of 1.5 independent of 6. As &
increases, the current on the y =0 plane increases on the illuminated side and
decreases on the shadowed side. The current on the illuminated side approaches a
‘value of 2 as k increases as is expected from geometric optics. The current on the
shadowed side shows a trend to lower values as the wavenumber increases to 20. The
geometric optics limit would be zero.

The current on the surface of the sphere has been calculated for wavenumbers
with the same real values and with an imaginary value of -1.1 (Fig. 3). The imaginary
component implies & lossy propagation of waves in the medium and for this choice of
imaginary wavenumber component the waves are attenuated 2.2 e-folds in moving
across a distance equal to the diameter of the sphere. To make meaningful
‘comparﬂisons and investigations into shadowing, the fields are normalized by the value of
e . For real-valued & this normalization only introduces a phase shift into the results
which is not apparent in the amplitude plots. For values of & with a non-zero imaginary
part this normalization effectively balances the expected exponential decay of the
waves. This normalization has been applied for all plots presented-in this paper.

From Fig. 3 it can be seen that the current in the shadowed region of the sphere in
a lossy medium has local maximums of lower value than in pure dielectric. Evidently,
the lossy nature of the medié éffects ihe interference properties of(ine creeping waves
on the shadowed side of the sphere and the resulting peaks in the magnitude of the
current are diminished. The average current nevertheless appears to be similar to that in

Figs. 1 and 2,

In Fig. 4 results are shown with the imaginary part of the wavenumber set to -3.5.
The real part is once again assigned values of 1.1, 3.5 and 20. The results found with
the real parts of £ equal to 3.5 or 20 are similar in average value to the resuits of Fig. 2
(no loss) and Fig. 3 (1.1 e-fold loss per unit distance). In this respect results with the
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Figure 3. Calculated e-cémponent of current for various wavenumbers with imaging

part setto -1.1.
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current fork =1.1, 3.5, and 20.
imaginary part =-3.5
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Figure 4. Calculated 8-component of current for various wavenumbers with imaginary

part set to -3.5.
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current fork = 1.1, 3.5, and 20.
imaginary part = - real part or - 12.
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Figure 5. Calculated 8-component of the current for various skin depths.
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real part of the wavenumber set to -1.1 differ in that they are not like those of Figs. 2 and
3. They are similar to the results with real part of the wavenumber set to -3.5 suggesting
“ona qualitative basis that it is the total magnitude of the wavenumber that controls the
basic shadowing mechanism. The role of the imaginary_component seems to primarily
be the damping of creeping wave interference in the shadow zone.

Fig. 5 shows the current on the sphere for the cases k =1.1-i1.1 , k=35-i3.5
and £ =20 -i12. The former two are for the case of spheres of various sizes in a good
conductor and appear in Fig. 3 and 4 separately. It was initially desiréd to present the
results for the wavenumber £ =20 —20i, however, the results proved to be numerically
ill-behaved. It is believed that the required normalization over 40 e-folds presents some
difficulties even with 15 digit accuracy. As a substitute for this case the imaginary part is
set to -12. It can be seen that the shadow region for this case becomes even more
pronounced than it was in Fig. 2 thru 4. It is anticipated that at £ =20 — ;20 the shadow
would be qualitatively similar to that in Fig: 5. '

The surface currents plotted in Figs. 1 thru 5 suggest that the shadowing properties
of spheres embedded in conductors are similar to their shadowing properties in
dielectrics. Small spheres don't shadow but large spheres do. The primary difference is
that shadowing in conducting media is apparently deeper and‘ smoother in spatial
behavior than in dielectric media. |

Results -- Near field of sphere

It is appropriate to investigate these properties further by the direct calculation of
field patterns in the vicinity of the sphere. Accordingly, the field has been calculated for
a range of real and complex wavenumbers on portions of two relevant planes. One
plane, the y =0 plane shows the general development of the shadow region as well as
reflected waves. Figures 6 thru 9 show the amplitude and phase of the total E_. and H,

on this plane. The other plane lies behind the sphere at z = 1.2 (a distance of .2 from
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the back of the sphere) and is perpendicular to the incident wave direction. (For
convenience the distance units have been normalized by setting the spherical radius to
1 for all results.) Results from this plane reveal details of the shape of the near shadow
region and whether any unexpected effects occur off the equatorial axis. Figs. 10 thru
13 show results from this plane. The results in these figures are discussed in further
. detail below but it is fair to note at this time that there are no surprises in them that
change the conclusions already made about shadowing properties from the surface

current values.

Fig. 6 shows 10 windows detailing results plotted with a gray-scale. Each window
represents the results from a calculation at the wavenumber noted above it. The degree
of shading in each window represents a magnitude according to the key shown in the
lower left corner of the figure. Plotted in Figure 6 is the magnitude of the y-compone-nt
of the total (incident plus scattered) magnetic field on the pléne y =0. For each figure
the range of x is 0 to 3 shown from left to right and the range in z is -2 to +2 from bottom
to top in each window. The y-component of the field is symmetric about the x =0 plane.
The dark semi-circular region in each square represents the interior of the perfectly
conducting sphere where the field is zero. The calculations are performed on a 128 by
128 grid oriented in the x —z direction. The granularity in the shape of the circle reflects
the spatial resolution of the grid. The plane wave is incident from below. The interaction
of the reflected wave and the incident wave is especially apparent in the lower portions
of the k =3.5, k =12 and k =20 windows and to some degree ifféthe k=12 -2 and
k =20-2i windows. The values plotted in each of the windows have been normalized
so that the incident wave has a value of 1 everywhere even for the lossy media. The
geometric optics value of 2 is attained on the illuminated side of the sphere in ali the
windows.” Shadowing is evident in the windows with the results from the higher-vaiued
wavehumbers diéplayed.

A similar trend is seen in the plot of magnitude of the x-component of the total
electric field seen in Fig. 7. The format of Figure 7 is the same as Figure 6. The electric
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_field is unlike the magnetic field in that the total x-component goes to zero near x =0
z =11. Despite the different boundary condition the shadowing behavior of the field is

much the same as that in Fig. 6.

Figures 8 and 9 respectively show the phase of the total magnetic y and electric x
field components. To avoid extensive regions where the phase might shift from 0 to 360
“the values have been biased by 180°. Thus the normalization for these plots makes the
phase of the incident wave 180° everywhere. Evident in both Figures 8 and 9 is the
phase retardation as the creeping waves circle the sphere in the shadow zone. This
same phenomena occurs in the shadow zone of both dielectric and conducting media.

Figures 10 thru 13 shows the results of calculations on the z = 1.2 plane for the
same wavenumbers as shown in Figures 6 thru 9. Each window in each of the figures
represent the results of calculations made on a 128 by 128 grid oriented in the x—y
direction. For Figures 10 thru 13 the range in x is 0 to 3 from left to right and the range
iny is 0 to 3 from bottom to top. The results are symmetric about the x- and y-axes on
the bottom and left-hand edges of each window.

The magnitudes of the magnetic field (Fig. 10) and the electric field (Fig. 11), show
the same tendency between shadowing and wavenumber as seen in previous results.
Higher wavenumber media have shadows whereas lower wavenumber media do not.
Lossy media have shadows that are more pronounced and smoother than non-lossy
media. The results show th_alt the shadows tend to be darker alon%the x_=0 line than
along the y =0 line, especially for the less lossy wavenumbers. For the more lossy
results the shadow profile appears to be more uniform.

The phase of the field is also similar to that seen in Figs. 8 and 9 in that the phase
retards as one enters the shadow zone. Not surprisingly, higher wavenumbers have
larger phase retardation in their shadows. It may be a bit surprising, however, that the
contours of constant phase are somewhat elliptical and elongated in the y-direction for
the smaller wavenumbers. This elongation is symptomatic of the sensitivity of the
scattering process to the polarization of the incident wave.

-24 -



Conclusions

The Mie series for the field scattered by a perfectly conducting sphere has been
evaluated and plotted for complex values of wavenumber in order to explore the near-
field shadowing properties of objects in a lossy dielectric or in a conducting medium.
Near field shadows appear to be controlled by the product of the magnitude of the
- wavenumber of the medium and the structure size. Apparently, the 80° phase shift
between the (displacement) current in the medium and the electric field, a relation that
characterizes dielectric media, is not a necessary requirement for the shadowing
process to occur in an arbitrary medium.‘ The shadows produced in a lossy dielectric
were spatially smoother than those produced in dielectric with the same magnitude
wavenumber. For conducting media with skin depths smaller than the radius of the
sphere by a factor of three or more, shadows were produced.

-95.
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